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EXTENDED SPECTRAL RADIUS
IN TOPOLOGICAL ALGEBRAS

H. ARIZMENDI AND K. JAROSZ

0. Introduction. In this note we discuss several definitions of
spectral radius in locally convex topological algebras as introduced
by Zelazko [5]. In particular, we present what is known about the
equivalence or nonequivalence of these definitions in various classes of
algebras. Some of these relations were already proven by Zelazko [5],
some others are more recent [1, 2, 3], and some are new.

Spectral radius is one of the most important features of the Banach
algebras theory. For an z in a commutative, complex Banach algebra
A with unit e, we have many equivalent definitions:

R(z) = lim /"]
R(z) = sup{|A| :  — Xe is not invertible},
R(z) = sup{|F(z)| : F is a linear and multiplicative functional},

R(z) = inf{r : if the radius of convergence of Z ap A" is r

n=0

oo
then Z a,x" converges in A}

n=0

and a number of others. Most of these definitions can be used to extend
the notation of spectral radius to more general topological algebras;
however, the extended definitions are no longer equivalent. In the next
sections we discuss the relations between them.

1. Definitions and notation. A locally convex algebra A is a
topological Hausdorff algebra which is a locally convex space. The
topology on such an algebra can be introduced by a family {|| - ||o},
a € A, of seminorms such that, for any « there is a 8 such that

(1) lzylla < llllsllylls,
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for all =,y € A.

A locally convex metrizable and complete algebra is called a By-
algebra. In a By-algebra A the topology can be introduced by a

sequence (|| -1]];), 4 =1,2,... of seminorms satisfying
(2) [zl < [l2flita

and

(3) lzylli < ll2llitallylli+a

for i =1,2,... and for all z,y € A.

If, for a locally convex algebra .4, condition (1) can be replaced by

(4) |zylle < [l]allylla

for all z,y € A and all a € A, then we call A locally multiplicatively
convex (shortly m-convex).

Here are some simple examples of locally convex algebras:

Example 1.1. The algebra &£ of all entire functions of one complex
variable with the pointwise operations and seminorms || ||, defined by

£l = max | £(2)

is an m-convex By-algebra.

Example 1.2. Let L be the set of all measurable functions (or
rather equivalence classes) on the unit interval (0, 1) such that

1 1/n
1]l = (/ If(t)l”dt> < oo,

n = 1,2,.... By the Schwartz inequality, L“ is a By-algebra under
pointwise operations. It is not m-convex.

Example 1.3. Let (ay%), v € I, 0 < k < oo be an infinite matrix
of positive real numbers. Assume that for every v € T" there is 4/ € T
such that

(5) Oy k41 S Qnr |+ Qyl ] for all k,l



SPECTRAL RADIUS IN TOPOLOGICAL ALGEBRAS 1181

The matrix algebra A(a. ;) associated with the matrix (c. k) is the
algebra of all formal complex power series © = Z;ozo zt* such that

o0
||zlly = Zo‘%km’k‘ < 0.
k=0

By (5), A(a, k) is an algebra under Cauchy multiplication. If I' = N,
A(an,i) is a By-algebra and if 4/ = «y in (5), it is m-convex.

The matrix algebra defined above will provide us later with a number
of counterexamples.

We now give generalizations of the concepts of spectrum and spectral
radius.

Definition 1.4. Let A be a complete complex locally convex algebra
with a unit e. For an € A the extended spectrum of z is defined as

Y(z) = o(z) Uoy(z) Uow (),
where

o(z) = {X € C:z — Xe is not invertible in A},
oa(z) ={ € C:t — R(t,z) = (te — ac)fl is discontinuous at t = A},

and
{ @ ift — R(1,tx) is continuous at t =0
Too(T) =

oo otherwise.

The extended spectral radius of x is defined as
R(z) = sup{|\| : X € X(x)}.
If A is a commutative complete complex m-convex algebra, then

Y(z) = o(x).

