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SOME INTERESTING BANACH SPACES
R.C. JAMES

ABSTRACT. If a Banach space X has an unconditionally
basic skipped-blocking finite-dimensional decomposition (UB-
SBFDD), then each of the properties RNP, KMP, PCP, and
CPCP is equivalent to X not having a subspace isomorphic
with ¢g. If X fails PCP and is a subspace of a space with a UB-
SBFDD, then X has a subspace isomorphic with ¢p. Many ex-
amples are described that have no cp-subspaces and fail RNP.
Some of these have PCP. Some fail PCP and have CPCP.
Some are not contained in a space with an unconditional basis,
but this remains an open question for others. Sufficient con-
ditions are given for a boundedly complete skipped-blocking
decomposition to imply CPCP.

Introduction. A bounded closed convex subset K of a Banach
space X has the Radon-Nikodym property (RNP) if, for any finite-
measure space (S, %, ) and any p-continuous measure A : ¥ — X with
AME)/u(E) € K for each E € X, there is a Bochner-integrable function
f:8 — X such that A\(E) = [}, fdpu for each E € ¥. For X to have
RNP means that the unit ball has RNP.

A bounded closed convex subset K of a Banach space X has the
Krein-Milman property (KMP) if each closed convex subset of K is the
closure of the convex span of its extreme points. For X to have KMP
means that the unit ball has KMP. A Banach space has KMP if it
has RNP [18], but whether the converse is true remains an important
unsolved problem.

A bounded closed convex subset K of a Banach space X has the
point-of-continuity property (PCP) if, for each nonempty closed subset
C of K, there is a point  of C such that the weak and norm topologies
(restricted to C) coincide at z; K has the convez-point-of-continuity
property (CPCP) if this condition is satisfied for all nonempty closed
convex subsets of K. For X to have PCP (CPCP) means that the
unit ball has PCP (CPCP). The CPCP was introduced in [3] to aid in
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proving that a space which fails RNP has a subspace which fails RNP
and has a basis of finite-dimensional subspaces. This property became
particularly important when it was proved that KMP=-RNP for spaces
with CPCP [22, Theorem 2.1]. The PCP was introduced in [4], where
it was shown that PCP is strictly weaker than RNP. Both PCP and
CPCP have been studied extensively.

A Banach space X (or a bounded closed convex subset of X) has
RNP if and only if it does not contain a bush (for an easy proof that is
easily adapted to the case of bounded closed convex subsets, see [13,
Theorem 7, p. 354]). A bush in a Banach space is a bounded partially
ordered subset B for which each member has finitely many successors,
B has a first member by;, each member of B can be joined to by; by
a linearly ordered chain of successive members of B, each member of
B has at least two successors and is the average of its successors, and
there is a positive separation constant § such that ||y —z|| > dif y is a
successor of x. The successors {by; : 1 <7 < d(2)} of by; are said to be
of order 2; the successors {b,; : 1 < i < d(n)} of members of B of order
n—1 are said to be of order n. A difference A,,; = by11,; —bn; between
bni and a successor by,y1; is a difference of order n. A branch of a
bush is an infinite linearly ordered subset whose first member is b11; a
segment is a linearly ordered subset; an initial segment is a segment
whose first member is b;;.

A decomposition of a Banach space X is a sequence {G,} of closed
subspaces for which X = lin {G, } and G} Nlin {G; : i # k} = {0} for
each k. A decomposition {G,} is basic if there is a positive number p
such that

n n+p
(1) Z T < p Z T
i=1 i=1

if n and p are positive integers and z; € G; for each ¢; it is monotone if
p=1. A decomposition {G,} of X is basic if and only if each member
z of X has a unique representation as = Y, z,, where z,, € G,, for
each n and convergence is convergence in norm. It is unconditionally
basic (a UBD) if this convergence is unconditional for each z; if each G,
is finite-dimensional, it is an unconditionally basic finite-dimensional
decomposition (UBFDD). If a Banach space X is contained in a space
with a UBFDD, then X is contained in a space with an unconditional
basis [16, p. 51].



SOME INTERESTING BANACH SPACES 913

Given a decomposition {G,}, a skipping sequence is a sequence {H,}
for which there is a sequence of subsets {S,} of {G,} such that,
for each n, H, = lin{G; : i € S,} and there is an r such that
a<r<fif Gy €S, and Gg € Sp+1. A decomposition {G,,} is an
unconditionally basic skipped-blocking decomposition (UBSBD) if each
skipping sequence is a UBD. A UBSBD {G,} is an unconditionally
basic skipped-blocking finite-dimensional decomposition (UBSBFDD) if
each G, is finite-dimensional. As noted in [21, p. 161], the James
space J has a UBSBFDD, but J does not embed in a space with an
unconditional basis.

A decomposition {G,} is a boundedly complete skipped-blocking de-
composition if each skipping sequence {H,} is boundedly complete.
The sequence {H,} being boundedly complete means that a series
Yy, converges if the partial sums are bounded and y, € H, for
each n. A BCSBD {G,} is a boundedly complete skipped-blocking
finite-dimensional decomposition (BCSBFDD) if each G, is finite-
dimensional.

1. Unconditional bases and co-subspaces. Although satisfied
by many classical spaces, the assumption that X can be embedded in a
Banach space with an unconditional basis is very severe. For example,
it implies that X is reflexive unless X contains ¢; or I; [2]. The next two
“almost-known” theorems also illustrate this. The proof of Theorem
1.1 involves only a natural modification of the proofs of Theorems 4.5
and 4.7 in [14] and the proof of Theorem 1.2 is a natural modification
of the proof of Theorem 4.8 in [14].

Theorem 1.1. Suppose X is a subspace of a Banach space Z which
has a UBSBFDD. If no subspace of Z is isomorphic with cy, then X has
RNP, KMP, PCP, and CPCP. If X fails PCP, then X has a subspace
isomorphic with ¢y (and X fails RNP, KMP, and CPCP).

