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BIFURCATION OF
SYNCHRONIZED PERIODIC SOLUTIONS
IN SYSTEMS OF COUPLED OSCILLATORS
I: PERTURBATION RESULTS FOR
WEAK AND STRONG COUPLING

MASAJI WATANABE

ABSTRACT. This paper concerns a class of differential
equations that govern the evolution of indirectly coupled os-
cillators. We establish the existence of synchronized periodic
solutions for weak and strong coupling under certain condi-
tions. The stability of the periodic solutions is also analyzed.

1. Introduction. It is shown in [14] that a number of problems
in physics, chemistry and biology lead to systems of ordinary differ-
ential equations that represent oscillatory subunits coupled indirectly
through a passive medium. In this paper we study the case where the
oscillators, which govern the states of the uncoupled subunits, are all
identical. That is, we study the following system of ordinary differential
equations.

dIi
dt

:f(xz)—f_(sp(xofxz)v i:la"'aNa
(1)

dzo

1 N

Here the variable zy represents the state of the coupling medium
through which the subunits are coupled. P is an n X n constant matrix
of permeability coefficients or conductances, and the parameters ¢!
and ¢ measure the relative capacity of the coupling medium and the
coupling strength, respectively [8, 9]. In the absence of coupling the
evolution in the i*" subunit is governed by the n-dimensional system
dz;/dt = f(z;) and it is assumed that this system has a nonconstant
periodic solution. We show when (1) has periodic solutions and analyze
the stability of these periodic solutions.
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In Section 2 we study systems that involve two parameters and prove
some general results that are applicable to (1). In Section 2.1 we study
a system that involves two parameters and has a family of periodic
solutions when these parameters are set equal to zero. The variational
system associated with each member of the family has more than one
multiplier that is equal to 1 and a standard technique (cf. [3, 5, 6,
11]) often used to establish the persistence of periodic solutions is not
applicable. We prove that, under certain conditions, a two-parameter
family of periodic solutions bifurcates from a particular member of
the family. We also study the stability of these periodic solutions by
computing the estimates for the multipliers associated with them. In
Section 2.2 we study a singularly perturbed system that also involves
two parameters. A center manifold reduction leads to a system for
which the standard technique is applicable and the reduced system has
periodic solutions for certain ranges of parameters. The techniques
used in Sections 2.1 and 2.2 to prove the existence of periodic solutions
are more or less standard. However, we present a new result concerning
the behavior of the multipliers associated with the periodic solutions.

In Section 3 we establish sufficient conditions for the existence and
stability of periodic solutions of (1) for some extreme values of the
parameters. On the subspace defined by 1 = 2 = -+ = zpn,
the problem is reduced to the case where N = 1. The solutions
on this subspace give rise to synchronized solutions of (1) in which
the evolutions of xy,...,zy are all identical. In particular, periodic
solutions on the subspace correspond to synchronized periodic solutions
of (1). We apply the results of Section 2 to the reduced problem
and show that, under certain conditions, (1) has synchronized periodic
solutions when |ed| and |0] are both small, |§] is small and |€d]| is large,
or € # —1,0 and |0] is large.

The analysis of Sections 2 and 3 leads to the conclusion that un-
der certain conditions synchronized periodic solutions exist when the
coupling is sufficiently weak or sufficiently strong. In [13] we present
a result obtained in [12] in which a two-parameter family of global
branches of synchronized periodic solutions is constructed with a par-
ticular choice of f and P in (1). We find in [13] that the behavior
of the branches for intermediate values of § depends on £ and another
parameter 8 which represents the frequency of the oscillator. When
[ is large, the periodic solutions disappear via a Hopf bifurcation for
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a certain range of 4. On the other hand, when ¢ is small, the branch
has turning points. Moreover, the coexistence of the Hopf bifurcation
points and the turning points takes place in a region in the (e, 3) plane.
We also present some results concerning the stability of the synchro-
nized periodic solutions in [13].

Studies related to (1) are found in a number of publications including
[9, 8, 12, 14, 15, 11, 1, and 4]. The relationship between the results
obtained in these references and this paper is discussed in Section 4.
Preliminary results of this paper have appeared in [12].

2. Periodic solutions of systems with small parameters. As
is indicated in the introduction, (1) is reduced to the case N = 1 on
the subspace 1 = 23 = --- = zy (cf. Section 3). In this section we
study two problems, which we call a degenerate problem and a singular
problem, that include the reduced system as a special case when the
parameters take on some extreme values. We show when these systems
have periodic solutions and analyze the stability of these solutions.
These problems involve functions F : R™ — R™, G : R™T"+2 5 R™,
and H : R™t"*2 5 R"™, on which the following assumptions are made.

Assumption 1. (a) F : R™ — R™ is k-times continuously
differentiable, and there is a nonconstant periodic solution y(t) of the
m-dimensional system,

du
2 W _p
2 " P
with least period T > 0.
(b) 1 is a simple multiplier of the variational system of (2) with
respect to y(t):

du
3 — = DF(v(t))u.
(3) " DFG(D)
(c) G : R™™+2 5 R™ and H : R ™2 — R" are k-times
continuously differentiable.

We assume that k£ > 3 for the degenerate problem and k > 2 for the
singular problem.
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Remark 1. (a) Under Assumption 1 (a) there is an m X (m—1)-matrix
U (#) such that each entry of ¥ () is k-times continuously differentiable

and
VO+T)=0(0),  YO)"U(0O) = Im1)x(m-1)

F(y(0))"¥(0) = O1 4 (m-1
for all 6 € R.

(b) One of the multipliers of (3) is 1. The remaining m— 1 multipliers
of (3) are the multipliers of

dy
(4) % = A(t)ya
where
(5) A(t) = U()T[DF (y(1)¥ (1) — ¥'(2)].

(cf. [11, 5]. Let Y (¢,to) be the fundamental matrix solution of (4) with
Y (to,to) = I(m—1)x(m—1)- Then Assumption 1 (b) implies that 1 is not
an eigenvalue of Y (to + jT, to) for any integer j # 0.

2.1. Bifurcation of periodic solutions in the degenerate
problem. We first study the system of ordinary differential equations

© =P+ G, o=

E - /LH(U,’U,[IJ, K/)

under Assumption 1 with £ > 3 and the following additional assump-
tions.

Assumption 2. (a) G(w,v,0,0) = 0 for all w € R™ and
v € R", i.e., G(u,v,u,k) can be written in the form G(u,v,pu,k) =
pG1(u, v, p, &) + £Ga(u, v, p, k) where G; : R™T"+2 5 R™ s (k — 1)-
times continuously differentiable for i = 1,2.

(b) There is a £ € R™ such that a({*) = 0 and det[Da(£*)] # 0,
where a is the function defined by

T
alv) = / H(y(s),v,0,0) ds.
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Assumption 3. (a) I3 multipliers of (3) have modulus less than 1
and m — l; — 1 multipliers have modulus greater than 1.

(b) Iy eigenvalues of Da(£*) have negative real part and the remaining
n — Iy eigenvalues have positive real parts.

Under Assumptions 1 and 2, (6) has an n-parameter family of periodic
solutions
u = y(t), v =c, ceR"

when p = 0 and kK = 0. We show that (6) has periodic solutions for all
small |u| and |x|. These periodic solutions tend to the solution

(7) u=19(), v=¢

as |u| + |k| — 0. That is, a two-parameter family of periodic solutions
bifurcates from the n-parameter family and (7) is the bifurcation point.
We also compute the estimates for the multipliers associated with the
periodic solutions and determine their stability under Assumption 3.

We first convert (6) using ¥(#) (cf. Remark 1 (a)). There is a
neighborhood of the origin in R™~!, which we call W, such that

(8) u=(0) +¥(0)y
defines a transformation between a neighborhood of the orbit of ()

and R x W, and we obtain the following system of ordinary differential
equations for 0, y, and v:

df
a =1+ @o(e,y) + 61(95 Y, Uy Wy H)’
d
(9 W 4O+ Yi(6.9) + Vi (0,10, 4.5,
d
d_: = uV(G,y,v,,u, R)?

where the matrix A is as defined at (5) and

F(y(0))"F(v(0) + ¥(6)y)

FO0)TF(0) + ¥ (0)y]

(10) ©0(0,y) =
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 F((6)7G((0) + ¥ (O)y, v, s k)
A0 Oully o) = = (@) + v (0)y]

(12)
Yo(6,y) = ¥(0)" [F(7(0) + ¥(0)y) — DF(v(6))¥(0)y — Oo(6,y)¥' (0)y],

(13)
Y1(6,y,v, 1, 5) = ¥(O)T[G(v(0)+T(0)y, v, u, k) —O1(8,y, v, 1, 5)¥' ()],

(14) V(0,y,v,p, k) = H(y(0) + ¥(0)y, v, p, K).

