SURJECTIVITY RESULTS FOR COMPACT PERTURBATIONS OF STRONGLY MONOTONE OPERATORS IN BANACH SPACES

XINLONG WENG

ABSTRACT. The operator equation Au + Lu + cFu = h is studied in a Banach space X and its dual space. The operators L, F are compact and A is strongly monotone. Degree arguments are used to show the existence of solutions of the equation and extension of the results in $[\mathbf{2}, \mathbf{3}]$ are established.

1. Introduction. In the following, the symbols R and R_+ denote the sets $(-\infty, \infty)$ and $[0, \infty)$, respectively. X stands for a real Banach space having a Schauder basis $\{x_i\}$. Without loss of generality, we will assume that X is normed so that both X and X^* are locally uniformly convex and $||x_i|| = 1, i = 1, 2, 3, \ldots$. Referring to the book ([4, pages 25, 272]) there exists a constant $M \geq 1$, independent of n, such that

(1)
$$\left\| \sum_{i=1}^{n} a_i x_i \right\| \le M \left\| \sum_{i=1}^{\infty} a_i x_i \right\|, \qquad n = 1, 2, 3, \dots$$

and

(2)
$$\sup\{|\langle \Phi, x \rangle| : ||x|| \le 1, x \in E_k^{\perp}\} \to 0, \qquad k \to \infty$$

for each $\Phi \in X^*$. Here

$$E_k = \operatorname{span} \{x_1, x_2, \dots, x_k\}$$

and

$$E_k^{\perp} = \text{span}\{x_{k+1}, x_{k+2}, \dots\}.$$

Lemma 1. Let $L: X \to X^*$ be a compact mapping. Then

$$\lim_{k\to\infty}\sup\{|\langle Lf,f\rangle|:f\in E_k^\perp,||f||\leq 1\}=0.$$

Copyright ©1994 Rocky Mountain Mathematics Consortium

Received by the editors on November 25, 1990, and in revised form on October 5, 1991.

Proof. Since L is compact, the set $\{Lf: ||f|| \leq 1\}$ is totally bounded, i.e., for all $\varepsilon > 0$, there exists a finite ε -net $\{\Phi_1, \Phi_2, \ldots, \Phi_n\} \subset X^*$. By (2), for $\varepsilon > 0$, there exists a number k_0 such that

$$\sup\{|\langle \Phi_i, f \rangle| : ||f|| \le 1, f \in E_k^{\perp}\} < \varepsilon$$

for all $k \geq k_0$ and $i = 1, 2, \ldots, n$. Now, for any $f \in E_k^{\perp}$, $||f|| \leq 1$, $k \geq k_0$, we have

$$\begin{aligned} |\langle Lf, f \rangle| &\leq |\langle Lf - \Phi_{i0}, f \rangle + \langle \Phi_{i0}, f \rangle| \\ &\leq ||Lf - \Phi_{i0}|| ||f|| + |\langle \Phi_{i0}, f \rangle| \\ &\leq \varepsilon + \varepsilon \leq 2\varepsilon \end{aligned}$$

so that

$$\sup\{|\langle Lf, f\rangle| : ||f|| \le 1, f \in E_k^{\perp}\} < 2\varepsilon.$$

This completes the proof. \Box

An operator $A:D\subset X\to X^*$ is said to be strongly monotone if there exists a constant c>0 such that

$$\langle Ax - Ay, x - y \rangle \ge c||x - y||^2$$

for all $x, y \in D$, and it is maximal monotone if

$$\langle Ax - Ay, x - y \rangle \ge 0$$

and

$$R(A + \lambda J) = X^*$$

for every $\lambda > 0$. Here the duality mapping $J: X \to X^*$ is defined by

(4)
$$Jx = \{ f^* \in X^* : ||f^*||^2 = ||x||^2 = \langle x, f^* \rangle \}.$$

An operator $F: D \subset X \to X^*$ is said to be *compact* if it is continuous and maps bounded subset of D into relatively compact subset of X^* . It is *weakly continuous* if $x_n \to x$ implies $Fx_n \to F_x$. It is *demicontinuous* if $x_n \to x$ implies $Fx_n \to fx$. It is *demiclosed* at 0 if $x_n \to x$ and $Fx_n \to 0$ implies Fx = 0. A weakly continuous mapping is demiclosed at 0. Here, \to (respectively, \to) denotes weak (respectively, strong)

convergence. We denote by $B_b(0)$ the open ball with center at zero and radius b > 0. $\partial B_b(0)$ and $B_b(0)$ denote the boundary and the closure of B_b , respectively.

Our results in this paper are an improvement and extension of the results of Kesavan [3] and Kartsatos and Mabry [2]. Kesavan [3] showed that the operator equation

$$u - \lambda Lu + Fu = h$$

is solvable in a Hilbert space H for all $\lambda \in R$, $h \in H$. Here, L is linear, compact, self-adjoint, and strictly positive, while F is compact, positively homogeneous of degree $\rho > 1$, $\langle Fu, u \rangle \geq 0$, and $\langle Fu, u \rangle = 0$ implies u = 0. Kartsatos and Mabry [2] established some localized versions of the main results of Kesavan's.

In this paper, we prove the solvability of the equation

$$(5) Au + Lu + \mu Fu = h$$

in a real Banach space which has Schauder basis without assuming L is self-adjoint and strictly positive.

2. Main results. In this section, we will always assume that X is a real Banach space and has Schauder basis $\{x_1, x_2, x_3, \ldots\}$. The proofs of the Theorems follow from the important Lemma 2.