It is known that RNP and KMP are equivalent for X if X has CPCP
or if X is a subspace of a space with an unconditional basis [22].
However, there is a space X [15] which is a subspace of a Banach
space Z with an unconditional basis, X fails both RNP and KMP, X
has PCP, and X has no subspace isomorphic with ¢y. Then Z must
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have a subspace isomorphic with ¢y and, because of the next theorem,
X cannot have a UBSBFDD.

Theorem 1.2. If X has a UBSBFDD, then each of the properties
RNP, KMP, PCP, and CPCP is equivalent to X not having a subspace
isomorphic with cg.

These theorems give a great deal of information about the role ¢y
plays with respect to RNP, KMP, PCP, and CPCP for spaces contained
in spaces with a UBSBFDD. To obtain similar results for bounded
closed convex subsets of a space with a UBSBFDD, we need two
lemmas. The first lemma uses the following easy result which was
first stated on page 138 of [3] for CPCP.

“If a bounded closed nonempty set K C X fails PCP, then there is a
closed nonempty set A C K and a positive number £(A) such that

(2) diam(UNA)>e(A) fUNA#@ andU is w-open.”

Lemma 1.3 is similar to [3, Lemma 9, p. 139], [14, Lemma 4.1, p.
307], and [19, Lemma 4.6, p. 312], but is much easier to prove. It
suffices for Lemma 1.4, which is a stronger version of [21, Lemma 2.7,
p. 176] and closely related to [3, Lemma 10, p. 140] and [14, Lemma
4.2, p. 308].

Lemma 1.3. Suppose A C K C X and £(A) are as in (2). Then for
any € < (1/2)e(A), any p > 0, any x € A, and any subspace E of X
with finite codimension, there exists A € X such that

z+A €A, [|A]] > e, dist (A, E) < p.

Proof. Assume the hypotheses are satisfied. Let E = N, Ker (f;).
Choose a positive number ¢ such that dist (z, E) < p if | f;(2)| < ¢ for
each ¢. Now let

U={u:|filu—2) <c¢1<i<n}

It follows from (2) that there are members y; and y2 of U N A such
that ||y1 — y2|| > €(A). Choose a as 1 or 2, so that ||z — y|| > €. Let
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A=y, 2. Thenz+A =y, € UNAand ||A]| > ¢. Since y, € UNA,
we have
Ifi(ya — )| =|fi(A)] < ¢ for1<i<n.

Therefore dist (A, E) < p. O

Lemma 1.4. Suppose A C K C X and e(A) are as in (2). Then for
any € < (1/2)e(A), any = € A, and any subspace E of X with finite
codimension,

zeconv{z+A:x+AcAAcE,|A|>c¢}

Proof. Assume the hypotheses are satisfied and
z¢conv{r+A:z+AcAAcE||A|>c}=D.

Then there is an f in X* and a positive number g such that ||f|| =1
and f(z) — p > sup{f(z) : z € D}. Let F = EnKer(f). It
follows from Lemma 1.3 that there exists Ag such that =z + Ay € A,
[|Ap|| > €, and dist (Ag, F) < (1/2)p. Since dist (Ag, F) < (1/2)p, we
have |£(Ao)] < (1/2)p,

f@+80) > flx) = (1/2)p,  dist (Ao, E) < (1/2)p,
dist (z + Ag, D) < (1/2)p.

The last inequality and f(z)—p > sup{f(z) : z € D} imply f(z+2Ay) <
(1/2)p + [f(z) — p], or f(z + Ap) < f(z) — (1/2)p, which contradicts
f(z+ Ao) > f(z) — (1/2)p and completes the proof. O

A basic bush is a bush for which {D,;} is basic, where D,; is the
linear span of the differences between b,; and the successors of b,;,
and {D,;} is arranged as a sequence using lexicographic ordering. We
will say that K contains “nearly monotone” basic bushes if K contains
bushes with p in (1) arbitrarily near 1. A bush is complemented if
there is a positive number 6 such that, for each n, ||u — v|| > 0||u|| if u
belongs to the linear span of all followers of some member b,; of order
n and v belongs to the linear span of all followers of other members by,
of order n with j # 4. It follows from [10, Theorem A, p. 354] that a
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bounded closed convex set K fails KMP if K contains a complemented
bush.

The next theorem is a significant strengthening of [21, Theorem 1.1],
which states that if K is a closed bounded convex subset of a Banach
space with a UBSBFDD and K fails PCP, then K contains a “well
separated uniformly bounded bush B such that B is a strong martingale
representation for its closed convex hull.”

Theorem 1.5. Let K be a bounded closed convex subset of a Banach
space X. If K fails PCP, then K contains “nearly monotone” basic
bushes. If X has a UBSBFDD, then K fails KMP because this bush
can be complemented. Also, each branch can have the property that
the sequence of differences along that branch is a natural basis for a
subspace isomorphic with cy.

Proof. Let A C K and € be as in (2), and let {0,} be a sequence
of positive numbers for which ¥4, < ¢/3. We will construct an
approzimate bush {z,;} in A with errors of approximation {é,} [10,
p. 348]. For an arbitrary z1; € A, choose a finite set {Ay;} in A for
which there is a convex combination A of {Ay;} with ||A]| < §1, each
z11 + Ay; € A, and ||Ay;|| > € for each i. Without loss of generality,
we can assume that A is the arithmetic average of {A1;}. Now we use
02 and repeat this for each x11 + Ay; = x4, to obtain xg; + Ag; = x3;.
This process can be continued indefinitely, to define an approximate
bush. Now we can obtain a bush B = {b,;} in K for which b,; is
the limit as p — oo of the obvious natural weighted average of the
followers of z,; of order p [10, p. 352]. This bush B will be “nearly
monotone” if, for each x,;, the corresponding A, ;’s are chosen to be
in the intersection of the null spaces of an appropriate finite set Fj,;
of members of the unit ball of X* that are “nearly norming” for the
linear span of all previously chosen A,;’s. Now suppose that X has
a UBSBFDD {Gp}. If {u,} is a set of positive numbers, then each
F; can be chosen as before—but enlarged so that {Gp} has a skipped-
blocking { H,;}, ordered lexicographically, such that, if D,; is the set of
Apt1,;’s of order n that follow z,;, then each member of D,,; belongs
to the closed linear span of those Gi’s that follow the first member of
{G,} that follows all members of {G,} that were used with previously
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determined H’s, and
dist (z, Hpi) < Anillz],

if z € lin (Dy,;) and \,; is the first member of {u,} not used previously.
Since {H,;} is unconditionally basic, it follows that, if the positive
numbers {u,} are sufficiently small, then the bush B is complemented
and the differences along a branch span a subspace isomorphic with cg.
O