The functions ©¢(f,y) and Yp(0,y) are (k — 1)-times continuously
differentiable in R x W and periodic in 6 with period 7. Moreover,
they satisfy

(15) @0(970) =Y,
Yy

©1(0,y,v, p, k) and Y1(8, y,v, 1, k) are (k—1)-times continuously differ-
entiable in R x W x R™*2 and periodic in  with period 7. Furthermore,
Assumption 2(a) implies that

(18) @1(9,y,v,0,0) = 07

(19) Y1(6,y,v,0,0) = 0.

We show that there is a two-parameter family of solutions of (9) given
by 6 = (¢, p, k), y = y(t, pu, &), and v = v(t, 4, k) and a function, which
we call T'(u, k), such that

0t +T(p,k), 1, 6) = 0(t, p, 6) + T,
(20) y(t + T(/'La K/)a ey F':) = y(ta ey H)a
v(t+T(u, k), p, &) = v(t, 1, K).

Then we define

(21) 7(t7 Hs ’("’) = 7(0(t7 K, K/)) + \I”(e(tv K, H))y(tv Ky 'kc)'
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It follows from (8) that

(22) u="(t,p, k), v =v(t,p,k)

is a periodic solution of period T'(u, k). We state and prove this result in
Theorem 1 (a). We also study the stability of these periodic solutions.
The stability is determined by the variational system:

d
d_;b = [DF(’}/(t, 12 H)) + All(ta 122 H)]’U, + A12(t7 Hy H)’Ua
(23)
d
= = nlAaa (t, 1, k)u+ Aza(t, p, 1),
where
oG
All(tﬁj’vﬁ) = 8u( (t oy K )7V(taﬂ'7 I-e),,u,n),
oG
A12(t7“7"€)_ P} ( (t Ky K )7V(taﬂ'7’f)a,ufan)7
= &
A21(t7p’7"€) = au( (t Hy K )77/(2&7/‘7”)7“75)7
OH

A22(t By K ) v ( (t Wy K )’V(thu'an)auvﬁ)'

One of the multipliers of (23) equals 1. The remaining m +n — 1
multipliers give us the information concerning the orbital stability of
(22). If j multipliers of (23) have modulus less than 1 and the remaining
m + n — 1 — j multipliers have modulus greater than 1, then there are
a (j + 1)-dimensional stable manifold and an (m + n — j)-dimensional
unstable manifold of the orbit of (22). We state a result concerning
the behavior of the multipliers in Theorem 1(b). In particular, we
determine how many multipliers lie inside the unit disk and how many
lie outside under Assumption 3. This result is summarized in Theorem

1(c).

Theorem 1. Suppose that the conditions stated in Assumptions 1
and 2 are satisfied with k > 3.

(a) There are open intervals I and J about 0, and functions v :
RxIxJ—-R™" v:RxIxJ—=R" andT:1IxJ— R such that

(25) u="(t p k), v =v(t, u,K)



1490 M. WATANABE

is a periodic solution of (6) with period T(u,x). The functions
v(t, p, &), v(t, u, k), and T(u, k) are (k — 2)-times continuously differ-
entiable and satisfy

(26)  4(t,0,0) =~(t),  v(t,0,0)=¢*  T(0,0)=T.

Moreover, for a fized positive integer j, the orbit of u = y(t), v = £* has
a neighborhood Wj, in which the orbit of any periodic solution whose
period is close to jT must coincide with that of (25), i.e., (25) is the
only periodic solution in W; whose period is close to jT ((25) is also
periodic with period jT(p, K)).

(b) The m +n — 1 multipliers of (23) have the forms
)‘j+5‘j(uvﬁ)a j:2a"'7m7
1+p‘[)‘]+5\](ﬂ‘7’€)]7 j:m+17"'7m+na

where Ag, ..., Ay are the multipliers of (4), Ami1,--- s Amin are the
eigenvalues of Da(§*), and Aj(p,k) — 0, j = 2,...,m + n, as
|| + || — 0.

(¢) Under Assumption 3, for p > 0, l; + Iy multipliers of (23) have
modulus less than 1, and m +n — Iy — lo — 1 multipliers have modulus
greater than 1. For pn < 0, Iy +n — lo multipliers of (23) have modulus
less than 1, and m — [y + l2 — 1 multipliers have modulus greater than
1.

Proof. Let

27) 0=0(tp, & s5),  y=ylt:p,& k), v=0v(t,p,& p, k)
be the solution of (9) with the initial value

(28) 6(0,p,&,1,6) =0,  y(0,p,& p,6) =p,  v(0,p,& p, k) =&.
Define a function wu(t, p, &, p, &) by

(29) u(t, p, &, py k) = v(0(t, p, &5 1, 5)) +W(O(E, p, &5 11, 8))y(E, P, €, 1y ).
Then

(30) uw=u(t,p,& p,k), v=u(tp& pkK)
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is a solution of (6) which satisfies

(31) U(O, P& s F':) = 7(0) + \P(O)pa U(Oa P& s F':) =¢.

Let 7 be a positive integer and consider the following system of equa-
tions for 7, p, &, 1, and k.

(32) bj (T7 pafaﬂ’a K;) = 07

(33) q(r, p, & py k) =0,

(34) T(T7 p7£7,u'7 H) = 07

where

(35) pj(Tapaguufa ’i) = 0(7-7/)75)/1'5 ’i) 7jT7
(36) q(Ta P 57 Hy H) = y(Ta P ‘57 Ky ’{‘:) — P,
(37) T(Tv P, f, H, ’{'3) = U(Ta P, 57 H, 'kc) - €

If 7,p,&, 1, and & satisfy (32), (33), and (34), then (30) is a periodic
solution of (6) with period 7. Note that there are neighborhoods of the
origin By and By in R(™~1) and R", respectively, and open intervals
I, and I, containing 0 such that the functions p;, ¢, and r are defined
on R x By X By x I1 X I and (k — 1)-times continuously differentiable
in this region.

In view of (15), (16), (18), and (19), we find that
(38) 6(t,0,£,0,0) = ¢, y(t,0,&,0,0) =0.
On the other hand,

(39) v(t, p,&,0,K) = &.

It follows that, for any £ € R™, 7 = jT, p = 0, p = 0, k = 0 satisfy
(32), (33), and (34). The properties of the functions p;(r, p,§, p, k),
q(r,p, &,y k), and r(7,p, &, p, k) are summarized in Lemma 1. The
proof of this lemma is given in the appendix.
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Lemma 1.

9p; _
E(Taovgaov O) - 17

p; . T 90,

2T —

6p (.7 ,0,£,0,0) 0 8y

94
T
0q , . .

a_Z(.]Ta 07 57 07 O) = Y(]Tv O) - I(mfl)x(mfl)v

(40) (s,0)Y(s,0) ds,

(jT7 075707 O) = 07

(41) g—;(jT, 0,£,0,0) = ja(¢).

Recall that Y'(¢,t9) is the fundamental matrix solution of (4) with
Y (to,to) = I(m—1)x(m—1)- Because of (40) and Remark 1 (b), the Im-
plicit Function theorem guarantees the existence of functions 7; (¢, p, k)
and p;(&, i, k) that satisfies

(42) Tj(f,0,0) :]Tv p](é.aoao) = 0)
and
pj (TJ (67 K, H): pJ(£7 M, H)7 £7 H, H) = 07
Q(Tj (67 i, K’)a Pj (67 H,y K/)a 67 H,y K/) =0.

Now we substitute 7 = 7;(§, p, &) and p = p;(€, i, k) in (34) and look
for solutions of

T(Tj(gaﬂ'a H)apj(faua ﬁ),f,ﬂ, :“é) =0.

