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BLOW-UP BEHAVIOR FOR
SEMILINEAR HEAT EQUATIONS:
MULTI-DIMENSIONAL CASE

WENXIONG LIU

ABSTRACT. This paper is concerned with the Cauchy
problem:

ut — Au = F(u), (z,t) € RN x (0,T)
u(z,0) = uo(z)

where ug(z) is continuous, nonnegative and bounded, and
F(u) = P with p > 1 or F(u) = e*. Assume that u
blows up at « = 0 and t = 7. In case F(u) = uP, let
w(y,s) = (T = )/ P~ Du(y(T = t)'/%,t), s = —log(T — t).
We study the large time behavior of w(y,s). In the radial
case, we prove: if w(y,s) Z B (8 = (p — 1)~1), then either
w(y,s) = BP(1 — (2ps)"'NH(y)) + o(1/s) where H(y) =
(2N)71|y|? — 1 or there exists an m > 3, k,, > 1, constants
C; (not all zero) and polynomials Hyy, ; of degree m, such that
w(y,s) = B (L—e(1=m/D3 370 CiHyi(y)) +o0(e1=m/2)%).
The above convergence takes place in 01200 as well as in some
weighted Sobolev space. For the nonradial solutions, we also

obtain some results in the case N = 2. Similar results also
hold in the case F'(u) = e%.

1. Introduction. This paper is concerned with nonnegative blowing
up solutions of the initial value problem:

(1.1) u = Au+F(u) in RN x(0,7)

(1.2) u(z,0) = up(x), z € RN
where ug(z) is continuous, nonnegative and bounded, and

(1.3) F(u)=v? with p>1, or F(u)=c¢e"
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1288 W. LIU

It is well-known that for suitably chosen initial data, the solution of
(1.1)—(1.2) blows up in finite time. For instance, if F(u) = u? with
1 < p <1+ 2/N, for any nontrivial solution u of (1.1)—(1.2), there
exists a finite time 7" such that

(1.4) limsup( sup wu(z,t)) =400
t—=T zeRN

(see, e.g., [6].) We then call T the blow-up time. If, for some z; € RY,
there exists a sequence {(z,t,)}, such that z,, — zg, t, = T, and

lim w(z,,t,) = 400,
n—oo
we call zy a blow-up point. There are many papers concerning the

number of blow-up points, their location and the behavior of u near a
blow-up point, we refer to [4] for a review of recent results.

Of particular interest is the study of asymptotic behavior of solutions
as t approaches the blow-up time. In this direction, the pioneering
work is Giga and Kohn [9], followed by [10] and [11]. They used the
well-known change of variables: for any a € RY,

wa(y,s) = (T =V Vu(e,t),  y=(z—a)(T~1)"",

(1.5)
s = —log(T —t).
One can check that:
0 _ Y 1 »
(1.6) %wa—Awf 5 -Vw, — _1wa+wa.

The question of studying the blow-up behavior of u near a blow-up
point is thus transformed to studying the large time behavior of w. By
using the “energy” methods, Giga and Kohn were able to prove that,
ifp<(N+2)/(N—2), then

(1.7) wa(y,s) = B° or 0, B=1/(p-1),

uniformly on the sets |y| < R with R > 0 (if N is 1 or 2, then the
conclusion is true for any 1 < p < o0). Moreover, if w, — 0, then a
is not a blow-up point. Similar results have been established even for
p > (N +2)/(N — 2), (see Theorem 2.1 below).
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From now on, we shall always assume 0 is a blow-up point and a = 0;
therefore, we shall suppress the subscript a. By (1.7),
Jlim (T = )/ Du(g(T - 1)1/2, 1) = 57
—00
uniformly for || < R with R > 0. This establishes the behavior of u
in any space-time parabolas. It is natural to ask what happens beyond

these parabolas. For example, what is the asymptotic shape of the
curve where (1" — t)1/(P~Dy is constant?

In the one-dimensional case, Galaktionov and Posachkov [7] used a
formal argument to derive the ansatz

(p— 1)2 -1/(p-1)

w(a, t) ~ (T — )~/ ®=1) [(p -1+ 4p(T — t)|log(T — t)|

The counterpart of w is

(p - 1)y2:| -1/(p—1)

1
Ips +0(s)

(18)  w(ys) =6 [1 N

as s — oo. Moreover, at y = 0,

(1.9) w(0, ) = B° {1 4 ﬁ} + o<%>

M. Herrero and J. Valdzquez [12] and S. Fillipas [3] have independently
given rigorous proofs of (1.9) under some conditions on the initial value.

In this paper, we shall extend (1.9) and related results to radial
solutions of (1.1)—(1.2) for any dimension N. As to nonradial solutions,
we also obtain some results for the case N = 2. Before we state our
theorems, let us introduce some notations. For 1 < ¢ < oo, and any
positive integer k, define

LYRY) = {f € L (RY) s [ 17(@) (o) do < oo,
H¥(RN) = {f € L2(R") : for any j € [0,k], f¥) € L2(R")}

where p(z) 2 exp(—|z|?/4). From now on, the symbols “|| - ||” and
“(-,-)” will denote the norm and the inner product in L2(R"), re-

spectively, and the symbol C' will represent a positive constant, not
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necessarily the same at each occurrence. Now we can state our main
results.

Theorem 1.1. Assume that w is a bounded, nonnegative and radial
solution of (1.6) with the property that ||w(-,s) — B°|| = 0 as s — oo.
Then one of the following cases must occur: either

(1.10) w(-,s) = B,
or, for H(y) = (2N)'|y]> — 1,

B8
(1.11) w(-s) = B% — ];fs H(y) + o(1>,

S

or there exists an m > 3, some constants C; (not all zero) and
polynomials H,, ; of degree m, such that

km
(1.12) w(-,s) ="+ Zcie(l_m/Q)sHm,i(y) + o(e1=m/Ds))
i=1

where convergence takes place in HI} as well as in CZ .