In [1] Zelazko proposed several alternative definitions of spectral
radius in locally convex topological algebras. It is well known that
all of them coincide for complex commutative Banach algebras.
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Definition 1.5. Let A be a locally convex unital algebra, and let A
be a family of continuous seminorms satisfying (1). For any z € A, we
define

(a) ri(z) = suR limsup v/||z"||
ac n
(b)

ro(x) = sup { limsup v/||z"|| : || - || is a continuous seminorm on A}.

(c) r3(z) = sup limsup V/|f(z")],
feA* n
where A* is the set of all continuous functionals on .A.

(d) ra(z) = sup |[f(z)],
fem(A)

where 9(.A) is the set of all linear and multiplicative functionals on A.

(e) rs(z) =inf{r : z — Ae € G(A) for all |A| > r},

(f)

re(z) = inf{0<r <oo: there is a sequence of complex numbers ()

oo
such that the radius of convergence of Z ap A" is T

n=0
o0
and E an,z™ converges in .A}.

n=0

(8)

r7(z) = inf {O <r < oo: for any sequence of complex numbers (o)

o0
such that the radius of convergence of Z a, A" is 7,

n=0

o0
E a,x" converges in A}.

n=0
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(h)
T«(z) = sup { liminf 3/||z”|| : || - || is a continuous seminorm on .A}.
n

It is easy to notice that ri(-) and r2(-) coincide for any locally convex
topological algebra. On the other hand, definitions (d) and (e), though
formally correct, can be meaningless in general as M (A) can be empty
(we assume here that sup@ = —o0), see also the examples given in
[1]. The following three theorems describe what we know about the
relations between the spectral radii in various classes of algebras.

Theorem 1.6 [1]. Let A be a complez, unital, commutative, complete
m-convex algebra. Then, for any x € A, we have

ri(z) = ra(z) = r3(x) = ra(z) = r5(x) = rg(z) = r7(z) = ro (o).

Theorem 1.7. Let A be a By-algebra. Then, for any x € A we have

ri(z) = ra(z) = ra3(z) = re(x) > re(z) = ri(z) > ra(x).

We prove rg(x) = ri(z) in Section 3, where we also give an example
showing that the inequality r7(z) > 7¢(z) can be strict. The remaining
part of the theorem follows from a more general one.

Theorem 1.8. Let A be a complex, unital, commutative, complete
locally convex algebra. Then, for any x € A, we have

ri(z) = ra(z) = ra3(z) = re(x) > re(z) > ri() > ra(a).

The first equation is trivial, the next two were proven by Zelazko [1],
r7(z) > rg(x) is obvious, r¢(z) > r.(z) was proven in [2], and the last
one is an easy exercise. We will prove that the last three inequalities
can be strict in general. However, there is an interesting class of locally
convex, but not m-convex algebras, namely, the ®-algebras defined by
S. El-Helaly and T. Husain in [4], for which all the equalities from
Theorem 1.6 hold true [3]. We discuss this in the next section.
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2. Algebras with orthogonal basis and ®-algebras. An algebra
with orthogonal basis (e,)32; is a topological algebra A with the
Schauder basis (e,)%; such that enen, = dpmen for all n,m € N,
where 0,,,, is the Kronecker symbol. Since each x € A can be written
as & = »_ .-, A\ye, for a unique scalar sequence (\,), it follows that
for each n € N, the functional e}, : © — A, is linear continuous and

*

multiplicative, so = > - e*(z) - e,. It can be easily proven that

there is no other continuous nonzero linear multiplicative functional on
A [1].

A simple example of a topological algebra with an orthogonal basis is
the algebra of all complex sequences with pointwise algebraic operations
and the topology of pointwise convergence; we denote it by s. For any
topological algebra A with orthogonal basis there is a natural algebra
isomorphism from A4 into s defined by = — & € s, where Z(n) = e} (z),
n € N.

We define now a special class of topological algebras with orthogonal
basis [4].