Note that, in view of (37) and (39), there is a function s(7,p,§, i, k)
such that r(7, p, €, 1, K) = ps(t, p, &, p, k). It follows that 7(7;(§, p, k),

Pj (£7 122 H)a Ev M, k) = HS; (ga H, ’i) where Sj (5’ H, ’i) = S(Tj (5’ H, R)a
pi(& 1y k), & 1, k). Now Assumption 2 (b) and (41) guarantee the ex-
istence of a function §;(u, k) that satisfies

(43) §(0,0) = ¢*

and s;(&(p, k), p, &) = 0.
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We have shown that 7 = 7;(&; (1, k), 1, &), p = p;j (& (1, &), 1, &), and
€ =& (p, k) satisfy (32), (33), and (34). However, it is easily seen that

Tj (fj(“v 5)7 Ky ’i) =Jn (51(“7 5)7 Hs li),
(44) p]'(g]'(l"v'%)ap’v ’("’) = pl(gl(p’vﬁ):p’v ’{"’)7
§j(#a K’) =& (:u'a K/)

for sufficiently small |u| and |s|. Define

(45) p(ﬂ,/ﬁ?) = pl(gl(:u'a’%)auaﬁ')a

and
O(t, pu, k) = 0(t, p(i, k), E(1, &), py 5),
y(t, k) = y(t, p(u, 5), E(s K), 1y K),
v(t, p, &) = v(t, p(p, K), E(1, K), 1, K).-

Then the functions 6(¢, u, ), y(t, u, &), and v(t, u, k) satisfy (20). It
follows that (25) is a periodic solution of (6) with period T'(u, )
provided (¢, u, k) is defined by (21). Furthermore, it follows from (38),
(39), (42), and (43) that 6(¢,0,0) = ¢, p(¢,0,0) =0, ¥(¢,0,0) = £*, and
T(0,0) = T. Now (26) follows from (21).

Recall that u = u(t, p, &, p, k), v = v(t, p,&, 4, k) is a solution of (6)
which satisfies (31). It is easily seen that

vt s k) = ult, p(p, £), E(py K), ps K),

(46) V(tvﬂ'a H) - U(t,P(%Fv),f(#,H)auvﬁ)-

Now any solution of (6) can be written in the form given by (29) and
(30) provided its u-component stays sufficiently close to the orbit of
~(t). Suppose that (30) is a periodic solution of (6) with period 7. Then
7,0, &, 1, and k satisfy (32), (33), and (34). However, when |7 — jT,
llolls 11E=E*], ||, and |&| are sufficiently small, 7, p, and & must be given
by 7 = Tj(é‘j(ﬂ'a F':)a,u'a H)a p= pj(gj(/"a ’i)aﬂ'a H)a and § = fj(ua "‘9)' Now
(44) leads to the conclusion concerning the uniqueness of the periodic
solution in a neighborhood of the orbit of u = ~(t), £ = &*. This
completes the proof of (a). The proof of (b) is given in the Appendix.
(c) follows from (b). o
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2.2. Persistence of periodic solutions in the singular prob-
lem. In this section we study the system of ordinary differential equa-
tions

W~ Plu) + G, vp.),
dt
(47) o
Ky = Cv+ H(u,v, p, K)

under Assumption 1 and the following assumption.

Assumption 4. (a) G(«,0,0,0) =0 for all p € R™.
(b) H(w,0,0,0) =0, (0H/0v)(u,0,0,0) =0 for all u € R™.

(c) The eigenvalues of C have negative real parts.

We show that, for sufficiently small || and ||, (47) has a periodic
solution u = ~(t, u, k), v = v(t,u, k) of period T(u,x) and that the
functions (¢, u, &), v(¢, p, &), and T'(p, ) are (k—1)-times continuously
differentiable and satisfy ~(¢,0,0) = ~v(¢), v(¢,0,0) = 0, and T(0,0) =
T. We also study the stability of these periodic solutions.

Remark 2. (a) Choose a bounded open sphere B in R™ that contians
the orbit of v(¢). Then there are open intervals I and J about 0, and
a k-times continuously diffferentiable function ¢ : B x I x J — R™ (a
center manifold in the fast time t/x, cf. [4, 7, 14]) such that

(48) ¢(u,0,0) =0

and the manifold defined by v = ¢(u, i, k) is an invariant manifold of
(47). A standard technique (cf. [7]) can be used to construct a center
manifold of (47) whose domain contains a certain bounded set in R™.

(b) Assumption 4(c) guarantees the existence of positive numbers «
and K such that

|leCt|| < Ke™®* for t > 0.
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As is done in Section 2.1, (8) leads to the system of ordinary differ-
ential equations for 6, y, and v:

do
E =1+ 60(053/) + 61(073/5”5/1"5)7
dy
(49) 2 = Ay +Yo(0,y) + Y1 (0,9, v, 1, 5),
d
Hd—: =Cv+V(0,y,v,u,k),

where the (m — 1) x (m — 1)-matrix A and the functions ©, Y, and
V are exactly as defined by the formulas (5) and (10)—(14). ©¢(6,y)
and Yy(0,y) satisfy (15), (16) and (17). Because of (11), (13) and
Assumption 4(a),

(50) ©1(0,y,0,0,0)=0,  Yi(6,y,0,0,0) = 0.

We show that (49) has solutions 0 = 6(t,u, k), y = y(t, u, k), and
v = v(t,u, k) that satisfy (20). Then (47) has a two-parameter
family of periodic soutions u = ~v(t,u,k), v = v(t,u,x) provided
y(t, 1, k) = y(0(t, 1, &)+ (0(2, i, &)y (¢, 1, k). The variational system
of (47) with respect to this periodic soution is

d
d_’: - [DF('V(ta Ky H)) + All(ta My ﬁ)]u + A1z (ta 22 F':)’U7
(51)
d
/-ed—: = Aoi(t, p, K)u + [C + Aga(t, i, k)],

where A;;(t, p, k), i = 1,2, j = 1,2, are defined by the formulas given
at (24). We prove results concerning the multipliers of this variational
system. We summarize these results in the following theorem.

Theorem 2. Suppose that the conditions stated in Assumptions 1
and 4 are satisfied with k > 2.

(a) There are open intervals I and J about 0, and functions v :
RxIxJ—->R™" v:RxIxJ—R" andT:1IxJ— R such that

(52) u="(tp k), v =v(t, u,K)
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is a periodic solution of (47) with period T(u,x). The functions
v(t, py &), v(t, u, k), and T'(u, k) are (k — 1)-times continuously differ-
entiable and satisfy

(53)  4(t,0,0)=~(t),  »(t,0,0)=0,  T(0,0)="T.

Moreover, for a fized positive integer j, the orbit of u = y(t), v =0 has
a neighborhood Wj, in which the orbit of any periodic solution whose
period is close to jT must coincide with that of (52), i.e., (52) is the
only periodic solution in W; whose period is close to jT'.

(b) For k> 0, the m +n — 1 multipliers of (51) have the forms:
)‘j+X;’i_(,u7R)a j:2a"'7m7
3+ L
AT (1K), j=m+1,... , m+n,
and for k < 0, their inverses have the forms:

1 Y .
Aj +)\j(u,/~c), j=2,...,m,

)‘;(uaﬁ)a j:m+]—7"'7m+na

where Az, ..., Ay are the multipliers of (4) and Xf(,u,n) — 0,7 =
2,...,m+n, as |u| + |k = 0.

(c) Under Assumption 3(a), for k > 0, Iy +n multipliers of (51) have
modulus less than 1 and m — Iy — 1 multipliers have modulus greater

than 1. For k < 0, Iy multipliers of (51) have modulus less than 1 and
m+n — Uy — 1 multipliers have modulus greater than 1.

Proof. According to Remark 2(a), (49) has an invariant manifold
defined by v = d(, y, u, k) where

(54) d(8,y, p, k) = c(v(0) + ¥(0)y, 1, k).
(48) and (54) imply that
(55) d(8,y,0,0) = 0.
The reduced form of (49) on this manifold is
dé ~
— =1400(0,y) + 01(0, y, p, ),
dy _

Y — AO)y + Yo(6,9) + V16,9, 1, ),
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where

91(97 Ys s H) = (—)1(97 Y, d(ea Y, iy K/)a 12 H)a

(57) .
Yi(0,y, k) =Y1(0,y,d(0, y, p, &), 1, K).

There is a neighborhood of 0 in Rm’1,~which we call Wz such that
Q:RxW =R, Y :RxW - R™ 1, 0 :RxWxIxJ—R,and
Y1 : RxWxIxJ — R™ !are (k—1)-times continuously differentiable.
Let
0= g(t,P,Ma ’i)a y:ﬂ(tapaﬂafi)
be the solution of (56) with the initial value

0(0,p,,5) =0,  F(0,p,p, k) = p.
In view of (15), (16), (50), (55), and (57),

6(t,0,0,0) = t,
(59) §(t,0,0,0) = 0.