It follows from Theorem 1.5 that, for bounded closed convex subsets
of a Banach space with a UBSBFDD, KMP implies PCP. Since RNP
and KMP are equivalent for spaces with CPCP [22], this implies that
KMP implies RNP for bounded closed convex subsets of a space with
a UBSBFDD. This was proved by Schachermayer [22] for spaces with
an unconditional basis. It also follows from the result of Rosenthal and
Wessel quoted above [21, Theorem 1.1].

For a bounded closed convex subset K of a space with a UBSBFDD,
Theorem 1.5 establishes the existence in K of a nicer and more re-
stricted bush than previously known to exist. Each branch generates
a cg-subspace, although the closure of the convex span of the branch
need not contain a bush. This bush resulted from the failure of PCP.
That such a bush need not exist because of the failure of RNP is shown
by the example discussed following Theorem 1.1. Theorems giving the
existence of basic bushes for Banach spaces that fail RNP are known
(see [3] and [20, Theorem 3.9]).

2. Boundedly complete decompositions. The purpose of this
section is to introduce some results that will be used in the next section
to aid in proving that several spaces that fail RNP have PCP and that
several spaces that fail PCP have CPCP. The next theorem is known.
Other results concerning skipped-blocking decompositions are given in
[4], [6], and [19] for finite-dimensional decompositions and in [8] for
infinite-dimensional decompositions.

Theorem 2.1. A separable Banach space has PCP if and only if it
has a BCSBFDD [6, Theorem 2.1].
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Let {G,} be a basic decomposition of a Banach space X. If T is a
subset of X, we will use the symbols P )T, P—sT, and P )T for
the set of all projections of members of T onto lin (G, : n < s}, G,
and lin {G,, : n > s}, respectively.

Lemma 2.2. A decomposition {G,} of a Banach space X is a
BCSBD if there is an € > 0 such that ||z + y|| > (1 + €)||z|| whenever
[lz|]| = |ly|| and (z,y) is a skipping pair in the sense that there is an
integer p for which one of x or y belongs to lin {G; : i < p} and the
other belongs to lin {G; : i > p}.

Proof. Suppose first that (x,y) is a skipping pair. If ||z|| = 6|]y||,
0 < 6 < 1, and the hypothesis of the lemma is satisfied, then
||z + 0yl| = (1 +¢)||z|| and

Ollz +yl| = |lz + 0y[| — (1 = 0)[|z]| = (¢ + O)]||l,

so that ||z + y|| > (1 +¢/0)||z|| > (1 + ¢)||z||. Thus for any skipping
pair (z,y),

(3) |z +yll = (1 + &) min][z]], |y[|}-

Now suppose a decomposition {G,,} has the property described in the
theorem but is not a BCSBD. Then there is a skipping sequence {u;}
whose partial sums are bounded, but Xu; is not convergent. This
implies that there is a positive number A for which there is a sequence
{oi : i > 1} of sums of consecutive blocks of {u;} with ||o;|| > A for
each i. Let 0} = 09;_1 + 09; for each i. Then it follows from (3) that
each ||o}|| > (1 +¢)A. Now let

o? =03, |+ 03 for each i.

Then each |[o?|| > (1 + ¢)?A. Since this can be continued indefi-
nitely, we have the contradiction that the partial sums of {u;} are not
bounded. O

Lemma 2.3. Let X be a Banach space that has a monotone
decomposition {G,} for which each G, is an ly-space. Suppose each
bounded convexr monempty subset K of X has the property that, for
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any A > 0 and any weakly open convex set W with W N K # &,
there s a weakly open convexr subset V. which has the properties that
VNnWnK # @ and there are integers r and N such that, if
zeVNWNK andt > r, then there exists £ € X for which

llz — &Il <A and Z|af| <N,
1

where

P& =7 alel with {e!} the orthonormal basis of Gy. Then each
bounded conver nonempty subset of X has the property that, for any
positive numbers € and r, there exist a weakly open convex set Q and
integers s and t such thatr < s <t, QONK # @ and, if z € QN K,
then:

(8) diam [Py (2N K)] < &, | Peyzll > sup{llal| : 2 € K} — ¢,
(b) P2l < e.

Proof. For each t, let {e! : i > 1} be the orthonormal basis for G;.
Let X and K be as described in the lemma, but assume that K is
contained in the unit ball of X. Let € be an arbitrary positive number.
Choose an integer s > r for which there is a linear functional f such
that K (s, f) # @ if

K(S,f): (P(<S)K)ﬂ{l‘f($) > 1})

and also ||z|| > sup{||z|| : z € K} —¢if 2 € K(s,f). Since P.5X
is reflexive, it has PCP. Therefore there exists u € K(s, f) which
has a convex w-neighborhood U with diam [U N K(s, f)] < €. Then
WNK #o if
W=Un{z: f(z) > 1}.

This s and Q = W satisfy (a). For some ¢, (b) may be satisfied and the
proof complete. But we do not know if such a t exists, so we proceed
as follows.