If (1.11) happens, then we have the following theorem:

Theorem 1.2. Let u be a solution of (1.1)—(1.2) with the following
properties:
(i) F(u)=uP,1<p<o0.
(ii) wo(z) is a radial function and is monotone decreasing in |z|.
(i) w is defined by (1.5) and (1.11) takes place.

IfN >3 and p > (N +2)/(N — 2), we add the assumption that
Aug + ufy > 0. Then

lim (7' — )"/ =D u(€(T — 1)] log(T — 1)])*/%, 1)

t—T
Ve
i [1 + p—|£|2]
4p
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uniformly on compact sets |£| < R with R > 0.

Remark 1.3. Theorems 1.1 and 1.2 in the one-dimensional case were
first proved in [12]. Actually, in that case, they showed that ug(x) is
radial and has a single maximum at 0 which implies that (1.11) takes
place. In the multi-dimensional case, we are unable to prove this fact.

Concerning the nonradial case, we have the following theorem.

Theorem 1.4. Let N = 2 and w be a bounded and nonnegative
solution of (1.6) with the property that ||w(-,s) — B°|| = 0 as s — oc.
Then one of the following cases must occur: either

w('a S) = ﬂﬂa
or
(1.13) 0<c§s\|w(-,s)—ﬂﬂ||H; < C < oo,
or there exists an m > 3, some constants C; (not all zero) and
polynomials Hy, ; of degree m, such that
km
w(-,s) = BPell—m/Ds Z CiHp, i(-) +o(e1=m/2)9) as s — 0o
i=1

where convergence takes place in H,} as well as C_ .

Corollary 1.5. Assume (1.13). Then, for some positive constant C,
(L.14) (T—t)Y P Du(E[(T—t)|log(T—1)|]*/?, 1)
> PO V0D st
uniformly on sets |£| < R with R > 0.
As to the case F(u) = e*, we have parallel results. Let

(1.15)
w(y, s) = u(z,t) + log(T—t), x = y(T—t)"?, s = —log(T—t).
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Then

(1.16) wS:Aw—%-Vw+ew—1.

Theorem 1.6. Let w be a bounded radial solution of (1.16) with the
property that ||w(-,s)|| = 0 as s — oco. Then we have the following
alternatives: either

w(-,8) =0 for any s > 0,

(1.17) w(-,s)—i—%(%— > =o0(1/s),

or there exists an m > 3, some constants C; (not all zero) and
polynomials H,y, ; of degree m, such that:

km
w(,s) = ZCie(km/z)sHmvi + o(e(t=m/2)s) as § — 0o

i=1

where convergence takes place in H,} as well as in CF .

Theorem 1.7. Let u be a solution of (1.1)—(1.2) with the following
properties:

(i) F(u)=e".

(il) wuo(z) is radial and monotone decreasing in |x|. Moreover,
Aug + e*0 > 0.

(i) w is defined by (1.15) and (1.17) takes place.
Then

lim {u(¢((T—1)] log(T—t)|)"/2,t) + log(T —t)} = — log(1+[¢|*/4)

uniformly on compact subset |€] < R with R > 0.
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Theorem 1.8. Let N =2 and w be a bounded solution of (1.16) with
the property that |w(-, s)|| = 0 as s — oo. Then we have the following
alternatives: either

w=0

or
(1.18) 0 <ec<sllw(,s)|| <C < oo,

or there exists an m > 3, some constants C; (not all zero), such that

km
w(-,s) = ZCie(l_mﬂ)sHmJ + o(el1=m/2)s) as s — oo.

i=1

Corollary 1.9. Assume that (1.18) happens. Then, for some C > 0,

u(€((T — 1) log(T — t))!/2, ) +log(T — t) > —log(1 + CI¢[*).

We shall only give the proofs for the case F(u) = uP, since the
proofs for the exponential case are the same with minor differences;
we only need to change the function f(v) in (2.3) to the function
flv)y=e"—-1-w.

The rest of the paper is organized as follows. In Section 2, we
shall review some known results. Then in Section 3 we shall prove
some results for the general case (i.e., not necessarily radial solutions).
Finally, Theorem 1.1 and Theorem 1.4 are established in Section 4 and
Section 5, respectively. Theorem 1.2 can then be proved by adapting
the argument in [12].

2. Preliminaries. We shall begin with the review of known results.
Assume that u is a solution of (1.1) and (1.2) which blows up at 0 and
t="T.

Theorem 2.1. (i) Let F(u) = u? withl < p < oo if N =1 or 2,
p<(N+2)/(N—-2)if N>3. Then

(2.1) lim w(z(T — t)/2,6)(T — )/ P~Y = P

t—T
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uniformly on sets |z| < R with R > 0 (see[9, 10, 11]).

(ii) Let F(u) = uP and ug(z) be radial and nonincreasing with the
property that Aug + uf, > 0. Then the conclusion of (i) is true for any
1< p<oo (see[1]).

(iii) Let F(u) =e", N <2, and Aug +€“° > 0. Then

(2.2) lim u(z(T — t)/2,t) 4+ log(T — t) = 0

t—T

uniformly on sets |z| < R with R > 0 (see [14]).

(iv) Let F(u) = € and ug(z) be radial and nonincreasing with the
property that Aug + €“0 > 0. Then the conclusion of (iii) is true for
any N (see [1]).

Note that, under the assumptions of Theorem 2.1, the function w
defined in (1.5) or in (1.15) is bounded.