We look for solutions of the system of the equations

(60) p;i(1,p, 11, 6) =0,
(61) q(t,p, p, &) = 0,

where j is a positive integer and

(62) Dj (Ta Py My K’) = é(Ta Py 1y K;) - .jTa
(63) Q(T, Ps Iy H) = g(Ta Py Ky H) - p-

As we saw in Section 2.1, such a solution corresponds to a periodic
solution of (47).

It follows from (58), (59), (62), and (63) that 7 = jT, p =0, p =0,
and k£ = 0 satisfy (60) and (61). On the other hand, as is seen in
the previous section, (15), (16), (17), (50), (55), and (57) lead to the
properties of p; and ¢ summarized in the following lemma. The proof
is left to the reader.
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Lemma 2.

0]9 j

'} -1

87_ (T707070) b)

Opj , . T 90,
—(37,0,0,0 :/ —(5,0)Y(s,0) ds,
231,000 = [ 205,007 (5,0
94 7,0,0,0) = 0,

or

dq

6_p(.7T7 0,0, 0) = Y(]Ta 0) - I(m—l)x(m—l)-

According to the Implicit Function theorem, Lemma 2 and Assump-
tion 1(b) lead to the existence of functions, which we call 7;(u, k) and
p; (i, k) such that 7;(0,0) = 5T and p;(0,0) = 0, and

pj (Tj (/“Lv H)a Pj ()u'a ’i)a Ky R) =0,
Q(Tj(ua ﬁ)a Pj (/"'7 ’{‘:)7 Ky F':) =0.

As is seen in the previous section, for all sufficiently small |x| and |&|,

(64) Tj (/l’a K/) =Jjn (/’Lv K’)a Pj (/'La "‘7) =pP1 (/1'7 ’i)'
Define
(65) T(p, k) = 11(ps 6),  plps k) = pr(p, k),
Ot k) = 0(t, p(u, K), 1, 6), Yty K) = (¢, p(, ), 1, K),
and

v(t 1 k) = (0(8 1, 5)) + U0, s £))y(E, 1, ),

v(t, p, k) = d(O(t, p, 5), y(t, 1y £), 1y ).
Then (52) is a periodic solution of (47) with period T'(u, k). As is seen
in Section 2.1, (64) leads to a conclusion concerning the uniqueness
of a periodic solution in a neighborhood of the closed curve u = ~(t),

v = 0. This completes the proof of (a). The proof of (b) is given in the
appendix and (c) follows immediately from (b).

Remark 3. Note that

(66) 0 =0(t, p,k), y =y(t, i, k), v=v(t,u,k)
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is a solution of (49) that satisfies
e(t, 07 0) = t’ y(t’ 07 0) = 07 V(t7 0, 0) = 0'
In fact, if £(u, k) is the function defined by

(67) §(u, &) = d(0, p(1, ), 1, &) = c(v(0) + ¥ (0)p(1s, K), s )

and

eze(tapagaﬂan)a y:y(tapaga,u'an)a ’U:’U(tapagapﬂ ’{‘:)
is the solution of (49) which satisfies (28), then
O0(t, pu, &) = 0(t, p(p, &), E(1, £), 1, K),
y(t, s k) = y(t, p(p, £), §(1s K), By K).
Note also that

o(t =0(t,p,d
(68) ~( 7p7lu”H) ( 7p7 (07p7l't7ﬁ)’/‘L7K/)7
7]

(ta Py Ky ”) = y(ta P> d(U, Py s H)a 122 ’i)'
Furthermore, if u(t, p, &, p, ) is the function defined by (29), then the

pair u = u(t, p, &, u, k), v = v(t, p, &, i, &) is the solution of (47) which
satisfies (31) and

(s K)s 1y K),
(s K), 11y K).

7(t7 Ky ’i) = u(ta p(/"'a ’i)ag
v(t, p, k) = v(t, p(p, k), €

Remark 4. Suppose that the conditions stated in Assumption 1
and Assumption 4(a) and (b) are satisfied with & > 2. Instead of

Assumption 4(c), assume that the eigenvalues of C' have positive real
parts. To establish the existence of periodic solutions in this case, we

set kK = —& and obtain the following system from (47).
d
d_th = F(u) + G(u, v, u, —F&),
d
Y~ _ov— H(u,v, p, —Fk).

dt
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According to Theorem 2(a), this system has periodic solutions when-
ever |u| and |&| are sufficiently small. In fact, the statement in Theorem
2 is still valid. However, under the additional Assumption 3(a), we ob-
tain the following result concerning the multipliers of (51). For x > 0,
Iy multipliers of (51) have modulus less than 1 and m +n —1; — 1 mul-
tipliers have modulus greater than 1. For x < 0, I3 + n multipliers of
(51) have modulus less than 1 and m — I3 — 1 multipliers have modulus
greater than 1.

3. Bifurcaton of synchronized periodic solutions in coupled
oscillators. In this section we apply the results of Section 2 to (1) to
show when this system has periodic solutions. We show, in particular,
that periodic solutions exist in three cases where |e§| and |0| are both
small, |§] is small and || is large, and € # —1,0 and |J]| is large. We
also analyze the stability of these periodic soutions.

Let

1 X
a‘c:N;xi, w; =T — I, i=1...,N-L

Note that
xi:wi—i—i, Z':l,...,Nf].,

N-1
TN =T — E Wi,
i=1

and (1) becomes

1N N-1
E—N[Zf(wj—i—x)ﬁ-f(m— wj>]—(5P(a:—w0),
Jj=1 j=1
(69) % =edP(Z — zo),
dw- L Nl N-1

]:
—6Pw;, i=1,...,N—1.

This transformation is introduced in [9] to analyze the steady state
solutions of (1).
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The subspace of R+ defined by w; =0,i=1,...,N — 1, is an
invariant subspace of (69), and in this subspace (69) becomes

(70) % = f(z) + 0P(zo — T), % =edP(ZT — xp).

That is, if

(71) T =¢(t,e,8), xo=do(t,e,0)

is a solution of (70), then

(72) z=¢(t,e,8),  zo=do(te,0),
wi=0, i=1,...,N—1

is a solution of (69). In the original coordinates, the invariant subspace
is given by 1 = x93 = -+ = z. It follows that

(73) I0:¢0(t,6,5), Ii:¢(t5575)a 7’:17 aN

is a solution of (1). Thus solutions of (70) generate synchronized solu-
tions of (1) in which the evolutions of zi,...,zy are all identical. In
particular, periodic solutions of (70) give rise to synchronized periodic
solutions of (1).

The variational equations associated with (71) and (72) are also
related. The variational equation of (70) with respet to (71) is

42 ()

whereas the variational equation of (69) with respect to (72) consists
of (74) and the additional N — 1 linear systems

dw; - .
(75) d—“; = [Df(3(t,e,6)) — 6Plw;, i=1,...,N 1.
Therefore, (74) determines the stability of (73) with respect to the
solutions in the subspace 1 = 25 = --- = zy and (75) determines its
stability in the complement.
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When |ed| and || are sufficiently small, Theorem 1 guarantees the
existence of periodic solutions of (70) under the following Assumption 5.
Under Assumption 6, the stability of these periodic solutions in the
invariant subspace can also be determined. We summarize these results
in Theorem 3.

Assumption 5. (a) f: R™ — R" is k-times continuously differen-
tiable and the n-dimensional system

dx
a f(z)
has a nonconstant periodic solution n(t) with least period T > 0.

(b) 1 is a simple multiplier of the variational system

(76) = D).

(c) The matriz P is nonsingular.

Assumption 6. (a) l; multipliers of (76) have modulus less than 1
and n — ly — 1 multipliers have modulus greater than 1.

(b) n—Iy eigenvalues of P have negative real parts and the remaining
lo etgenvalues have positive real parts.

Theorem 3. Suppose that the conditions stated in Assumption 5 are
satisfied with k > 3. Then there are open intervals I; and J; about 0,
and functions y1 : R x I} x J1 = R", vy : Rx 1 x J1 - R", and
T, : I x J; = R such that

T = 71(t,85, 5), Trog = lll(t, d, 6)

is a periodic solution of (70) with period T} (€6, 9). v1(t, u, k), v1(t, 1, k),
and Ty (p, &) are (k — 2)-times continuously differentiable and satisfy

1 (T
71(t,0,0) = n(¢), 1 (t,0,0) = ?/0 n(s) ds, T,(0,0) =T.
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In addition, suppose that Assumption 6 is satisfied. Then, for € > 0,
the variational system (74) with ¢(t,e,8) = 71(t,€5,8) has Iy + lo
multipliers with modulus less than 1 and 2n —1y —lo — 1 multipliers with
modulus greater than 1. For €6 < 0, (74) has Iy + n — la multipliers
with modulus less than 1 and n — l; + lo — 1 multipliers with modulus
greater than 1.