Let K* be WNK translated a distance less than (1/2)e so that there
is an integer 7 for which there exists ¢ € K* such that P>, )¢( = 0. If
we can find ¢ > s and a weakly open convex set U* for which

1Pzl < (1/2)  if z € U* N K,
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then (b) will be true for = Uy N W, where Uy is U* translated back.
Let ¢ be any integer greater than both 7 and s. To find U*, we first
choose a positive number A < (1/8)e. Let V, r, and N be as described
in the lemma for W N K replaced by K*. For each £ € X, let

oo

L(t,§) = lal|  if P_yé =) alel.
1

1

For each weakly open convex set U C V for which U N K* # &, let
N(t,U) be the least number such that, if x € UNK*, then there exists
¢ € X for which ||z — ¢|| < A and L(¢t,€) < N(¢t,U). Let

M =inf{N(t,U) : UN K* # @},

where U is a weakly open convex subset of V. Choose U’ for which
N(t,U') < M+ (1/2)A. Let X be an integer for which A=/ < (1/8)e,
and let {a1,...,a)} be a set of positive numbers to be restricted later.
Because of the definitions of N(¢,U) and M, there exists u} € U' N K*
such that

L(t,&) > M — (1/4)A  ifée€e X and ||u] €| <A.

Let {ff : 1 <i < n1} be coefficient functionals for basis vectors of G
whose linear span “almost” contains v} [ff(z) =0 if z € lin{G, : n #
t}]. Let

Wi ={x e X:|fl(z)| < a; for each i}.

Since ¢ € W, WiNnU' N K* # @. Next, choose u} so that u} €
WinU' N K* and
L(t, &) > M — (1/4)A  ifé¢€e X and |jul—¢|| <A.

Define W4 for az and {f} : 1 < i < ny} similarly, and continue until
we have sets {W{,... , W} and {ul,... ,u}}. Then ¢ € MW, so

(MWHNU' N K* # @. If “almost” was sufficiently restrictive and if
each o is small enough, then

(4) L(t,&)>M—~(1/2)A  if¢€X and ‘

Ejjwz/A)—f)H <A/
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Now choose 3 and coefficient functionals {g : 1 < i < m} of {e!} to be
restricted later. Let

U*—{weX:

A
gf(a:)—gf<2u§/>\> < Bif1 gigm}_
1

Then Y} ul/X € U* N K*, so U* N K* # @. Let E be the set of basis
vectors corresponding to these coefficient functionals. For any x € X,
let zp and z. g be the projections of P_yx onto lin (£) and onto the
closure of the linear span of the complement of E in {e} : i > 1},
respectively. If m, {g; : 1 <i < m}, and 3 are chosen appropriately, if
z € U* N K*, and if ¢ is chosen so that ||z — £|| < (1/2)A/X and

(5) L(t,§) < M + (1/2)A,

then it follows from A\~/2 < (1/8)e, K being in the unit ball, and
||ze|| being approximately [Zi‘ |[ul /A||2]1/2, that ||zg|| < (1/4)e; and
it follows from (4) that L(¢,g) > M — (1/2)A. It follows from this
and (5) that

Lt éup) < (M + (1/2)A) — (M — (1/2)A) = A.

Therefore ||{og|| < A, and it follows from ||z — &|| < (1/2)A/A that
llz~El| < 2A < (1/4)e, so we have

1P=nzll < llzell + llz~pll < (1/2)e. B

Theorem 2.4. Let X be a Banach space that has a monotone
decomposition {Gpn}. Then X has CPCP and {G,} is a BCSBD if.

(i) For any a > 0, there is a 8 > 0 such that ||z +y|| > ||=|| + B]|y]|
if l|lyl| > al|z|| and (z,y) is a skipping pair with respect to {G,,}.

(ii) FEach bounded convex nonempty subset K has the property that,
for any positive numbers € and r, there exists a weakly open convex
set 2 and integers s and t such that r < s < t, QN K # &, and, if
z€ QNK, then:

(8) diam [Py (N K)] < &, [ Peyzll > sup{llal : 2 € K} — ¢,
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(b) [[P=pzll <e.

Proof. It follows from (i) and Lemma 2.2 that {G,} is a BCSBD.
If X fails CPCP, then there is a bounded convex subset K of X and
A > 0 such that

(6) diam (U N K) > A

if U is a weakly open subset of X for which UNK # & [3, Proposition
1, p. 138]. Choose 8 < 1 so that, if (z,y) is a skipping pair with respect
to {G}, then

|z +yll = ll=l[ + Bllyll i [lyl] > (1/4)Allz]].
For this K, let €2 be a weakly open convex set and s < t be numbers for
which QN K # @ and (a) and (b) of (ii) are satisfied for e = (1/8)8A.
Without loss of generality, we assume that sup{|z|| : * € K} = 1.

Since {G} is monotone, it follows from (a) that ||Pyz|| > 1 — ¢ if
z € (QNK). If [|P>yy2|| > (1/4)A, then

[|[P<tyz + P>zl > (1 —¢€) + (1/4)BA.

Since ||P(=2|| < ¢, this implies ||z|| > (1 —¢)+ (1/4)BA —¢ = 1. This
contradiction implies ||P(~¢)2|| < (1/4)A and, therefore,

P02l < (1/4)A + €.
Now choose a weakly open convex set V' such that VNQN K # & and
diam [P»hV NQANK] <e.
Then if z; and zy are members of VN QN K, we have

|21 = 22| < |[P<ey(21 = 22)|| + || P>ty 21l | + [| P>ty 22|
<+ (1/2)A+ 2 < (T/8)A

Thus U = V N Q contradicts (6), and the proof is complete. o

3. Some examples. It was proved in [4] that JT™ and JH* contain
subspaces that fail RNP and have PCP, where JT is the James-Tree
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space [12] and JH is a tree space constructed by Hagler [9]. Now it
is known that JT™ and JH* themselves have PCP ([5 and 17]). Four
new examples will be given of spaces that fail RNP and have PCP.

Four examples will be given of spaces that fail PCP (and RNP), but
have CPCP. It was proved in [7] and [8, Theorem IV.8] that the space
By (or J,Too 1) fails PCP and has CPCP. The space Ao, to follow is
B, defined explicitly rather than as a subspace of a dual. The space
®, is similar, but is not isomorphic with A,.

We know that, if X has a UBSBFDD, then each of the properties
RNP, KMP, PCP, and CPCP is equivalent to X not having a subspace
isomorphic with ¢g. Therefore, none of the spaces discussed in this
section has a UBSBFDD and none has a subspace isomorphic with ¢g.

However, there does exist a bounded closed convex subset of ¢y that
has CPCP and fails PCP [1].