Let Lv2 p~1V - (pVv) + v with p = e~1v’/4 Then L is a self-adjoint
operator on L%. The eigenvalues of L are
A=1-m/2, m=0,1,2,...

and the corresponding eigenfunctions are

for X =1, ho
for A\ =1/2, hi(yi), 1=1,2,...,N
(N distinct eigenfunctions)
for A2 =0, ha(y:), i=12,...,N
ha(yi)h2(y;), i#5,5j=12...,N

(N + <J;[) distinct eigenfunctions)

where hi(y) = Hi(y/2) and Hg(z) is the standard k-th Hermite
polynomial. These eigenfunctions form an orthogonal basis of Lg. For
a proof, see [3].

We shall write Hy, ;,% = 1,... , kp, for the eigenfunctions correspond-
ing to the eigenvalue 1 — m/2 with the property ||H,, ;|| = 1. Hence
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the set {Hp, ;,m=0,1,...,i=1,...,k,} forms an orthonormal basis
of L?).

Let w(y,s) = (T — t)Y/®~Yy(z,t), where y and s were defined in
(1.5), and let v(y,s) = w(y,s) — B°. From Theorem 2.1, v — 0 as
s — oo uniformly on sets |y| < R. Notice that w is bounded under
our assumptions (see [5] and [10]). Hence we can use the dominated
convergence theorem to obtain v — 0 in Lg. Moreover, v solves

(2.3) USZA’U—%-VU—FU—‘,-]"(’U)

where f(v) = (8% +v)P = (p—1) "/~ Y —p(p—1)'v. So f(s) = O(s?)
as s — 0. We can expand v in terms of Hermite polynomials:

oo km
v(y, S) = Z Zam,i(s)Hm,i(y)
m=0 i=1
and one can check that
(2.4 i = (1= 2 ) i + (F(0), Hn)
. dsam,z = 2 Qi V) fmyi)-

Since u is nonnegative and w is bounded, we have |v(y, s)| < M and
v(y,s) > —B# for (y,s) € RN x (0,00). Consequently, the hypotheses
of the following theorem are satisfied by our function v.

Theorem 2.2. Let v be a solution of (2.4) with the following
properties:

(i) v(y,s) exists for all time s and v(y,s) — 0 as s — oo uniformly
on ly| < R.

(ii) |v(y,s)| < M for all (y,s) € RN x (0, 00).
(iii) v(y,s) > —B° for all (y,s) € RN x (0, 00).
Then either ||v(-, s)|| = 0 ezponentially fast, or

(2.5) > kf: az, (s) = o< k; a;i(s)>

m#2 i=1



1296 W. LIU

as s — 00.

This theorem was proved by S. Fillipas in [3]. He also proved the
following theorem.

Theorem 2.3. If ||v(, s)|| does not decay exponentially, then

d p kz 2 k2
(2.6) 25020 = W((;az,iff&i) , Ha j) + O(Zag,z)'

=1

If 4(s) 2 ||v(-, s)|| decays exponentially, then we shall see in Section
3 that either v = 0 or (1.12) happens. If ¢(s) does not decay
exponentially, one of the following three cases must necessarily occur:
either

(2.7) lim sup s(s) = oo,

§—>00

or there exist positive constants C' and ¢ such that

(2.8) 0<c< ligior.}f(sz,/)(s)) < limsup(sy(s)) < C < oo,

§—00
or
(2.9) liminf(sy(s)) =0 and limsup(e**9(s)) = o0
§—00 s—>00

for any € > 0. We intend to show that the cases (2.7) and (2.9) do not
occur. To this end, we need the following result (see [2]).

Lemma 2.4. Assume that ¥(s) is a nonnegative function such that
Y € C([0,00)), lim,_,o0 ¥(s) = 0, limsup,_,  e*1(s) = oo for any
e > 0 (respectively, limsup,_, . s¥(s) = o0). Then there exists a
function n(s) € C*([0,00)) such that

(i) n>0,n <0, lims_oon(s) = 0.
(ii) 0 < limsup,_,., ¥(s)/n(s) < co.
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(iil) lims_so0 €5*n(s) = oo for any e > 0 (respectively lim;_, o sn(s) =
00).

(iv) (n'/n)" and (n"/n)" belong to L*(0, o).
(v) lims o0 ' (8)/m(s) = lims—,00 "' (s)/n(s) = 0.

Following [12], we define

(2.10) iy, s) = -

where

n(s) if (2.7) or (2.9) holds, where 7n(s)
(2.11) pu(s) = is the corresponding function in Lemma 2.4
1/s if (2.8) holds.

Expand ¢ in terms of Hermite polynomials:

oo km
(2.12) 5= bmiHn,
m=0 i=1
where
i (8)
2.13 by i) =
(213 T u(s)

By studying the large time behavior of ¥, we shall be able to exclude
(2.9) and in some special cases, (2.7) as well; see Sections 3, 4 and 5.

We shall also need the following results.

Lemma 2.5. Assume that v solves (2.3) and |v| < M < co. Then,
for any r > 1, ¢ > 1, and L > 0, there exists s§ = s{(q,r) and
C =0C(r,q,L), such that

[0y 8+ 55)rp < Cllv(-s 8)llg,p

for any s > 0 and any s* € [s§, s§ + L], where ||-||., and ||-||»q denote
the usual norms in L7(RN) and L1(RN), respectively.
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Lemma 2.6. Let ¢ be a solution of the initial value problem:

b= Ap— Vo + T+ hiy,s),
$(y,0) = ¢o(y),
where ¢ € L2 and h(y,s) € L}, ((0,00) : L2(RN)). There eists a

loc

positive constant C' such that, for any S > 0, there holds
s s
||¢(wS)|\2+5|\V¢(',S)I|Z+/0 52\|A¢('a8)||2d3+/0 5?5 (- 5)|I* ds
s
< c(s+5%e) |lanlP+ [ 151 ds ).
0
Lemmas 2.5 and 2.6 were proved for the one-dimensional case in [12],

but the arguments there can be easily adapted to apply to the multi-
dimensional case.