Proof. Set y=¢€d, k =6, u==T, v= 1z, and

a(v) = —TP (v -3 /0 " s) ds>.

Then Theorem 3 follows immediately from Theorem 1. mi

Next we consider the case where |d| is small and |¢d] is large under
the following additional assumption.

Assumption 7. The eigenvalues of P have positive real parts.

We summarize the existence and stability of periodic solutions in
Theorem 4.

Theorem 4. Supopse that the conditions stated in Assumption 5(a)
and (b) and Assumption 7 are satisfied with k > 2. Then there are
open intervals I3 and Jy about 0, and functions v2 : R x Is x Jo — R,
vo: R X Ip X Jy = R™, and Ty : I X Jo — R such that

T =7(t,0,(6)" 1), xo=r2(t,6,(e8) ) + 1a(t, 6, (e6) 1)

is a periodic solution of (70) with period Ta(0,(c6)™Y). ~a2(t, u, k),
va(t, p, k), and To(u,k) are (k — 1)-times continuously differentiable
and satisfy

72(¢,0,0) = n(t), v2(t,0,0) =0, T5(0,0) =T.

In addition, suppose that Assumption 6(a) is satisfied. Then, for
€d > 0, the variational system (74) with @(t,e,08) = v2(t,d, (¢6)71) has
l1 + n multipliers with modulus less than 1 and n — Iy — 1 multipliers
with modulus greater than 1. For €6 < 0, (74) has I3 multipliers with



1504 M. WATANABE

modulus less than 1 and 2n — Iy — 1 multipliers with modulus greater
than 1.

Proof. Set p =6, k = (¢6)7, u = #, and v = zg — Z, and use the
result of Theorem 2. a

Finally, we consider the case where |§| is large and prove the results
concerning the existence and stability of periodic solutions in Theorem
5.

Theorem 5. Suppose that the conditions stated in Assumption 5(a)
and (b) and Assumption 7 are satisfied with k > 2. Given € # —1,0,
there are an open interval J3 about 0, and functions v3 : R x J3 =& R™,
vs: R x J3— R", and T3 : J3 — R such that

- B = (Lt 2) ralt, 671 4 0a(t,0°1),
zo = (1+ 5)71[73(757 571) —evs(t, 671)]

is a periodic solution of (70) with period T3(6~ ). vs3(t, k), vs(t, k), and
T3(k) are (k — 1)-times continuously differentiable and satisfy

0) = (L+e)n(e(1+¢) 1),
(78) v3(t,0) =0,

In addition suppose that Assumption 6(a) is satisfied. Set
$te,8) = (1+e) " [(t,67") +va(t, 07"

in the variational system (74). First, suppose that ¢ > 0. Then,
for & > 0, (74) has l; + n multipliers with modulus less than 1 and
n — 1y — 1 multipliers with modulus greater than 1. For § < 0, (74) has
l1 multipliers with modulus less than 1 and 2n — [y — 1 multipliers with
modulus greater than 1. Next, suppose that —1 < ¢ < 0. Then, for
0 >0, (74) has 2n — 13 — 1 multipliers with modulus less than 1 and Iy
multipliers with modulus greater than 1. For § <0, (74) hasn —1; —1
multipliers with modulus less than 1 and l1 +n multipliers with modulus
greater than 1. Finally, suppose that e < —1. Then for § > 0, (74) has
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n — ly — 1 multipliers with modulus less than 1 and Iy + n multipliers
with modulus greater than 1. For § < 0, (74) has 2n —1; — 1 multipliers
with modulus less than 1 and Iy multipliers with modulus greater than
1.

Proof. Let
U = €T + Ty, V=1 — Xp.

Then (70) becomes

du -1
(142t ),

(79) dv
= f(14+e) M u+v)) — (1 +¢)§Pv.

This system can be written in the form given at (47) with k = 61,
Fu) = ef((1+) ")), Glu,,1,) = e[ (1+€) u+v)) — F(1+
e) 'u))], C = —(1+¢)P, and H(u,v,p,5) = £f((1+e) ' (u+v)).
Under Assumption 5(a),

(50) W P =ef((1+0) )
has a nonconstant periodic solution
(81) u=(1+e)n(e(l+e)~'t)
whose period is [e (1 +¢)|T.
The variational system of (80) with respect to (81) is

du
dt
Let ®(t) be a fundamental matrix solution of (76). Thus, if 1, A, ..., A,
are the multipliers of (76), they are the eigenvalues of the matrix
®~1(0)®(T). Now note that ®(e(1 + ¢)~'t) is a fundamental matrix

solution of (82). Therefore, the multipliers of (82) are the eigenvalues
of the matrix

(82) =e(14e) ' Df(n(e(1 +¢)~tt)).

& 10)@(e(1l+e) e (1 +e)T)
e (0)e(T) fore< -lore>0,
~ | @ (0)®(-T) for —1 <& <O.
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It follows that 1, Aa,..., A, are the multipliers of (82) for ¢ < —1 or
¢ > 0. On the other hand, when —1 < ¢ < 0, l,Agl,... , A, L are the
multipliers of (82). In particular, if 1 is a simple multiplier of (76), it
is also a simple multiplier of (82). Now Theorem 2(a) and Remark 4
lead to the following conclusion. Under Assumption 5(a) and (b), and
Assumption 7, there are open intervals I and J about 0, and functions
y:RXxIXxJ—->R™"v:RxIxJ—-R"'andT:IxJ — R such
that u = (¢, p, k), v = v(t,u, k) is a periodic solution of (79) with
period T'(p, k). Moreover, the functions (¢, u, &), v(t, u, ) and T'(u, k)
are (k — 1)-times continuously differentiable and satisfy 7(¢,0,0) =
(1 + e)n(e(l + &)~ tt), v(t,0,0) = 0, and T(0,0) = |e1(1 + ¢)|T.
Now define J; = J, v3(t,x) = v(¢,0,x), vs(t,k) = v(¢,0,x), and
T3(k) = T(0,k). Then (77) is a periodic solution of (70) and the
functions 73 : R x J3 - R", v3: R x J3 — R" and T3 : J3 & R
satisfy (78). To complete the proof, recall that the multipliers of (76)
equal the multipliers of (82) when ¢ < —1 or € > 0. On the other hand,
the multipliers of (76) equal the inverses of the multipliers of (82) when
—1 < & < 0. Now the results concerning the multipliers of (74) follow
from Theorem 2(c) and Remark 4. u]

To simplify the notation we denote by z = ¢(t,¢,6) and zp =
¢o(t, e, 0) the periodic solutions of (70) whose existence for the extreme
values of €§ and ¢ are guaranteed by Theorems 3, 4, and 5. Let the
corresponding periods be denoted by T'(e,d). These solutions exist
when |€6] and |0| are both small, [§| is small and || is large, or
e # —1,0 and |4 is large.

Remark 5. According to Theorems 3, 4, and 5, é(t,¢,6), ¢o(t,€,0),
and T'(e, §) have the following limits.

(a) As || — 0 and |ed| — O,

1 T
¢(ta g, 6) — n(t)a ¢70(t7 g, 6) — T A 77(3) dsa
and T'(e,6) — T.

(b) As |§] — 0 and |ed] — oo,

é(t,e,8) = n(t), ¢o(t,e,6) =0, and T(g,0) = T.



SYSTEMS OF COUPLED OSCILLATORS 1507

(c) As |6 — oo,
B(t,e,0) — n(e(1 +¢)71t), bo(t,e,0) — n(e(l +¢e)7't),
and T(e,8) = |e7 (1 +¢)|T,
for e # —1,0.

We now consider an example where f is a truncated normal form of
a planar oscillator near a Hopf bifurcation [2]. Specifically, we choose
f: R%? — R? defined by

| ay+Bz—yy® + 2%

Then (70) has a nonconstant periodic solution x = 7(t) with
o cos Bt
n(t) = Ve (—sinﬂt)
and its period is 27 /f.