The definition of each space will be very explicit, so they may provide
some understanding of how such spaces may be constructed. Perhaps
they will provide enough understanding so that one might construct a
space without RNP or a cp-subspace, for which all subspaces that fail
RNP also fail CPCP. Because of [22], this is a necessary condition for
a counterexample to the conjecture that KMP = RNP.

To describe these spaces, we will use partially ordered sets E for which
each member has at least two successors, F has a first member ¢g, and
for each member e of E there is a linearly ordered chain of successive
members of E for which ey and e are the first and last members. If
the chain that joins eg to e has m members, then e is said to be of
order n — 1. In particular, the successors of ey are of order 1. The
meanings of branches and segments are the same as for bushes. Let L
be the natural linear space of all formal linear combinations with real
coefficients of such a set F, with ey the zero of L.

Various norms will be defined on L and completed to give Banach
spaces. A symbol to denote one of these spaces will be used without
a subscript if each member of F has finitely many successors; it will
be used with the subscript oo if each member of E has infinitely many
successors. For each space, the norm will be defined by using certain
functions denoted by ¢ and then letting

||z|| = inf {Zrp[w(k)] : 2 = Zrpw(k)},



924 R.C. JAMES

where ¢ can vary with w(k). For each of the resulting spaces, the sum
of an initial segment will have norm 1. So that the union of sums
of initial segments in a space of type Y will be a bush, we impose the
condition on the E used to define Y that, for each e € E, the sum of the
successors of e is 0 (without these conditions, ¥ would be isomorphic
with 1;); also (to simplify a later proof) let all members of E with the
same order have the same number of successors. For each space of
type Z,A,®, ¥, and Q, we assume that there is a sequence {)\,} such
that each member of the corresponding E with order n has at least A\,
successors and )\, increases sufficiently rapidly so that the set of sums
of initial segments is an approximate bush [10, p. 348]. In particular,
for Z we assume that there is a number r > 1 such that A, 1 > A, for
each n. A bump with altitude h is a function on E whose support is a
segment on which the function is identically h. For each of the following
spaces, ||z|| = |h| if z is a bump with altitude h whose support contains
eo- A set of bumps is disjoint if their supports are disjoint.

X: The space whose properties in the following table were established
in [15].

Y: Let p(w) = |h|, if w is a bump with altitude h.

Z & Zs: Let p1(w) = |h| if wis a bump with altitude h. Let
pa(w) = (Zw?)Y2 if {w;} is the set of coefficients of w as a member
of L.

A & Aso: Let p(w) = (Zh2)V/2, if w = Swy, where {wy} is a set of
disjoint bumps with corresponding altitudes {h}.

® & Do Let p(w) = (Bh2)Y? if w = Ywy where {wy} is a set
of bumps with corresponding altitudes {h} and the property that no
segment in F contains points of the supports of two different bumps in
{wr}-

U & Voot Let o(w) = [B,(22 | u(v,i) — u(v,i + 1)|)%]'/2, if there
are finitely many segments {S(v)} whose first members are distinct
members of E with the same order and w = Xu(v), where each
u(v) = B2 u(v,i)e(v, i) and S(v) is the segment {e(v,7) : 1 <7 < co}.

Q & Qoor Let p(w) = [Sy(sup{S2y [u(v, pi) — u(v,pir1)]* ]2,
where the sup is for all increasing sequences {p;} of positive integers

and there are finitely many segments {S(v)} whose first members are
distinct members of FE with the same order and w = Yu(v), where each
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u(v) = B2 u(v,i)e(v, i) and S(v) is the segment {e(v,3) : 1 <i < co}.

The above definitions can be modified in many ways, not necessarily
preserving the space within isomorphism. For example, for Z and
Z s, one could require that ¢2(w) be defined only if, for some n, w
belongs to the span of members of E' with order n; for A and A, one
could require that the bumps of {wy} have supports that are subsets
of segments whose first members are distinct members of E with the
same order; and for ¥ and ¥, or Q2 and 2, one could require only
that the segments {S(v)} be disjoint.

Each space described above contains a bush. Therefore, each space
fails RNP. It is easy to see that the obvious bushes are complemented,
so each space fails KMP [10, p. 354]. This completes the first two
columns of the following table, where X is the space whose properties
were established in [15], except for noting that X would be reflexive
if it did not have an [{-subspace, since it has no cp-subspaces and is
contained in a space with an unconditional basis. We will now establish
most of the remaining entries. The question marks indicate unresolved
problems.

RNP | KMP | PCP | CPCP co UBFDD 15 Subspace
subspace subspace | of UB-space

X NO NO | YES | YES NO NO YES YES
Y NO NO NO NO NO NO YES NO
Z NO NO NO NO NO NO YES NO
A NO NO | YES | YES NO NO NO NO
® NO NO | YES | YES NO NO YES ?

)4 NO NO | YES | YES NO NO YES ?

Q NO NO | YES | YES NO NO YES NO
Zso | NO NO NO NO NO NO YES NO
A | NO NO NO YES NO NO NO NO
P | NO NO NO YES NO NO YES NO
U | NO NO NO YES NO NO YES NO
Qs | NO NO NO YES NO NO YES NO

For each of the spaces other than X, let GG, be the closure of the
linear span of all members of F with order n.
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The space Y is one of the simplest spaces to fail RNP. To show that
Y fails CPCP (and therefore PCP), let K be the closure of the convex
span of all sums of initial segments of E. Suppose K has a point of
continuity w. Then there is a w-neighborhood of w,