3. The general case. As explained in Section 2, we are interested
in studying the large time behavior of the function ¢ = wv/p which
satisfies

, -

(3.1) b= AT— Yoo Mgg {00
2 % %

Moreover, by Lemma 2.4 (ii)

(3.2) |9(-,s)Il < M < 0.

For any sequence s; — oo, define
i(y,s) = 0(y, s + 5)-
By standard parabolic estimates (see [13]), it follows from (3.2) that
|t;] < M(R) on B(R) x (—R, )
for sufficiently large s;. Applying LP and Schauder estimates, we obtain

[5;/C***(B(R/2) x (~R/2,00)) < M'(R).
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Hence there exists a subsequence (again labeled as s;) such that

(3.3) 0;(y, 8) = Voo (y, 5) in C%(K)

for any compact subset K C RN*!. By Lemma 2.4, it follows that 7,
solves

zs:Az—%-Vz—i—z.

We wish to show that 9, is independent of s. To this end, we need the
following lemma.

Lemma 3.1. For any sg > 0,

o0
(3.4) / 154(-, 8)|[2 ds < 0.

So

The proof for N = 1 is due to Herrero and Veldzquez [12]. For general
N, the proof is similar but slightly different. Since the lemma is crucial
for our argument, we provide the details here.

Proof of Lemma 3.1. Multiplying (3.1) by p¥s, and integrating over
RYN x [sg, 51], we get

51 . 1 . 1 .
[ estdeds =5 [ vatsf g [ vt
so JRN RN RN
+/ p’az('asl) _/ p’D2('730)
RN RN
1 S1 /J_,/~ S1 f/u“’),,
T e [ 10
so RN M S0 RN 14
1 . -
<5 [ AVt [ pitm)
RN RN
1 S1 Hl~ S1 f/u“’),._
AT Lo
S0 RN M S0 RN 14

SN+t Js+Jy
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Note that J; depends only on sy. From (3.2), it follows that Jo < C.
By integration by parts,

__H(s1) 2 1 (o) "
J3 = " ou(s) /RN po=(y,s1) dy + 211(s0) /RN p0°(y, so) dy

INGIVNG
+ - — p0° | ds.
2 e 1% RN

Hence J3 is bounded as s; — oo by (3.2) and Lemma 2.4. To estimate
J4, introduce

L[ (B° +po)ttr ey DD
Gly.s é_[4_ )P -1 _
(v ) pl (+p)p P=1) 2(p—-1)
(p—l)(P“)/(Pl)}
(p+1)p ’
! 2(8P + )Pt o
9(y,5) = % [ 2By pfl) + (B8P + v )P

2(p—1)—(p+1)/(p—1)
+ (p—1)7P/ PV 4 (p=1) ]

p+1

One readily verifies that

dG v
gl;’ 8) = f(zv) Vs + g(:‘/a 8)7

and

|G(y, s)| < Clv|?, v = ud,

o
l9(y, 9)| < —Cﬁ\v\g’-
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Therefore, by (3.2) and Lemma 2.5, we have for some L > 0,

= [ o6wman= [ oesan= [ [ oo
<o(i- [T 550 [ ol yas)
e Bl el
o(1- [ Bt nyas)

< o<1 - / 1 (s) ds> = C(1 + u(s0) — u(s1))

S0

‘:w | =,

~

I
SRR

where we used the fact pu(s—L)/u(s) < M for any s > L which follows
easily from Lemma 2.4. The proof is complete. ]

We return to the study of ¢;. By Lemma 3.1,

[ [ elmeragas= [ [ japPedyds o
-RJB(R) —R+s; JB(R)

as j — oo. Hence
/ / U005 | dy ds = 0.
—RJB(R)

It follows that v, is independent of s. We have thus proved

Lemma 3.2. For any sequence s; — 0o, there exists a subsequence
(again labeled as s;), such that

i(y,s) = Uso(y)  in C*(K)

for any compact subset K C RN*l. Furthermore, 7 € Lg, and 1t
solves

(3.5) AU—%-V’U—‘,—’U:O.
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Remark 3.3. If the solution 0. of (3.5) were unique, we would have
(y,8) = U(y) as s = oo. Unfortunately, 9., may not be unique
since there exists a family of solutions of (3.5), i.e., Zfil viHa,;(y) for
any v; € R', i = 1,...,ko. This forces us to use another approach by
examining the dynamics of the coefficients as ;; see Sections 4 and 5.

Next we want to show that
(3.6) j(y,s) = Boo(y) in L.

For this purpose, introduce

1
2R % 0.) = {aws): [ [ Plnspayas < oof.
0o JR
Lemma 3.4. The set K ={%;(y,s)} is precompact in L2(RN x
(0,1)).