[ cospBt  sinBt] [e 2t 0
X(t)_[sinﬁt cosﬂt}[ 0 l}

is a fundamental matrix solution of the variational equation of (70)
with respect to 7(t) and therefore its multipliers are 1 and e~**™/#,
For simplicity, we assume that the eigenvalues of P have positive real
parts. Then, for some ranges of ¢ and 4, (70) has a periodic solution
T = P(t,e,6), zo = ¢o(t,e,8) whose period equals T'(¢,d). As |e§| — 0
and |§] — 0, or as |ed] — oo and |§] — 0,

- cos Bt
e > va (B0,

(84) 0 2w
AS ‘(5| — 0,
B cos(eft/(1+¢
B(t,e,8) = Va < _ sié(&gé;(l + 3) > ’
(85) Bo(t,e,0) = Vo < —C(s)lsrgif,ééﬁl—i_‘f‘gzg)) ’

21+ s)7r-

T(e,0) — e
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We will again consider this example with « = 1 in [13]. Given & > 0
and 8 > 0, we will construct periodic solutions for all admissible values
of 0 and study their global behavior. Note that this shows how to
generate long-period oscillation via coupling.

4. Discussion. Invariant manifolds of systems that include (1) as a
special case are studied in [8, 12, 14 and 15]. Suppose that ¢ = god P
for g > 0 and p > 0. The results obtained in [12, 14 and 15] are
applicable to (1) under Assumptions 5(a), 6(a) with iy =n — 1, and 7.

First assume that p = 1. Then the results of [12] and [14] assert that
the unperturbed system of (1) (6 = 0) has an N-dimensional invariant
torus whose parametric representation is given by

xi:n(Qi), i:].,...,N,

N T
Ty = —€o Z[I - eiEOPT]fl/ e=oP=T) pr(9; + s) ds,
i=1 0

and that this invariant torus persists for weak coupling.

When p > 1, €§ — 0o as § — 0. It is shown in [14] that, for all small
0 > 0, (1) has invariant tori that lie in a center manifold in the fast
time near the N-dimensional torus defined by

N
%:*Zn(@i), z; = n(6:), i=1,...,N.

i=1

When 0 < p < 1, the unperturbed system of (1) has an n-parameter
family of invariant tori defined by

xo=c¢, c€R", z; =n(6;), i=1,...,N.

A result of [12] and [15] guarantees that
1 T
(86) z; =n;(6), i=1,...,N, wozf/ n(s)ds
0

persists for all small § > 0, i.e., a one-parameter family of the invariant
tori bifurcates from (86). A similar result is obtained in [8] for (1) in
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which f : R?> — R2. It is easily seen that the synchronized periodic
solutions which exist for weak coupling lie in these invariant tori.

The technique used in Section 2.1 to prove the existence of periodic
solutions of (6) is similar to the one introduced in [11] to prove a
bifurcation of periodic solutions in a one-parameter family of systems,
which are called “partially oscillatory systems.” The stability of the
periodic solutions is also studied there. Here we have studied a two-
parameter family of problems and established the existence of periodic
solutions. We have also obtained a new result concerning the estimates
for the multipliers associated with the periodic solutions. A one-
parameter family of singularly-perturbed systems similar to (47) are
treated in [1] and [4], and the existence and stability of periodic
solutions are studied. Here we have studied a two-parameter family
of singularly-perturbed systems. We have established the existence of
periodic solutions and also obtained a result concerning the behavior
of the multipliers associated with them.

Significant results concerning planar oscillators of directly coupled
type

P4 — fon) + 6D — ),
% — (w2) + 0D(z1 — 22)

are obtained in [2]. Here f : R? — R? is as defined by (83) and D
is a constant matrix. The persistence of the invariant torus for the
unperturbed system (§ = 0) is established. The behavior of two types
of periodic solutions, which are called the in-phase orbits and the out-
of-phase orbits, is also studied. The stability of these solutions is also
analyzed. These solutions are also studied in [10] in case D is a multiple
of the identity matrix.

Acknowledgment. I am indebted to Professor Hans G. Othmer for
numerous suggestions in preparation of this manuscript.
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APPENDIX

The proofs of Lemma 1, Theorem 1(b), and Theorem 2(b).
In this section we prove Lemma 1, Theorem 1(b), and Theorem 2(b).
Recall that 6 = o(tapagaﬂa’%)’ y = y(t,P,f,Ha"ﬂ), v = v(tapagaﬂa’%)
is the solution of (9) which satisfies (28) and that the functions
pi (1,0, & 1y k), q(7,p,€, 1, k), and (7, p,&, i, k) are defined by (35),
(36) and (37), respectively.

Proof of Lemma 1. In view of (35), (36), and (38),
9p; 9q

(87) —(T,O,E,0,0) =1, _(jT,O,E,O,O) =0.
or or

0(t, p, &, p, k) satisfies

00
_(t7 P 57 Ly "‘9)

ot
= 1400t p, & 1, K),y(t, p, &, 1y £),v(t, p, &, 1y K), by K)-

Differentiating this equation with respect to p, and using (15), (18),
(38) and (39), one finds that

0 99 90, .y

atap 00600 =5 25 0)5°(4,0,€,0,0).

It follows from (35) that

op; , . T 90O, Ay
i — sy 9y .
(88) op (JT,0,¢,0,0) / By (5,0) 8p(s,0,£,0,0)ds

0
In view of (36),

Oq , . )
=T =
6p(] 70767070)

(89) %(]T,O,f,0,0) - I(m—l)x(m—l)-

On the other hand, y(t, p, &, i, k) satisfies

% 1 py, o) = AL, 9y, s 1)yt 9y o1 )

ot
+Y(0(t, p, & 1y k), y(t, py & 1y ), v(t, Py & 11y ),y 1y ).
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Differentiating this equation with respect to p, and using (16), (17),
(19), (38), and (39), we obtain

0 Oy

aa—p(t, 07 57 07 0) - A(t)_(t7 0’ g’ 0’ 0)

op

We also find that
0
a_z(oa Ps &5 1hs K/) = I(m—l)x(m—l)-

This shows that

(90) g—i@,o,s,o,m =Y (1,0).

(40) now follows from (87), (88), (89), and (90).
In view of (37),
or ov

(91) 8—/J(]T,0,f,0,0) = %(]T,U,E,U,O)

Now v(t, p, &, p, 0) satisfies

ov

E(t’ P&, 1y k) = pV (0(t, p, & py k), y(t, p, &, py &), v(t, p, &, iy K), 1y K).

Differentiating this equation with respect to u, and using (14), (38),
and (39), we obtain

0 Ov

(92) &8_/1(%0,5,0,0) :H(U(t),&O,O)-

It follows from (91) and (92) that

or iT
--(3T,0,£,0,0) = H(n(s),£,0,0) ds
ou 0

The proof of Lemma 1 is now complete. ]
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Before we prove Theorems 1(b) and 2(b), we derive some useful
properties associated with solutions of (23) and (51). Recall that
(27) is the solution of (9) which satisfies (28) and that (30) is the
solution of (6) which satisfies (31) provided the function u(t, p,§, i, )
is defined by (29). Furthermore, (25) is a periodic solution of (6)
provided the functions (¢, 4, k) and v(t, u, k) are defined by (45) and
(46). Therefore, the (m + n) x (m + n)-matrix Z(¢, u, x) defined by

(93) Z(t,pu, k) =
y

GH(t k) St p(u k), E(n k), 1, k) GE(E 1y ), €1y ), 1, )

Q ~—

|Q7

E(t k) G2t p(i R), (i k), 1y k) 52t 1y ), €1y ), 1, )

Q

is a matrix solution of (23). Z(t,u, k) is also a matrix solution of the
variational system (51) when (27) is the solution of (49), u(t, p, &, u, k)
is defined by (29), and p(y, k) and £(u, <) are defined by (65) and (67),
respectively.

Note that Z(t, u, k) satisfies

20 Op,K)  ¥(0)  Omxn
Yy K) =
%(O,H,H) Onx(m—l) In><n

Denote by A(y, ) the m x m-matrix

(94) A(u ) = [ 510, p, k) ¥(0)].
Note that (26) or (53) gives

(95) A(0,0) = [F(~(0)) ¥(0)].

Therefore, for all small |u| and |&|, (94) is nonsingular. It follows that,
for small |u| and ||, Z(t, p, ) is a fundamental matrix solution and
the multipliers of (23) or (51) are the eigenvalues of the matrix C'(p, k)
defined by C'(pu,x) = Z71(0, 4, k) Z(T (i, k), i, ). Furthermore, its in-
verse C~1(u, k) is given by C~Y(u, k) = Z71(0, p, k) Z(=T (i, K), 1, ).
Thus, we obtain

(96) CH(p, k) = Z7H0, p, 6) Z(£T (1, K), 1, ).
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C*'(u, k) can be written in terms of the derivatives in (93). We
summarize these results in the following lemma.