U={z:|filzr —w)| <2 for 1 <i<Ek},

such that UNK C B(w,1/3) and ||f;|| < 1 for each i. Let wp e UNK,
|fi(wo — w)| < € for each 4, and wy = X"_;\.0, where each o, is the
sum of an initial segment s, of E. Consider a particular s, with sum
0. Choose a length for segments that follow s,. so that there are more
than p such segments, where p will be specified later. Note that the sum
of these segments is 0. Let 77, be the number of successors of any one
of these segments. For segment i, let the set A be @ if n, is even, and
A* contain exactly one successor of segment i if n, is odd. Separate the
remaining successors of segment i into equinumerable disjoint sets S%
and S%. Let A; (or 6;) be the weighted average of the members of A'US!
(or A'US}) with the weight of the member of A? (if any) half that of the
others. Then A; = —¢; and 2/3 < ||A;|| < 1, where the 2/3 is attained
only if 7y = 3. Consider f; and D" = ¥{d;/p, where d; is either A; or
0; for each i. For any set of more than 1/¢ of the d;’s, there are values
for some d; and d; such that |fi(d; + d;)| < e. With such choices of
d;’s, pD" = ¥%d; can be regarded as the sum of at most p/2 pairs on
each of which |fi(d; +d;)| < € and at most 1/e terms with |f(d;)| < 1.
Thus |fi(D")| < 1/(ep) + /2. Similarly, for any set of more than
1/e such pairs, there is a sum of pairs = *(dy + d;) £ (d; + di)
for which |f2(x)| < 2e. There are at most p/4 such 2’s. After such
changes in the value of D", we have |fo(D")| < 1/(ep) + 2/(ep) + €/2.
Since this can be continued up to fx, it is possible to choose p great
enough that |f;(D")] < e for each i. Let D = X" _;A.D". Then
¥ Ar(or+D") =wp+ D and ||D|| > 2/3. Since

|filwo + D) —w| < [fi(wo — w)| + | fi(D)| <2¢  for each i,
we have wg + D € U. Now we have the contradiction that ||wp — w|| <

1/3, ||wo + D) — w|| < 1/3, and ||D|| > 2/3.

We will now show that Zo,, Aso, Poo, Yoo, and 2 fail PCP. In each
case, let S be the set of all sums of initial segments of E. Observe that
the norm of the sum of n distinct members of E with the same order
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is n'/2. Suppose S has a point of continuity . Let B(c,1/2) be the

1/2-neighborhood of o. Then there is a w-neighborhood of o,
U={z:|fu(x—0) <eforl<k<n},

such that UNS C B(o,1/2). Let e be the last member of the segment
s whose sum is o. Since e has infinitely many successors, there is a
successor €’ of e for which |f(e')| < € for each k. Thenoc+e’' € UNS,
but |le'|] = 1 implies o + €' does not belong to B(c,1/2). This
contradiction implies S has no points of continuity.

To show that Z,, fails CPCP, let K be the closure of the convex

span of all sums of initial segments of E. Suppose K has a point of
continuity w. Then there is a w-neighborhood of w,

U={z:|fr(z —w)| <eforl <k <n},

such that UN K C B(w,1/4). Let wy € U N K be a convex span,
2?21 Aioi, where each o¢; is the sum of an initial segment s; of F.
For an arbitrary positive number §, let {d; : 7 > 1} be a sequence of
positive numbers for which > d; < d. Consider a particular s; with
sum o;. Since the last member e; of s; has infinitely many successors,
there is a successor e} of e; for which |fi(el)| < &, for each k. Then
there is a successor e? of e} for which |fx(e?)| < 02 for each k. For any
positive integer p, we can extend s; in p steps to be a segment s? with
sum o? for which

p
[fi(of —oi)| <Y 65 <6
j=1

When this has been done for each i, we have | (31 Aio? —wp)| < 6.
This yields a contradiction, since § can be small enough that > ;| A\;o?
belongs to U N K and p can be great enough that

n
E p
)\iai — Wy
i=1

which implies that || > | Aio? — w|| > 1/2.

The sequence {G,,} is not a BCSBFDD for Z. In fact, Z fails CPCP
(and therefore fails PCP). Although the proof can have similarity with

> 3/4,
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the preceding proofs for Y and Z.,, it is much more difficult and does
not seem sufficiently interesting to include.

That A, ®, ¥, and Q have PCP (and therefore CPCP) follows from
Theorem 2.1, Lemma 2.2, and the next three lemmas. These lemmas
also provide needed information for proving that Ao, Poo, Voo, and Q.
have CPCP.

Lemma 3.1. The spaces A, A, ®, and P, have the property that,
for any o > 0 and § = (1/4)a®(4 + a*)~1/2,

(7) |z +yll = Mzl + Bllyll i llyll > el

and (z,y) is a skipping pair with respect to {G,}.

Proof. The proof is the same for all four spaces. Suppose that (z,y)
is a skipping pair. Let p be an integer for which z € lin {G; : i < p} and
y € lin{G; : i > p}. Without loss of generality, we assume that z and y
belong to the corresponding linear space L, ||z|| = 1, and ||y|| = a > a.
Suppose (7) is not satisfied for some S. Then ||z + y|| < 1 + Ba and
there exists a finite set {wy} for which Ywy = z + y and

(8) 1+ Ba > Sp(wr),  p(we) = [Sih(k,)*]'/2,

where each wy, is the sum of bumps with altitudes {h(k,¢)}. If there is
an e € E with order p for which some bump used in (8) is not zero at
e, let h(r,i) have the least absolute value of altitudes of such bumps.
Then some ws with s # r has a bump with altitude h(s, j) of opposite
sign. Replace w; by fw;s and (1 — )ws, where 0 < # < 1 and the bump
in fws whose support contains e has altitude —h(r,i). Relabel these
bumps in w, and w, so that the one whose support has an element
of least order uses )\ instead of h and the other uses u instead of h (if
the least order for elements in the support is the same for both bumps,
truncate both bumps so their supports contain only members of E with
orders greater than p). Repeat this until no wy, or replacement uses any
bump that is nonzero at e, unless it has been relabeled. Then do this
successively for other e’s of order p at which some bump is nonzero.
Finally, for the new {w;} we have Xw; = z + y and the inequality in
(8) can be replaced by

(9) 1+ Ba > To(wy),
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where
(10)  @(wg) = [BsA(k,i)% + 2 (k1) + Zip(k, )% + Sin(k, )%

Here A(k,i) and u(k,i) are relabeled altitudes as described above,
&(k,1) is the altitude of a bump whose support has members only of
order less than p, and 7n(k, 1) is the altitude of a bump whose support
has members only of order greater than p. It follows from (9), (10),
and Minkowski’s inequality that