Let @ be a family of nonnegative functions on N satisfying the
following conditions:

i) For each n € N, there exists a ¢ € ® such that

¢(n) # 0,

and

ii) For each ¢ € @, there exists a 1 € ® such that
p(n) < ¥*(n) for all n € N.

The collection of all such families of functions will be denoted by F.

For any ® in § we define a subalgebra s(®) of s, by

5(®) ={a = (a(n)) € 5 : [[alls = sup |a(n)(n)] < oo

and lim |a(n)|¢(n) =0 for all ¢ € ®}.

n—oo

We say that ®, ¥ € § are equivalent if s(®) = s(¥). By ®-algebra we
mean any topological algebra isomorphic with s(®) for some ® in §. It
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is easy to check that a ®-algebra is complete and locally convex. It has
aunit e = Y 7 jer = (1,1,1,...) if and only if each sequence from ®
is convergent to 0; in this case, it contains all bounded sequences.

Example 2.1. Let ® be the set of all complex valued functions ¢(n)
defined on N such that

(6) 0<¢(n)<1 foralln e N
and
(7) nl;ngo ¢(n) =0.

It is clear that the elements of ® satisfy i) and ii). We show that the
algebra s(®) coincides with the algebra [*° of all bounded sequences;
however, the topology on s(®) is different from the sup topology of
[°. The algebra s(®) is separable while [*°, with sup norm, is not.
Clearly, all bounded sequences are in s(®). Assume that s(®) contains
an unbounded sequence xy. We define ¢ by

¢(n) = min(1, (max{|zo(k)| : k < n})"?).

It is easy to check that ¢ € ® and that ||z||, = oo, which leads to a
contradiction.

In [4], S. El-Helay and T. Husain asked if any complete locally convex
algebra with orthogonal basis and a unit is a ®-algebra. The following
example gives a negative answer.

Example 2.2. Let ¥ be the set of all nonnegative, decreasing
functions ¢ on N such that lim,,_, . ¢¥(n) = 0. Let

A= {a: = (z(n)): 2z(0) =0 and
lzlly =D lz(n+ 1) — z(n)[th(n) < co, for all ¢ € @}.
n=0

We show that A with pointwise operations is a locally convex com-
plete algebra with a unit e = (0,1,1,...). We need to prove that, for
every ¥ € U there exists a ¢ € ¥ such that, for some K > 0,

|z - ylly < Kl[zllp - lyllg,  forall z,y € A



1186 H. ARIZMENDI AND K. JAROSZ

Let ¢ € U. We have
nmmm=§?umem+n—mmmmwwm
s§2mm+n—xmﬂ-mmwwm
+§§mm+n«wm+n—ym»wm>

Now, let ¢ € ¥ be such that ¢(n) > 1(n). Since ¢ is decreasing and
y(0) = 0, we have

ly(n)|é(n sﬁj G+1) 50| - oln }ng+4 )~ y(i)l - 605)

<

y(G+1) —y()]- @) = llylle

M8 H

~.
Il
=)

Similarly,
|z(n +1)|¢(n Z (G +1) =z()]- 60) = llzllo-

Hence, from (8), we get

oo

|z - ylly Z +1) —z(n)] - y(n)] - ¢(n)

+Z|¢ y(n+1) —y(n)| - lz(n +1)[ - [¢(n)|

< llzllg - llylle +lllly - llylle = 2llzlls - llylls-

Therefore, A is a locally convex algebra with an orthogonal basis
consisting of vectors e, = (0,0,...,1,0,...). It is easy to check that
it is complete. We observe that A is not a ®-algebra since it does
not contain all bounded sequences, which are present in every s(®).
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For example, the sequence (0,1,—1,1,—1,...) is not in A. It is easy
to observe that A contains precisely all convergent complex sequences
whose first term is 0. We do not know if all the spectral radii listed
in Theorem 1.6 are equal for any algebra with orthogonal basis; we
observe that they are equal for a smaller class of ®-algebras.