Lemma 3. Denote by (27) the solution of (9) or (49) which satisfies
(28). Let u(t,p,&, pu, k) be the function defined by (29). If p(u, k),
E(u, k), v(t,u, k), and v(t,u,k) are defined by (45) and (46), then
the eigenvalues of C(u,k) are the multipliers of (23). If p(u, k),

5)
(2
E(p, k), v(t, p, k) and v(t,u,k) are defined by (65) and (67), then
the eigenvalues of C(u, k) are the multipliers of (51). Furthermore,
C*(u, k) can be written in the form

(97) Cil(u, f‘i) = O(mfl)xl CQiQ (/"7 'kc) C2i3(/~"7 'kc) )
On><1 Cétz(#a H) C:;li:%(ua H)
where

Ct(p, k) =[1 O1x(m-1)] AN (p, k)

ST ). (1 ), €0 ), 1),

C35 (1, 8) = [Om-1yx1 Tim—1)x(m—1)) A" (1, k)

ST ). (1 ). €0 ), 1),

(98)

Ch (k) = [—2(0,11,6)  Op(m—1)] A1 (s k)

-
(99) 2 T, 1 ), € )1 )
+ ST (), ), ) 1),

Cfs(/i,ﬁ) = [1 le(m—l)]Ail(,uv R)

gz (ZlZT(,uv ) p(u, Ii), f(’u’ 5), iy Ii),

Cas(1s5) = [Otm-1)x1  Im-1)x(m-1)] A" (1, k)
100 du
oo 9€ a¢ (ET (1 &), p(1; £), € (11, £), 115 K),
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C:sis(ﬂa K) = [—%(O,u, K) Onx(m—l) ] A—l(ﬂ, K)
0
(101) 8_Z(iT(/"'7 K/)a p(/"'a Ii), 5(#, :“é), U, Ii)

ov

+ 8—§(:|:T('u,, fi)v p(:u’a ’%)7 é‘(/*bv K/)v H H)‘

Proof. One finds that
(102)
Z7H0,p, k) =

1 le(mfl) 01><n A_l( ) 0
H, K mxn

OTLXTTL ITLXTL

Om-1)x1  Lm-1)x(m-1) Om-1)xn

_%(Oap’v F"’) Onx(mfl) Inxn

(97) follows from (93), (94), (96), and (102). u]

For the degenerate problem we need the formulas for C'(u, ) only.
The formulas for C*!(u, ) are used when we study the stability of
periodic solutions in the singular problem.

Now we prove Theorem 1(b).

Proof of Theorem 1(b). Differentiating both sides of (29) with respect
to p, and using (38), we obtain

ou B 00 Jdy
(103) a_p(t707£a070) - F(’Y(t))a_p(uoagaoa O) + \Ij(t)a_p(taoagaoa O)

In view of (29) and (38), we find that

(104) g_z(t’oagaoao) = Omxn-
Because of (39),

v
(105) _(ta p,E,U,Fu) = Onx(mfl)-

op
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From (39) and (92), we obtain

v 0%v
a_é.(tapagaoa""'):[nxna M(T,O,S,O,U)ZDG(O

It follows from (95), (98) and (103) that there is an (m—1) x (m—1)-

matrix, which we call Ci (i, k), such that

(106)

C(p, k) = Y (T,0) + C3(u, ),
C5(0,0) = O(m—1)x (m—1)-
(39), (99), and (105) show that

(107)

(108) C3(0,K) = Onx(m—1)-
From (100) and (104) we obtain
(109) C55(0,0) = O(m—1)xn-

Finally, (39), (101), (104), and (106) show that there is an n X n-matrix
C5 (i, k) such that

C33(1s #) = Tnxn + p[Da(€") + Cis(n, w)],

110 N
(110) C4(0,0) = Onxn.

Now Theorem 1(b) follows from Assumption 2(b), Lemma 3, and
(107)—(110). u]

Next we prove Theorem 2(b). We first summarize a result concerning
a differential inequality in Property 1. The statement is identical to
what is proven in Lemma 4 in [15] in case ¢ = 0. A similar proof leads
to the case ¢ = 1 and is left to the reader.

Property 1. Suppose that h is a continuous nonnegative function
on the closed interval [tg,t1] such that

t
/ e(AQ*Al)‘Sfti‘
t

[Bg—i—Cg / e 427 tilp(r) dr
123

h(t) < €A1|tti|{Bl + Oy

| as

|
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for all t € [tg,t1], wherei =0 or 1, Aj, B;, and C; are real numbers,
and C; > 0 for j =1 and 2. Then

1 — e~ Rlt—ti]

h(t) < 6R0|t_ti| By + (BQCl —sgn (t — ti)BlTo) R

for all t € [to,t1], where

R =+/(Ay — A))2 +4C,Cy = |Ay — Ay| + 2T,

Ro = ‘41+A++R = max{A, A} + T,
A —A A — A Ay — A
— 2+R: 2 1+ A2 1|+I,

2 2

/1 C1Co ds
1= .
0 \/(Az — A;1)?24+4C1Css

Using the results of Property 1, we next state and prove some
properties concerning solutions of a linear system in the following
lemma.

Lemma 4. Let the pair x1 = z1(t), 2 = z2(t) be a solution of the
following linear system:

d
% = C11(t)z1 + Cr2(t)z2,
d.
% = Co1(t)z1 + Ca2(t)z2,

where z; € R™ for i =1 and 2, and each entry of the n; X nj-matriz
Ci;i(t), 1 =1,2, j = 1,2, is defined for all t € R and is a continuous
bounded function of t. Fori =1 and 2, let X;(t,s), Xi(s,8) = In,xn,,
be the fundamental matriz solution of the linear system:

dxi
dt

- C” (t) TLi.
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Let a; and K; be constants with K; > 0. Define

R = \/(a17a2)2+4)\12)\21K1K2 = |a17a2\ =+ 2_[,
a1 +as+ R

Ry = — = max{ay, a2} + I,
Ti:aj—c;+R:aj—ai+2|aj—ai|+I’

=12, j=1,2, i #],

I = /1 )\12A21K1K2 dS
0 V(a1 —a2)?+ ANoho1 K1 Kos'
Aij =supyertl|Ci (1)}, =12, j=1,2
(a) If
(111) || X;(t,s)|| < K;e® (=) fort > s,
then, for t > to,

(112)  lai(t)]] < Kieot) || (to)]|

1 _ e—R(t—to)

+ (A K|z (o) || = rillai(to)l]) 7

(b) If
(113) || X;(t, s)|| < K;e® =) fort <s,
then, for t < to,

(114)  flai(t)]] < Keftolto=t) [Ilwi(to)l

1 _ e—R(to—t)

+ (A K|z (o) | + rjll2i(to)l) 7

Proof. For i =1 and 2, z;(t) is given by

.Z'i(t) = Xi(t, to)ﬂ?i(to) + Xi(t, S)C,](S)QTJ(S) ds,

to
j:1727 'L#J
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Substituting one equation in the other, we obtain
(115)  =z;(t) = X;(t,to)zi(to)

t

0

+/t Xi(t, 5)Cij(s) [Xj(s,to)xj(to)+/t:Xj(s,T)oji(T)mi(T) dT] ds.

Using (111), we find that, for ¢ > to,

t
s < Kiet = st + [ A0 o)

to

+/ Ajie“j(7t0)|mi(7')|d7'} ds}.
to

(112) now follows from Property 1. This completes the proof of (a).
The proof of (b) is similar. From (113) and (115), we obtain

to
(0 < Kiet =0 st + [ Ay o)
t
to
+/ Ajie~% =)z, (7)]| dr} ds}.
Now Property 1 leads to (114). O
Remark 6. Note that X;(¢,s) can be written in the form
¢
Xi(t:5) = Do + | Culr)Xi(r.) dr
From this equation, we obtain
¢
[|X:(t,s)|| <1 —|—/ Xii|| Xi(T, 8)||dr for t > s.