Proof. 1t follows from (3.2) that K is bounded in L2(RN x (0,1)).
By Lemma 2.5,

/RN vt (y, 5)p(y) dy < C</RN v*(y,s — L)p(y) dy>2-

After dividing by u*, we end up with

/RN 7*(y, s)p(y) < C(/RN Plys L)p(y)>2_

Using the above inequality and (3.2), we can estimate the following
integral:

(3-3)
/ / 3 (y, 5)p(y) dy ds
0 Jjy|>R

< p(y) dy cor o' (y, 55+ s)p(y) dy ds v
(/y|>R > 0 Jiy|>R
<o( /|y>Rp(y) dy)m / ( [ P ws-Les)l) dy)st]

1/2
§C(/ p(y)dy> -0 asR—o0
ly|>R

1/2
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uniformly in j. Next we multiply (3.1) by po, then integrate over
RN x (0,1). By Lemma 2.5 and (3.2), it follows that (denote p;(s) =

p(sj +5))

1 ~ 1 ~
// pIijlzﬁg/ P (y,0) dy
0 RN RN
1 1,/
3 1 N
Lo
RN 0 RN
/ 4 F‘va N
(38) RN 122}
L
<o+ [ /u/ ol
3/2
C{H/ u;(/ pv3 (y, s L)dy> ]
0 RN
C

where we have used the fact that f(s) < Cs?. Using the mean value
theorem and noting (3.4) and (3.8), we obtain

IN

IN

1
69 [ [ el st = s dyds 0
0 JRYN

ast — 0, |h| = 0, uniformly in j. The conclusion of the lemma follows
from (3.7) and (3.9) by standard results from real analysis.

By Lemma 3.4, for any sequence s; — 0o, there exists a subsequence
(again labeled as s;) such that

i(y,8) = U (y,8)  in L2(RY x (0,1)).

On the other hand, by Lemma 3.2, there exists another subsequence
(again labeled as s;) such that

173' (ya S) = Uoo (y)
uniformly on compact subsets of RY. Consequently,

U (Y5 8) = Voo (¥),
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(3.10) 9 (y,8) = Uoo(y) in L2(RN x (0,1)).

We want to show further that (3.6) holds. Since L? is a Hilbert space,
we only need to check that

(3.11)
/ p(y)73 (y,0) dy = / PPy, s5)dy = | p(y)o%(y) dy.
RN RN RN
Note that (3.10) implies
(3.12) / / ) — o2 (y)p(y) dy as j — oo.
RN RN

Hence the proof of (3.11) reduces to the following estimate:

‘/RN P)5*(y, 55) —/1 /RN p(y)5(y, 5) dy ds
// )|} (v, 5) = 3 (4,0)| dy ds
/ /RN / 2030 yvts)sdt‘ (y) dy ds
/ </ [ ows yvts)dydt>1/2
</ / y’ts)dydt>1/2ds
e/ /RN s d) "0 i

by (3.4). To summarize, we have established:

Lemma 3.5. For any sequence s; — 0o, there exists a subsequence
(again labeled as sj) such that

(Y, 85+ 8) = Voo (y) in L2(RN)
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and in C*(K) for any compact subset K C RN. Moreover, is
solves (3.5) and therefore belongs to the eigenspace corresponding to
the eigenvalue Ay = 0. In particular,

k2
Voo = E viHo ;
i—1

for some constants v;, i =1,... ,ko.
Now we are ready to study the large time behavior of v(y,s). We
begin wtih the case that ||v(-, s)|| decays exponentially, i.e.,
(3.13) P(s) < Ce™**®
for some £ > 0.
Theorem 3.6. Assume that (3.13) holds. Then either ¢ = 0 or

there exists an m > 3 and constants C;, i = 1,... ,k,,, not all zero,
such that

km
[lv(,s) — ZCie(lim/z)sHm,iHH; _ 0(6(17m/2)s).

i=1

The proof given in [12] for the one-dimensional case works here with
some trivial changes; hence, the details are omitted.

If 9 (s) does not decay exponentially, then we know that there exist
three possibilities (2.7)—(2.9).

Theorem 3.7. The case (2.9) cannot occur.

Proof. Let V = Efil a%yi. We need to distinguish two types of
Hermite polynomials of degree 2:

2
H27i:CQyjyl, z:N+1,,k2,]7él,1§_7,l§N

1
HQ,iZCI(—yZ'21>, i=1,...,N,
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For any fixed ¢« < N, assume that Hs ;) = cayiy1, ..., Hajiy4n—1 =
c2y;yn. Using Theoem 2.3, we can easily check that
(3.14)
d J(@)+N-1
Eag,i = lllagﬂ» + Z 1/2710,371 + hi, 1=1,...,N
1=5(1)
(3.15)

——a2; :Zyj,lag,ja2,1+hi, i=N+1,... ko
J#l

k _
where hy = o(};2, a3;), v1 = p(28°) “(H3,,Ha1), vy and vj; are
computable constants. Hence

—V =2 a2, —5-0a2; > —C< ag,i> + h
(3.16) ds o ds i—1
=-CV3¥? ¢h

where h = o(V?3/2). Integrating (3.16), we get

1 1 -
_ > _
PGy * G 2 O [ )i
or
1 1 o\ 1 [%-
17 - >_cf1-%) 42
(8:17) sV1/2(s) * sV1/2(sg) — C( s > s /50 W) dr

where i(7) — 0 as 7 — oco.

If (2.9) happens, there exists a sequence s; — oo such that s;¢(s;) —
0. Since V'/2(s) < 9(s), we also have that s;V/2(s;) — 0. Setting
s = s; in (3.17) and letting j — oo, we obtain a contradiction. The
proof is complete.

4. The radial case. Throughout this section, we shall assume
that u(x,t) is a radial solution of (1.1)—(1.2); hence, w(y, s) and v(y, s)
are all radial functions. We have shown that (2.9) cannot occur in
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Section 3. If v(y, s) is a radial function, we shall also show that (2.7)
cannot happen.