Proposition 2.3. Let A = s(®) be a ®-algebra. Then for any x € A
we have

Proof. Let x = (z(n)) € s(®). Then

v llzk[lg = {sup{|é(n)a*(n)| : n € N}/*
= sup{¢(n)"/*|z(n)| : n € N}
< sup{p(n)/* : n € N} -sup{|2(n)| : n € N}.
Since, for all ¢ € @, sup{|¢(n)|: n € N} < oo, we get

ro(z) = limksup v/ lzF||g < sup{Z(n)|:n e N} =ra(z),

hence r2(z) < r4(z) and Theorem 1.7 gives the Proposition. O
3. The extended spectral radius in By-algebras.

Theorem 3.1. Let (A, (||-]]n)) be a complex By-algebra with a unit,
then
re(z) = r(z) for all z € A.

Proof. Let z € A. We prove that 7.(z) < rg(x); the proof works for
any complex, unital locally convex algebra. The statement is obvious if
re(2) = 00 so assume that rg(z) < oo and let » > r¢(z). Hence, there
exists a series > -, b,z™ convergent in A, with b, € C, and such that

1/r = limsup ¥/ |bn|.
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So, for any continuous seminorm || - ||, we have
1 > limsup +/|[bn"[;
n

therefore,

1> (1/r) liminf {/||z"||

and
r > liminf {/||z7||.
n
Hence, r.(z) < r¢(x).

It remains to prove that rg(z) < r.(z); as before, we can assume that
r«(xz) < oo. Since A is a Byp-algebra and the topology on A is given
by a countable family of seminorms, we can find two strictly increasing
sequences (ip) and (n,) of positive integers such that

lim ( "ﬁ/Hx”PHip) = ro(z).

The radius of convergence of the series Y72, |[z"#|[;, A" is 1/r.(z).
Let 0 < b < 1/r.(z). Then the series Z;c’:l ||z™#]|;,b" is convergent
and, since (|| - [|;,) is an increasing sequence of seminorms on A, it
follows that 3 7 ||z"»||;b"» is convergent for all i € N. The radius of

convergence of 3777 | b"? A" is 1/bso 1/b > r¢(x), and, since b was any
real number such that 0 < b < 1/7.(z), we get rg(z) < ri(x). O

We now prove that r7(-) and rg(-) may not be equal for a By-algebra.

Theorem 3.2. There is a By-algebra A such that, for any 0 < a <
B < oo, there is an x in A such that r7(z) = B and r¢(z) = a.

Proof. First we prove a lemma.

Lemma. Let (a(n))>2, be a sequence of real numbers such that

(9) a(0) =0,

(10) a(n) <a(n+1) <a(n)+1,
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(11) limsup a(n)/n =1,
and
(12) liminf a(pn)/n=0  for any p € N.

oo
n=0

Then there exists a sequence (8(n))nry satisfying relations (9) to (12)

and

(13) a(n+m) < B(n) + B(m) for allm,m =0,1,....

Proof of the Lemma. We define 3(n) recursively.

B(n) = max{a(n),a(n+1) — 5(1),...,
a(n+ (n—1)) = B(n—1),a(2n)/2}.

Assume n < m, then (13) is an immediate consequence of the
definition of S(m).

We prove (10). The inequality S(n+1) > S(n) is obvious. It remains
to show that B(n+ 1) < B(n) + 1. Assume that

B(n) > B(n—1)+2.
Hence, by the definition of S(n) we have 28(n) > «a(2n) and
(14) aln+j)—pBG) = Bn-1)+2, for some j=0,... ,n—1,
or
(15) a(2n) >2-B(n—1)+4> a(2n —2) + 4.
On the other hand we also have a(n +j) < a(n —1+j)+1 <

1
B(n — 1) + B8(j) + 1, which shows that (14) is not possible, and (15)
contradicts (10). This contradiction proves that 3 satisfies (10).
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Since 3 satisfies (10), we have (n) < n; we also have a(n) < B(n),
so (3 satisfies (11).