L+ Ba > [{Se[Si€(k, )2} + {Sk[iA(k, i)
+ Sip(k, 0)? + Sin(k, )7 212
If we truncate all bumps used in the second of the two expressions in
braces so that all bumps have support in the set of all members of F

with orders greater than p, then we see that this expression is at least
as great as ||y||. Therefore,

1+ Ba > [{Se[Sig(k,)*]/2)* + a2,
which implies that
(11) Sr[Ei€(k, 0)*)1? < [(1+ Ba)® — a®]M/2.
Now observe that it follows from (9) and (10) that
(12) 14 Ba> [{Sk[Si(k,i)® + Zig(k,0)*]/?}
+{Sk[Sinlk, )12

The first of the two expressions in braces is at least as great as ||z|| = 1,
since the sum of the bumps with altitudes A(k, %) or £(k, ) is z if each
A-bump is truncated so that its support contains only members of
FE with orders less than the order of members of the support of the
corresponding p-bump. Also,

Sk[Sip(k, )22 > Si[Sip(k, i) + Sig(k, )%

12) — Sk[Zi€ (K, 0)%]M3,

which is obtained by applying for each k the inequality |z| > (2 +
y?)1/2 — |y|. The first summation over k in the right member of (13) is
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at least as great as 1, since the sum of the p-bumps and the £-bumps
becomes z if each y-bump with altitude p(k,7) is replaced by a bump
with altitude —pu(k, ) whose support is the set of members e of E with
orders less than p that are in the support of the corresponding A-bump
and not in the support of this py-bump. Now it follows from (12), the
observation following (12), the observation following (13), and (11),
that
1+ Ba> [1+ {1 —[(1+ Ba)® — a2}/,

This implies 8 > (a2 + (1/4)a?)"/? — a~! and therefore
B> (1/4)a®(4 + a*)~V/2,

Since a > a, it follows that (7) is satisfied if 8 = (1/4)a®(4 4+ o*)~1/2.
o

Lemma 3.2. The spaces ¥ and ¥, have the property that, for any
a>0 and = (1/2)a(1 +a?)~1/2,

(14) lz+yll = [l=ll + Bllyll o [yl > eflz]]

and (z,y) is a skipping pair with respect to {G,}.

Proof. The proof is the same for both spaces. Suppose that (z,y) is
a skipping pair. Let p be an integer for which z € lin {G; : i < p} and
y € lin{G; : i > p}. Without loss of generality, we assume that = and y
belong to the corresponding linear space L, ||z|| = 1, and ||y|| = a > a.
If (14) is not satisfied for some 3, then ||z + y|| < 1 + Ba and there
exists a finite set {wy} for which Ywy = z +y and

Lefa> Selw), () = | 2 > |uk<u,z'>—uk<u,z'+1>}2] "

v i=1

where for each k there are finitely many infinite segments {S(v,k)}
whose first members are distinct members of the same order in E and
wy, = B, uk(v), where each uy(v) = 32 up(v,1)ex(v,4) and S(v, k) is
the segment {ey(v,7) : 1 < i < oo}. If S(v, k) has an eg(v,7) of order
p, let this value of 7 be denoted by p. Otherwise, let p = 0. For each &
and v, we let

(15) ug(v) = A (V) + pr(v),
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where pg (v, 1) is constant for 1 <i < p, ug(v,i) = uk(v, ) if i > p, and
Me(V) = ug(v) — pi(v). Then Mg (v,i) =0if i > p, . = Zp X, A\ (v), and
y = T2, px(v). Also,

o(wk [Z{prkl/z Ae(vyi+1)]
P .
+Z\uwz uwz+1)l}] ,
which implies
(16) (wk) = [Z{Zp\km ,\km+)|}2
p »
+;{Zuklm ukuz+1)|}] i

Therefore,
1+ Ba> Y p(wy)
oo 2 1/21 2
> [{Zk:(;{;Mk(u,i)—)\k(u,i—i—lﬂ} > }
+{Z (;{iw,i)—yk<u,i+1>|}2)l/2}2]l/2

> (Il + [lyl%)*? = (1 + a®)'/2.

This implies 8 > (14+a 2)/2 —a~! > (1/2)(1+a %)~ /2. Since a > a,
it follows that (14) is satisfied if 3 = (1/2)a(1 + a?) /2. u]

Lemma 3.3. The spaces 2 and Qo have the property that, for any
a>0and B = (1/2)a(l +a?)"1/2,

lz+yll 2 ll=ll + Blyll o [lyll > o]

and (z,y) is a skipping pair with respect to {G,}.
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Proof. The proof is the same for both spaces and similar to that
for Lemma 3.2. We make the obvious changes that result from the
new definition of p(w) until the functions Ag(v) and pg(v) have been
defined. Recall that for Q2 and Q,

olun) = [Z (5w { i[uk(w) - utspis )7} )| -

Then note that sup{>_:~, [ur(v,p;) — uk(v,pit1)]?} is not increased if
the sequence {p;} is restricted by requiring that p; = p for some i.
With A\, and p defined as in (15), it then follows as for (16) that

olwn) > [;sup { immpi) - M)

T ;sup { > kv, pi) = p(v, Pi+1)]2}] 1/2.

i=1

The concluding calculations are essentially the same as for Lemma 3.2.
O

As was noted earlier, it follows from Lemma 2.2, the preceding three
lemmas, and Theorem 2.1 that A, @, ¥, and  have PCP (and therefore
CPCP). It follows from the next lemma, Lemma 2.3, and Lemmas
3.1-3.3 that the hypotheses of Theorem 2.4 are satisfied for each of
the spaces Ao, Poo, Yoo, and 2, so that each space has CPCP and
for each space the corresponding monotone decomposition {G,} is a
BCSBD.

Lemma 3.4. FEach of the spaces Ao, Poo, Yoo, and Qs satisfies the
hypotheses of Lemma 2.3.