By Lemma 3.5, for any sequence s; — oo, there exists a subsequence
(again labeled as s;) such that:

(4.1) (Y, 55) = U (y) = Z'Yin,i(y)'

As we did in Section 3, we divide Hs ; into two sets: Hy; = ¢1(271y? —
1)7l:1a 7N; H2,i :C2yjyl7i:N+17"' 7k27.j7él7 1 S]a l SN
Since 9(y, s;) is a radial function, so is 7o (y). It follows that

(4.2) M= =N, INHFL= =Yk, =0

Lemma 4.1. There holds

bzﬂ-(s):%(s)—)O as s — oo, i=N+1,... ko

n(s)

Proof. Suppose that by ;,(s;) > ¢ > 0 for some s; — 0o, N+1 < iy <
ky. Then there exists a subsequence (again labeled as s;) such that

5(y, 57) = oo (y) = 7 Xivy Hai(y) by (4.2). Hence (i(y,s;), Hai,) —
(Voos Ha,iy) = 0, 1.€., b2 ;,(s;) — 0, a contradiction. O

Next we shall remove the possibility (2.7).
Lemma 4.2. The case (2.7) cannot occur.

Proof. Assume that (2.7) is the case, i.e., limsup si(s) = co. By
Lemma 2.4 (ii), there exists a sequence s; — 0o, such that

(4.3) 90 s5)1l = ¥ (s5)/m(s5) = ¢ > 0.

On the other hand, we have lim,_, o, sp(s) = oo because of Lemma 2.4
(iii). Therefore,

lim s;4(s;) = oo.

J*)OO
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By Theorem 2.2,

ko 1/2
(4.4) ]15{.10 s < Zl a;i(sj)> = oo.

For this sequence s; — 0o, we can find a subsequence (again labeled as
s;) such that

(4.5) (Y, 55) = Too(y) =7 Z Hyi(y)  in L)(RY)

where 7 # 0 because of (4.3). Furthermore, it follows from (4.5) that

a2,i(s5) ,
4.6 bai(s;) = — =5 #£0, i1=1,...,N,
( ) 2 (J) //’(Sj)
(4.7) boi(sj) = L(Sj)—m, i=N+1,... ks
1(s5)

as j — oo. In particular,

k
ZiiN+1 a‘%,i(sj)

4.8
(48) Zfil a%,i(sj)

-0 as j — oo.

By (4.4) and (4.8),
N 1/2
(4.9) S; < Z a;i(sj)) — 4o00.
i=1
It follows from (4.6) and (4.9) that

(4.10) s — 00 as j — oo.

N
> asils))
i=1
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We now take up an approach already used in Theorem 3.7. Let
V =" as; By (3.14),

av N

i>N

N 2
ZE(Zam) +h=ecV2+h
i=1

for some ¢ > 0 where h = o(32N, a3;) = o(V?). Integrating (4.11)
yields

(4.11)

1

(4.12) —m + ﬁ

>e(s—sg) —+—/sg(t)dt

S0

where g(s) — 0 as s — 0o. Setting s = s; in (4.12) and letting j — oo,
we get a contradiction because of (4.10).

Combining Theorem 3.7 with Lemma 4.2, we conclude that if 9 (s)
does not decay exponentially, only (2.8) is possible. Next, we want to
obtain the exact behavior of as ;(s) as s - 00, i =1,... ,N. We begin
with the following lemma.

Lemma 4.3. Assume (2.8). There exists a 6 > 0, L > 0, such that

3,4(5)

a
6§NL§1 fgranysE(L,oo)’ i1=1,...,N.

2t a%,i(s)

Proof. Suppose for some s; — 0o, 1 < iy < N, we have
a%,ig (Sj)
N
Zi:l a%,i(sj)
From (2.8), it follows that sjas;,(s;) — 0 as j — oo. On the other

hand, by Lemma 3.5, there exists a subsequence (again labeled as s;),
such that 9(y, s;) = 900 (y) Where o, # 0 because of (2.8). Therefore,

-0 as j — o0.

N

(y,s;) = sjv(y,8;) = vy Haily)  inL2.
=1
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This, in turn, implies
502, (s5) = 7 # 0,

a contradiction. O
Using Lemma 4.1 and Lemma 4.3, we can rewrite (3.14) as

d
(413) Eagﬂ' = I/1(L§7i + O(ag7i)a i1=1,...,N.

Integrating (4.13), we find that

1 1 s
— + =vi(s—so)+ [ hi(t)dt, i=1,...,N
az,i(s)  az,i(so) 1(s=50) /SO ®)

where h;(s) — 0 as s — co. Therefore,

1
(4.14) lim saz;(s) = ——, 1=1,...,N.

S§—00 Ijl

Combining (2.5), (4.8) and (4.14), we conclude that

k2

v(y, 5) :Zaz,i(S)Hz,i(y)+ D asi(s)Hai(y)

i=N+1

km
+ Z Z am,iHm,i (y)

(4.15) m£2 i=1

N
1 1

=—-— E HZ,i(y)+0<—>
ns s

NBP (1, ., 1
= — R -1 _
2ps <2N v to s
where the convergence takes place in Li. From Lemma 3.5, it follows
that the convergence also takes place in CZ ..