To prove that 3(n) satisfies (12), fix ¢ > 0. Let p be a positive
integer. Since o satisfies (12) for 2p, for any positive integer ng there
is an integer n > ng such that a(2pn) < en. By the definition of 3(n),
B(m) < a(2m) so B(pn) < en, and this proves (12) for 5 and ends the
proof of the lemma. i

We now construct an example of a matrix algebra A, = A(ay,,,) of
the formal power series of ¢ such that 1 = rg(t) < r7(t) = a < oo.

Let (a1(n))s, be any sequence which satisfies the relations (9) to
(12); for example, it can be defined by a;(0) = 0 and

a;(n) if (2k)! <n < (2k+1)!,

ar(n+1) = {al(n) +1 if (2k+1)! <n < (2k)

Then, let (a2(n))22, be the sequence given by the Lemma for o = ay;
further, (a3(n))5, is the sequence given by the Lemma for o = ag, ...,
etc.

Fix a > 1, and put
ozpyn:a“"(”) p=12,..., n=0,1,....

Let A, = A(ap,n), where A(a, ) is the matrix algebra defined in
Example 1.3, and let ¢ be the generator of 4,. We have

[1t"[lp = ap,ns p=12,..., n=0,1,....
Hence, from (11) and (12), we get

ro(t) = sup{limsup(a, ,)*/"} = sup{limsup a®*™/"} = q,
p n §4 n

and

74 (t) = sup{liminf(a, ,)*/™} = sup{liminf a® ™/} = a® = 1.
P n p n

By Theorems 1.8 and 3.1, we get 1 = rg(t) <a =r7(t) <oco. O
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Let 0 < a < 8 < o0, put a = /B, and let ¢ be the generator of the
algebra A, we have just constructed. Then r7(at) = 8 and r¢(at) = .
Now we employ a general method to construct a single By-algebra A
such that, for any 0 < a < 8 < oo there is an z in A such that
r7(z) = B and rg(z) = a.

Let 8 > 1 and put

B={x=(x1,2,...) € (Ag)N:

lelly = sup [[n- @ally < 000p = 1,2,... ).
neN

It is easy to check that B is a By-algebra. Let § be a free ultrafilter of
subsets of N. Put

G ={z=(21,22,...) EB:liénﬂn-:van:1,p:1,2,...}.

Recall that limg 7, = v means that, for any e > 0, {n: |y —v,| < e} €
§. G is anideal of B and we can define Bg = B/G. Let ¢ be the generator
of the matrix algebra Ag, and let tg = [(t/n)7%;)]g € Bs be the coset
of the sequence (t/n)22,). We have r7(tg) = 8 and r¢(tg) = 0.

To end the construction, we let A be the [*°-direct sum of the
following family of By-algebras: {A,,Bs : a > 1,8 > 1}; this is an
element of A that is of the form {(z4,ys} : o, € As,ys € Bg,a >
1,8 > 1} and [{@a, s Hlp = sup{ll@allp | [yslly : 0 € Aoy ys € By,
a>1 8>1}

4. The extended spectral radius in locally convex algebras.
In this section we give an example of a locally convex algebra A such

that r6(') # T*(')‘

Theorem 4.1. There is a locally convex, complex, commutative,
topological algebra A such that, for any 0 < a < 8 < oo there is an x
in A such that r¢(z) = 8 and r.(x) = a.

Proof. Put A = {(2n+ 1)! : n € N}, and let § be a nonprime
ultrafilter of subsets of A. For any B € § we define a sequence ap(n)
of positive integers by ap(0) = 0 and
ag(k if 2n)! <k<(2n+1)! € B,
by~ {o) << 2n)
ap(k)+1 otherwise.
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For a B C A, we define B* by

B* =U{(2n!,(2n+2)!)NN: (2n+1)! € B}.