It follows from Gronwall’s inequality that ||X;(t,s)|| < et~ for
t > s. Similarly, one shows that ||X;(t,s)]| < e*#(*=) for t < s.
Therefore, we may take a; = A;; and K; = 1 in (111) and (113).
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To prove Theorem 2(b) we proceed as follows. The variational system
(51) is closely related to the variational system of (49) with respect to

(66):

df/dt = B11(t, u, k)0 + Bi2(t, u, k)y + Bis(t, s, k)v,
(116) dy/dt = Bai(t, i, )8 + Baa(t, i, K)y + Bas(t, i, K)v,
Ii(d’l)/dt) = B31(ta Ky Fé)e + BSZ (ta 122 K/)y + [C + BS3 (ta K Iﬁ?)]’l},

where
OR;

(117) Bir(t p, k) = — - (0(t, 1, 5), y(t, 1, ), v (L 5, K), 1, K),
OR;

(118) Bis (ta Hy ”) = 8y (0(ta Hy ”)7 y(ta 142 R)a V(ta 142 ”)7 ey H)a
OR;

(119) Bi3(t7 1223 F':) - v (a(ta 1223 F':)a y(t7 H, ’{‘:)7 V(ta 1223 F':)a My H)

for i = 1,2 and 3, and
Rl(eayavaﬂ’v K;) = 60(07y) + 61(07y7 v, i, K/)a

(120) Ry(0,y,v,p, k) = A(0)y + Yo(8,y) + Y1(0,y,v, 1, ),

R3(07 Y, v, 1y F':) = V(ea Y, v, 1y F':)'

)
w= .
Yy
Let the pairs w = wq(t), v = v1(¢) and w = ws(t), v =
solutions of (116) with the initial values
wl(o) = Imxm, w2(0) = Omxn,
'UI(O) = OnXm7 UQ(O) = Ian-
It is easily seen that
-g_ﬁ(tﬂp(uﬂ%)?g(#’ﬂn)?u)’%)-

Write

LS4t (1, 1), (s 1), 11, )

va(t) be the

_wl(t){ Orx(m—) }
I —1)x(m-1)

O1x(m-1) ]

0
%(t,p(u,ﬁ),ﬁ(u,n),u»ﬂ)Zvl(t) [I( ~1)x(m=1)
(121) o

o€ (tvp(ua ’i)vg(ﬂ, :‘i),u, Ii)'
= w2(t)a

L 54(t, p(1s 1), (s 1), 11y ) |

Z_Z(ta P(M, 5)7 f(lufa H)a My ﬁ) = U2(t)-
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Let
/Bij(:uv H) = Su§{|‘Bij(t)y" R)H}’ 1= 15273a ] = 172a3'
te

In view of (119), (120), and Assumption 4(b),

(122) Ba3(p, k) ~ O(|u| + |K]).

Define

(123)
) = {|| | Gt peteen] |}
aator) = {| | B ] |
Co1 (, )—sup{\l 31(t, py k) Bsa(t, pu, k) ]}

Then

2
Cll(/”a < max {Zﬁ” My K }7

Cra(p, k) < 2523 Wy K
Co1(p, k) < m’?‘X2{/33j(#, K)}

1<;5<

Let W (t, s, p, k), W(s,8, 1, k) = Lyxm, be the fundamental matrix
solution of the linear system:

dw
o = Bt r)w
where
(124) B(t, p, k) = Byi(t,pu, k) Bia(t, p, k)

Boi(t,p, k)  Baa(t, p, k)

Let V(t,s,p,k), V(s,8,p,6) = Inxn, be the fundamental matrix
solution of the linear system:

dv

dt [C+ ng(t My K )]
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Lemma 5.

1/ (t 5,y )| < e,
(125) [V (t, s, 1, 5)|| < Ke— " ‘a—KpBss(1,k)](t—s)
for k™1(t — 5) >0,

where K and « are the constants defined in Remark 2.

Proof. (125) follows from (123), (124), and Remark 6. V (¢, s, p, k) is
given by

t
V(ta Sy [y ’i) = en_lC(tis)—H‘iil / eﬁ_lc(tiT)BS?) (Ta 142 R)V(Ta Sy Wy ”) dr.

S

It follows from Remark 2(b) that for k > 0 and ¢ > s,
1V (2,5, ) || < e e0=)
¢ —1
bt [ R B 9|V (75,9 dr
and
Kk tat k tas
etV (1,5, 1, ) | < Ke
t
w7 [ K B IV (7 1)
It follows from Gronwall’s inequality that
TVt 5,1, )| S KR a0 KB,
Therefore
[V (¢, 3,1, k)| < Ker o Kpss(ur)l(t=s) for kK >0and ¢t > s.

The proof for the case k < 0 and ¢ < s is similar. ]

Now we complete the proof of Theorem 2(b).
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Proof of Theorem 2(b). In view of (122), a — KB33(u,x) > 0 for
sufficiently small |u| + |x|. We set
a1 = Cu(p, &), K, =1,
az = —|K| "o — KBss(u, k)],  K2=K,
A1 = G, K), A1z = Cia(p, K),
A1 = |k 7 Can (s, ).

Then, according to Lemma, 4, for k=%t > 0,

Rolt| 1— e Rl
o1 (B)]] < Kae™ >\21K1|\w1(0)\|T
1 — e Rl
< |6l Can (p, ) K ol =S
(126) R
Rl

w2 ()] < K1l oKy — 2]|va (0 )H
1 — e~ BRIt
< Cualp, w) K el eT,
where
R = a1 — as| +2I = Cu1(p, k) + k| Mo — KBss(p, k)] + 21,
Ry = max{ai,as} + I = Cui(p,5) + I,

(127)
/ )\12)\21K1K2 dS
\/ (a1 —az)? + Ao K1 Kos'

:/ K ¢ia(py k)1 (1, k) ds ‘
0 \/[a B KB33('U’ H) + |K|<11(p‘7 K/)]Q + 4|K/|C12(/~"7 ’{'3)(21(#7 ’{'3)8

In view of (117), (118), (120), and Assumption 4(b),

(128) Co1(p, &) ~ O(lul + |&])-

It is easily seen that the integral I in (127) is bounded for all y and « in a
neighborhood of 0. In fact, (128) leads to the estimate I ~ O(|u|+ |k]).
It is also seen that

(129) R~ ~ O(|x)).
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It follows from (126), (128), and (129) that
(130) s @) ~ Ol + |&l),  [lwz(®)]] ~ O(&]).

Let the pair w = w(t) and v = v(t) be the solution of (116). Then

v(t)=V(¢,0, p, n)v(O)—}—rfl/OV(t, S, Wy &)[Bs1(s, b, &), Bsa(s, i, &)]w(s)ds.

It follows from Lemma 5 that for k1t > 0,
(131)
[o(t)]| < Ke o Kaalumlt]y ()]

K o1 (ps v) Vo KB ()]t
+ sup {||w(s)||}—————{1 — e (@ HPslmriL
sE[O,t]{” ( )H}O‘_K633(M7H){ }

We find from the second inequality of (126), (128), and (131) that there
is a positive number a7 such that

(182)  [foa(®)ll ~ Oe " 4 ||+ |nl) for x 1t > 0.

According to (68),

06

G 62U k) ) = 57 (0t ), €0 ) 1 )
+ 6_£(t7p( )

od
( )’“7“)_(0’9(#75)#‘7“)7
as) ) Oy
a—i(t,pw K), o K) = a—i(t,pw, k), E(t, ), 1y )

gg (t, p(py &), E(1s K), s n)g—z(O,p(um),u, K).
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Furthermore, (29) gives

(34) L@, ), p(s ), E (s ), 12 )

dp
- W(O)g—z(iT(u, ), (1t ), (s 5), 1, )
L F((0) + ¥ (0)p (s »e)]g—i(ﬂm, K), Pt ), E(ts ) s ),

ou

7 (ET (s %), pl1s 1), E (ks 1), 1, )

dy

= T(O)a—g(iT(u, ”)7 p(,uﬂ ”)7 E(,uv R)a Ky ”)

+ [F(4(0)) + ¥'(0)p (1, H)]Z—Z(iT(u, k), Py £), (14, K), 1, ).

It follows from (121), (130), (132), (133), and (134) that
)
(135) 8—Z<sgn (R)T (1, &), (s ), E (s ) 1, )

- F<v<o>>§—Z<sgn (R)T,0,0,0)

- \If(o>§—i<sgn(n>z:o,o,0) ~ O] + ),
g—;@gn(ﬁ):r(u, k), (it ), €0ty 1), 1y ) ~ O] + IR,
ou

=z (sen (8) T (1, £), s 6), E (1, ), 1y ) ~ O(|pa] + |51),

0
00 (s (=) 11 ), (1 ), 1, ), 1)

~ O(e_lnrlo‘zT + |l + |&|) for some ag > 0,

where
-1 for k <1,

sgn(n)—{l for k > 1.

On the other hand, an argument similar to the one used in the proof
of Lemma 1 leads to the conclusion that
9y
136 —(¢,0,0,0) =Y (¢,0
(136) 5 (£:0,0.0) =Y (5,0
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Theorem 2(b) now follows from Lemma 3, (135), and (136). O
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