To finish the proof of Theorem 1.1, we need to extend the convergence
in (4.15) to H;, whichis required in the proof of Theorem 1.2. We begin
with a lemma.
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Lemma 4.4. Suppose H,, and H, are two different Hermaite poly-
nomials. Then

0 0
4.16 9 H, L H,)=0
(4.16) <3yj Oy; >
6 m 1/2
4.1 — H |l=(= .
(4.17) Hé)yj mH <2> or 0

Proof. Without loss of generality, assume that H,, = hy,, (y1)---
hm;(yi), m1 + -+ -+ m; =m, and y; = y;. Note that h,,, satisfies

41 pro Yy Ty,
(4.18) mi = hm t 5 =0

We compute

o

2
0 0
9 _ Z (humy -+ b, ) Him
Oy /RN P ou ( )6y1

0 0
= 2 p L by hm, | Him
/RN Oy (p Oy >

U

02 >
- by | H (by (4.18
[ o5 (by (418)

my mi
-5 M@=3— (by (4.18)).
RN

Similarly, one can check (4.16). Set

N ks 1 b
v — E agHo; = g azHo; + E E A i Hy i
i=1

1=N+1 m=0 ;=1
(419) oo km
+ Z Zam,iHm,i
m=3 i=1

£ L+ 1L+
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We proceed to estimate various terms as follows:

k2
1Ll = ) agl|VHzll
i=N—+1
<C Z las,i(s |—o<l>
S
i=N—+1

where the last equality follows from (4.8) and (4.14). I3 can be dealt
with similarly. To estimate I3, a different approach is needed. For any
fixed R > 0, we can write

(4.20) v(y,s) = SL(R)v(y,s — R / Sp(s —=7)f(v(-,7))dr

where Sy is the semigroup generated by L on Lﬁ. Since f(v) =
Zm OZZ 1<f( )7 mz>Hmz,Wehave

(4.21)

Comparing (4.19) with (4.21), we find that
I3 = Jo + Js.
Let us estimate the H; norm of Jy and J3. By Lemma 4.4,

0o km 1/2
(1 m/2)R
CAITED D) SIMICES.E (1+3) "

m=3
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We can easily check that

(4.22) Ep < CmN 71,
Consequently,

o km m 1/2 , oo km 1/2
el < (3 Z<1+5>62(1""/2)R> ( z azn,xs—R))
m=3 i=1 m=3 i=1

0 1/2
< C( ZmNe2(1_’"/2)R> ,s—R)— agl R)H, ;||.
m=3
But -
ZmNez(l m/2)R RZ Ne=if < O < oo,
7=0

we conclude that

12|l < C|v

E as;(s — R)Ha;

f2)

The estimate of J3 is more involved. First we note that f(s) < Cs?;
hence, ||f(v(-, 8))|| < Cs~2. We shall next estimate the “||-||” norm of
J3:

dr

RE \221’“/2(5 ) (0)s o) H

m=3 i=1

2 / iR o(r) dr.

g(7) can be estimated as follows:

o= [ | (ZZ (om0 1 o), Hm,i>Hm,i)2dy} v

m=3 i=1

0  km 1/2
= 33 etmaen H. )2 72
( € <f(’l)), WL,Z> /RN p m,z>

m=3 i=1
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(recall s — 7 > 0)

m=3 i=1
1
<[f)l £ C=.
-
It follows that
(4.23) ||J3]| < C/s”.

We have thus proved that ||J5(s)|| = o(1/s). Observe that J3 solves

a=he- ¥ Vatay <f(v) ety <f(v),Hm,i>Hm,,->
£ Lz + h(y,s) m:om
where
(4.24) (G 9)Il < [If ()] < C/s.

Using Lemma 2.6, we obtain
(4.25)

R||VJ3(',5)|2§C(R+Rz+€2mR)<||J3(',SR)||2+/ ||h(',T)||2dT>
s—R

for any fixed R > 0. The conclusion that ||J3(s)|[m2 = o(1/s) follows
from (4.23)—(4.25).

We summarize:

Theorem 4.5. If ¥(s) does not decay exponentially, then (4.15)

holds, where convergence takes place in H; as well as in C{, .

Theorem 1.1 now follows from Theorem 3.6 and Theorem 4.6. The
argument in [12] can then be used to prove Theorem 1.2. We only
need to notice that if S(t) is the semigroup associated with the heat
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operator, and if v(y,s) = Y > . ami(5)Hm,i(y), then Siv(y,s) =
S S ami(s) (1 =)™/ 2H,, i(y/(1 — t)*/?). The details are omitted.

5. The case N = 2. In the case N = 2, if we can exclude (2.7),
then Theorem 1.4 will be proven since we can argue as in Section 4 to
prove (1.13).

Let us write Hy1 = ¢1(27'yf — 1), Hap = c1(27'y3 — 1), Ha3 =
c2y1y2- In Section 4, we proved that

(5.1) <§;a2,i>l > s(iai,) (L+0o(1)).

Although we assumed solutions were radial in Section 4, the proof there
applies to the general case without any changes. In the case N = 2,
(5.1) reads

(5.2) <ga2,i>l > s(gc@i)(wo(l)) > 0.

Since ||v(+, s)|| = 0 as s — oo, we see that az1(s) + az2(s) — 0, and
hence,

(53) az1+aze < 0.

If (2.7) happens, as we showed before, there exists s; — 0o, such that

3
(5.4) (Y, 85) = Too(y) = Z%’Hz,i

where the convergence takes place in L2(RY) (see (4.5)), and
(5.5) s;9(s;) —= oo.
If we can show there exists another sequence 7; such that

(5.6) Tjlaz,1(7;) + az2(7;)| = oo,
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then we will get a contradiction to (5.2) as in proving Lemma 4.2. Hence
the proof of the fact that (2.7) cannot occur reduces to the construction
of 7;. We begin with a lemma.

Lemma 5.1. There holds
(5.7) az,1 + az2|(s) > |az3|(s)

for s sufficiently large.