Lemma 1. For any B € §, we have

(16) ag(0) =0,
(17) ap(k) <ap(k+1)<ap(k)+1 keN,
(18) lim sup O‘Bk(k) — 1,
(19) liminf#:o, p=1,2,3,...,
(20) im 228
k¢B* k
k— o0

Moreover, for any By, By € §, we have

(21) ap,nB, > max(agp,,ap,)-

Proof of the Lemma. Formulas (16) and (17) are transparent, and
(18) follows from (20). We prove (19) and (20). Note that, for any
p € N, all but finitely many elements of B are of the form p- k, so (19)
will follow if we show that

ap (k)

(22) lim
keB
k— o0

=0.

Let (2n + 1)! € B. By the definition of ap and (17), we have
ap((2n + 1)) = ap((2n)!)) < (2n)!, so ag((2n + 1)!)/(2n + 1)! <
1/2n 4 1. This gives (22).

To show (20), let k ¢ B*. We may assume that k is big enough so
that (0,k)NB # &. Let n be the biggest integer such that (2n—1)! < &k
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and (2n —1)! € B. We have (2n — 1)! < (2n)! < k; by the definition of
ap, we get

ap(k) S ap((2n—1)!)+(k — (2n—1)!) >1 (2n—1)! 1
k.~ k - k - 2n

and this proves (20). o

Lemma 2. For any sequence o of real numbers which satisfies
conditions (17)—(21) of Lemma 1, there is a sequence B of real numbers
which also satisfies (17)—(21) and such that

a(n+m) < B(n) + B(m), n,m € N.

Proof. The proof follows the same line as the proof of the Lemma in
Theorem 3.2. u]

To end the proof of the theorem, fix a > 1. For any B € §, we define
a family Qg of sequences:

Qp = {(a®# ™), (a®BM)2 .1,

n=1»

where ok (n) = ap(n), (a%(n))22, is the sequence 3 given by Lemma

2, (a%(n))2, is the sequence 3 given by Lemma 2 for a = o, etc.
Put Q@ = UpezQp. The family Q satisfies (5) from Example 1.3 so
we can define the matrix algebra A, associated with Q. This is the
algebra of all formal power series f = X\,z", with the convolution

multiplication and such that, for any sequence a in 2, we have
(o)
1flla =D [Anl - a(n) < co.
n=0

By (19),
7o () = sup lim inf [|z*][Y/*) = 1.
a€q) n
We show that rg(xz) = a > 1. The inequality r¢(z) < a is obvious.
Assume that 7¢(z) < a. Let Ay be a sequence of complex numbers
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such that the series LApz* is convergent in A, and that the radius of
convergent of Y\,w”, w € C is less than a. Hence,

limsup |\ |Y* > ¢ > 1/a.
k
Put A = {k € N : [X\¢] > ¢*}. A is an infinite set. Let B € §

and assume that A\B* is infinite. We have limsup, H)\kmkH}B/k >

Clim oo [[Mea®|[)" > Climgens- [|2F][)/* = Ca > 1. This contra-
kEA|B*

dicts the convergence of ¥ \yz*. Hence, for any B € §, the set A\B*
is finite.

For any B € §, B* is a union of infinitely many disjoint segments
of integers, say B* = [; U, U I3 U.... Since A\B* is finite and A
is infinite, A must intersect with infinitely many segments from the
family Q = {I1,I5,Is,... }. Let’s divide Q into two disjoint families
@Q; and Q, such that A intersects with infinitely many segments from
both families. Put B; = ANUreg,I, i = 1,2. Since By UB; = A
and § is an ultrafilter, one of these two sets must be in §, say B; € 3,
then A\Bf 2 AN B3 so A\Bj is infinite. The contradiction proves that
r¢(z) = a.

For any a > 1, we have constructed a locally convex topological
algebra A, and z, € A such that r.(z,) = 1 and rg(xz,) = a. The
theorem now follows by the same general arguments as those at the
end of the proof of Theorem 3.2. ]
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