Proof. The proof will be given for all these spaces simultaneously. Let
X denote the space. We need to show that if K is a bounded convex
nonempty subset of X, then K has the property that, for any A > 0
and any weakly open convex set W with W N K # @, there is a weakly
open convex set V' which has the properties that VN W N K # @ and
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there are integers r» and IV such that, if z € VNW N K and ¢ > r, then
there exists £ € X for which

lz—¢ <A and ) laf| <N,
1

where P_y& = 37" ale! with {e!} the orthonormal basis of G;.

For an arbitrary ¢ > 0, we could use the type of argument in the
beginning of the proof of Lemma 2.3 to show that, for any weakly open
convex set W with W N K # &, there is a weakly open convex set
U C W and an integer r such that UNK # @, and, if z € UN K, then

diam [P .,y (U N K)] <, [|[P<ry2]| >sup{||z]| : 2 € UN K} —¢.

Rather than complicating the proof unnecessarily, it will be understood
that € has been chosen sufficiently small and expressions in italics have
meanings for which our conclusions are valid. Choose zyg € U N K so
that ||P=)20|| nearly equals sup{||P=z|| : z € UN K} = 0. Choose
a finite subset S = {e} : 1 <4 < m} of the basis vectors of G, for which

m 1/2
||[P=ry20|| nearly equals [Z(O&:)Q] ,
i=1

where P_,)z0 = Y ;o afef. Choose V C U so that zp € V and
> (af)!]Y? nearly equals o if z € VN K and z =Y ;0 alel. Now
let z € VNK. Approzimate z by n that belongs to L. Approzimate ||n||
by Z¢(wy), where n = Xwy, and wy, = Tug(v). Each ug(v) is a function
on a segment (a “bump” if X is Ay or @ ). Discard all uy(v) whose
supports are entirely on points of E with order r or greater. Since the
projection of the sum of the remaining wy’s onto lin {G,, : n < r} is
equal to P(.,)n, the sum of all discarded ug(v)’s is small. Therefore,
we can assume without loss of generality that no such wug(v) exists,
provided we replace the equality “n = Xwg” by “n is nearly equal to
Ywg.” Then Ywy is nearly equal to z.

Now note that Y¢(wy) is not increased and is decreased very little
if each ug(v) is modified to be zero at all points of S or followers of
points of S, since the projection of the sum of the modified wy’s onto
lin{G, : n < r} is equal to P(<yn. Since the projection P(.g5)n of
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P(—;yn onto lin (~ 8) is small, w is nearly equal to z if w is obtained
from Ywy, by replacing each P(.g)yux(v) by zero. It then follows from
Lemmas 3.1-3.3 that the norm of the sum over k£ and v of the “part”
of ug(v) that follows ~ S is small. Replace w by £, where £ is the sum
over k and v of uj(v), where u}(v) is ux(v) with this “part” replaced
by zero if the segment corresponding to u(v) contains a point of ~ S,
and uj(v) = ui(v) otherwise. Then ¢ is nearly equal to z. For each k,
let wj = ¥, uj(v). Then for each wj and e} € S, there is at most one v
for which the segment corresponding to uj () contains €. Therefore,
for each t > r,

m m

1/2
o(wf) > [th(k,ﬁﬁ] > m 23 (B )

i=1 i=1

where uj(v) corresponds to e and h'(k,j) is either 0 or the value of
uj(v) at a basis vector of G;. Then

> e(wi) =m 2N R (K, §)] = m Y2 all,
k7j

where P_y¢ = Yale! with {e}} the orthonormal basis of G;. Since
Yo(wy) < Sp(wg) < Sp(wg) < 20, the desired N can be 2m!/2q.
O

The first four columns of the table have been completed. No space
that has CPCP has a subspace isomorphic with c¢y. This completes the
fifth column, except for Y, Z and Z,,. But it can be shown that these
spaces do not have subspaces isomorphic with cg.

It follows from Theorem 1.1 that none of the spaces considered has a
UBFDD, which completes column six.

The space X in the table must have an /;-subspace, since otherwise it
would have neither cg nor [{-subspaces and therefore would be reflexive
[2]. The rest of column 7 is left for the reader.

Since none of the spaces has a cy-subspace, those spaces that have no
l1-subspaces cannot be subspaces of a space with an unconditional basis
[2] and it follows from Theorem 1.1 that those spaces which fail PCP
are not subspaces of a space with an unconditional basis. The spaces 2
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and Q, have J-subspaces, where J is the space described in [11]. Since
J is not reflexive and has neither ¢y nor l;-subspaces, it (and therefore
Q and Q) are not subspaces of a space with an unconditional basis.

Questions. 1. Let X be a Banach space that has a monotone
BCSBD {G,} for which each G, is isometric with l3. Does X have
CPCP? There is a space that fails CPCP and satisfies these conditions
if “monotone” is replaced by “complemented” (S,Ts of [8, Theorem
VL.1]). The space Z, fails CPCP, but its natural monotone decompo-
sition is not a BCSBD.

2. It is known that X of Question 1 has CPCP if X also satisfies
either (I) or (II):

(I) Conditions (i) and (ii) of Theorem 2.4.

(II) >°>°, @, converges whenever z,, € G, sup,, || Y1, z;|| < oo,
and liminf, ||z, ||cc = 0, where ||z, ||oo is the sup norm of the sequence
of coefficients of z,, when represented by the orthonormal basis of G,,
[8, Proposition IV.3 and Theorem IV.5]. Does (I) imply (II) for such
X7 Is there some interesting necessary and sufficient condition for X
to have CPCP? In particular, is there such an X that has CPCP and
fails (II)? Suppose there is an E as described in Section 3 such that
each initial segment of F has unit norm and the set of members of
with order n is an orthonormal basis for G,,. Then X fails PCP. For
such an X, what are the answers to the preceding questions?

3. Let each member of E as described in Section 3 have infinitely
many successors. Can a norm be defined on lin (F) = L so that the
completion of L has CPCP, each initial segment of E has unit norm,
the closed linear span of each branch of E is reflexive (or l3) and the
set of members of E with order n is an orthonormal basis for 3?7 These
hypotheses imply the space fails PCP.

4. The undetermined entries in the table.
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