Proof. The as ;’s satisfy

d 1

(5.8) %am = Vla§,1 + 5'/103,3 + h1,
d 1

(5.9) %am = Vla%g + 5'/103,3 + ha,
d

(5.10) TsM2s =1 (a21 + az,2)az,s + hs

where h; = o(a3, + a3, + a3 ), i = 1,2,3. Multiplying (5.10) by
sgnaz 3, then adding (5.8) and (5.9) to it, we get

(a21 +azz2 + lags]) > vi(a3; + a3, + a3 5)
3
—vi|(az1 + azp)ass| — > |

i—1
3
2 5(“%,1 + 03,2 + a%,s) - Z |hi| >0
i=1

for s sufficiently large. Since as 1 + a22 + |az,3| = 0 as s — oo, we see
that

(5.11) az,1 +az2 + |azs| <0

and (5.7) follows.
By Lemma 5.1 and (5.5),

(5.12) 5j(a3,1(55) + a3 5(s7)) /> = oo.
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Let us begin the proof of the existence of 7; — oo such that (5.6)
holds. Three cases can occur:

(i) 7172 =0. Let 7; = s; and (5.6) follows from (5.12).

(ii) 7172 > 0. In this case as,1(s;) and a2 2(s;) have the same sign
when j is sufficiently large. We can again let 7; = s;, and (5.6) follows
from (5.12).

(iii) 172 < 0. Without loss of generality, assume that v; > 0 and
72 < 0. Then az1(s;) > 0 and a22(s;) < 0 for j sufficiently large.
From (5.4) and (5.12), it follows that

(5.13) Sjag’l(Sj) — 00,

(5.14) sjlaza(sj)] = oo

as j — oo. Using the fact that as1(s;)/p(s;) = 1, az,2(s;)/p(s;) —
72, we obtain that

az,1(s;)

>c>0.
(a3 1(s5) + a3 5(s5))*/2

Consequently,
alz,l(sj) >0 (recall (5.8))

for j sufficiently large. Since as1(s) — 0 as s — oo, there exists an
so > s; such that a5 ;(sp) = 0. Let

7j =inf{s > s; : a5 ,(s) = 0}.
Since a5 ;(s) > 0 on (sj, 7;), we have
(515) a2,1(Tj) > a271(8j) > 0.

From (5.15) and (5.3), it follows that as2(7;) # 0. This assertion,
combining with the facts that a5 ;(7;) = 0 and (5.8), gives us that

(5.16)  a3.(7)) + a3 5(75) = o(a3 1 (75) + a3 (7)) = 0(a3 2(7;))-
From (5.15) and (5.16), we conclude

Tjlaz1(7j) +az,2(7j)| > Tja2,1(75) > sjaz1(sj) 00 asj— oo
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by (5.13). i
We summarize
Theorem 5.2. In the case N =2, (2.7) cannot occur.
Theorem 1.4 now follows from Theorem 3.6 and Theorem 5.2.

Having established Theorem 1.4, we can argue as in [12] to prove
Corollary 1.5. Indeed, all we need to prove (1.14) in that argument is

(5.17) kzzaz,i(S)Hz,i<W> = _log(g—t) - 0(1og(;—t)>

i=1

and (5.17) follows from (1.13).

Acknowledgment. The author wishes to thank Professor A. Fried-
man for his guidance and encouragement in the course of this work. The
author also thanks the referee for his careful reading of the manuscript
and his suggestions which greatly enhance the exposition of the paper.

REFERENCES

1. J. Bebernes, D. Eberly, A description of self similar blow up for dimension
n > 3, Ann. Inst. H. Poincare Analyse Nonlineaire 5 (1988), 1-22.

2. X.Y. Chen, H. Matano and L. Veron, Anisotropic singularities of solutions of
nonlinear elliptic equations in R?, J. Funct. Anal. 83 (1989), 50-93.

3. S. Fillipas, Center manifold analysis for a semilinear parabolic equation arising
in the study of the blowup of uy = Au + uP, Ph.D. thesis, Courant Institute, New
York University, 1990.

4. A. Friedman, Blow-up of solutions of nonlinear heat and wave equations, in
Asymptotic analysis and numerical solutions of partial differential equations, to be
published by Marcel Dekker.

5. A. Friedman and J.B. McLeod, Blow-up of positive solutions of semilinear
heat equations, Indiana Univ. Math. J. 34 (1985), 425-447.

6. H. Fujita, On the blowing-up of solutions of the Cauchy problem for us =
Au +u'te J. Fac. Sci. Univ. of Tokyo, Section I, 13 (1966), 109-124.

7. V.A. Galaktionov and S.A. Posashkov, The equation ut = ugz + uﬁ, Local-
isation and asymptotic behavior of unbounded solutions, Preprint no. 97, Keldysh
Institute of Applied Math., Moscow, 1985 (in Russian).



SEMILINEAR HEAT EQUATIONS 1319

8. V.A. Galaktionov and S.A. Posashkov, Applications of a new comparison
theorem to the study of unbounded solutions of nonlinear parabolic equations, Differ.

Uranven 22 (1986), 1165-1173.

9. Y. Giga and R. Kohn, Asymptotically self similar blowup of semilinear heat
equations, Comm. Pure Appl. Math. 38 (1985), 297-319.

10. Y. Giga and R. Kohn, Characterizing blow up using similarity variables,
Indiana Univ. Math. J. 36 (1987), 1-40.

11. Y. Giga and R. Kohn, Nondegeneracy of blowup for semilinear heat equations,
Comm. Pure Appl. Math. 42 (1989), 297-319.

12. M.A. Herrero and J.J.L. Veldzquez, Blow-up behavior of semilinear parabolic
equations, Ann. Inst. H. Poincare Analyse Nonlineaire, to appear.

13. O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Ural’ceva, “Linear and quasi-
linear equations of parabolic type,” Amer. Math. Soc. Transl., American Mathe-
matical Society, Providence, RI (1968).

14. W. Liu, The blowup rate of solutions of semilinear heat equations, J. Differ.
Equations 77 (1989), 104-122.

DEPARTMENT OF MATHEMATICAL SCIENCES, LOYOLA UNIVERSITY CHICAGO,
CHuicaco, IL 60626