Let $a, b, d, B \geq 0$ and $c \in R$ be given. Set

$$W(a, b, c, d, B, E_k)$$

$$= \{v \in X : v = e + f, e \in E_k, f \in E_k^{\perp} \text{ such that (6) is satisfied}\}$$

where

(6)
$$a||f||^2 - b||f|| \le c||e||^2 + d||e|| + B||e||||f||.$$

Lemma 2. (i) Let a > b > 0. Then there exists a constant $\delta > 0$ depending on a, b, c, d, B and the space E_k such that for all $v \in W(a, b, c, d, B, E_k)$ with $||v|| \geq 1$, we have

$$(7) g(v/||v||) \ge \delta.$$

(ii) Given a number $\beta, 0 \leq \beta \leq 1$. Let $a\beta^2 > b\beta > 0$. Then there exists a constant $\delta > 0$ depending on a, b, c, d, B and the space E_k such that for all $v \in W(a, b, c, d, B, E_k)$ with $||v|| = \beta$, we have

$$g(v) \geq \delta$$
.

Here the mapping $g: \overline{B_1(0)} \to R_+$ is demiclosed at 0 and g(u) = 0 implies u = 0.

Proof. (i) Suppose not. Then there exists a sequence u_n in $W(a, b, c, d, B, E_k)$, $||u_n|| = 1$, such that

$$g(u_n) \to 0$$
, as $n \to \infty$.

Let $u_n = e_n + f_n$, $e_n \in E_k$, $f_n \in E_k^{\perp}$. Then

$$||e_n|| \le M||u_n|| = M$$

and

$$||f_n|| \leq M+1.$$

Thus there exist subsequences $\{e_{n_j}\}$ and $\{f_{n_j}\}$ such that $e_{n_j} \to e \in E_k$ and $f_{n_j} \rightharpoonup f \in E_k^{\perp}$. Therefore, we have $u_{n_j} \rightharpoonup u = e + f$. Since g is demiclosed at 0, g(u) = 0. It follows that u = 0 and e = f = 0. Since $||u_n|| = 1$ and $u_{n_j} = f_{n_j} + e_{n_j}$. Thus

$$\lim_{n\to\infty}||e_{n_j}||=0, \qquad \lim_{n\to\infty}||f_{n_j}||=1.$$

But $\{f_{n_j}\}$ and $\{e_{n_j}\}$ satisfy (6) so that $0 < a - b \le 0$, which is a contradiction. The proof of (ii) is exactly the same as (i). The proof is now complete. \square

Given the operator equation (5), let $h = h_n + h_n^{\perp} \in X^*$ and let M^* be a constant such that

$$\left\| \sum_{i=1}^{n} a_{i} x_{i}^{*} \right\| \leq M^{*} \left\| \sum_{i=1}^{\infty} a_{i} x_{i}^{*} \right\|, \qquad n = 1, 2, 3, \dots,$$

where $\{x_i^*\}$ is the Schauder basis of X^* and

$$h_n \in \text{span}\{x_1^*, \dots, x_n^*\}, \qquad h_n^{\perp} \in \text{span}\{x_{n+1}^*, \dots\}.$$

Choose $\varepsilon > 0$ such that $c - \varepsilon > \varepsilon/2$, where c > 0 is the coefficient of strong monotonicity of A. Since L is a compact operator, by Lemma 1, there exists a number k such that

$$||h_n^{\perp}|| < \varepsilon/4$$

and

$$\sup\{|\langle Lf,f\rangle|:f\in E_n^{\perp},||f||\leq 1\}<\varepsilon/4$$

for all $n \geq k$. Define the set

(8)
$$\overline{W} = W(c - \varepsilon, \varepsilon/2, ||L|| - c, M^*||h||, 2(||L|| + c), E_k)$$

We are now ready to prove the following theorems.

Theorem 1. Let $A, L: D \to X^*$ with $(0 \in Int(D))$ be such that A is continuous strongly monotone and L is linear and compact. Let $F: D \to X^*$ be a completely continuous mapping, $\langle Fu, u \rangle \geq 0$, and $\langle Fu, u \rangle = 0$ implies u = 0. Then there exists a constant $\mu_0 \geq 0$ such that the operator equation (5) has a solution $u \in D$ for every μ which $\mu \geq \mu_0$.

Proof. Without loss of generality, we may assume A0 = 0. Since the strongly monotone operator A has the local boundedness property (cf. [1]), there exists a number β such that $\overline{B_{\beta}(0)} \subset D$ and $A(B_{\beta}(0))$ is bounded. Moreover, since A is one-to-one and is onto $A(\overline{B_{\beta}(0)})$, it is sufficient to find solutions for the equation

(9)
$$v + (L + \mu F)A^{-1}v - h = 0, \quad v \in A(\overline{B_{\beta}(0)}).$$

Assume that equation (9) has no solutions $v \in \partial A(B_{\beta}(0))$. We observe that the mapping $v \to (L+\mu F)A^{-1}v - h$ is compact, so that the Leray-Schauder degree (cf. [1]) $d(I + (L + \mu F)A^{-1} - h, A(B_{\beta}(0))), 0$) is well defined. Consider the homotopy

(10)
$$S_t = I + t[(L + \mu F)A^{-1} - h], \qquad t \in (0, 1].$$

If $0 \in S_t(\partial A(B_\beta(0)))$ for some $t \in (0,1]$, then

(11)
$$v_t + t(LA^{-1}v_t + \mu FA^{-1}v_t - h) = 0$$

for some $v_t \in \partial A(B_{\beta}(0))$. Put $u_t = A^{-1}v_t$. Since $A(B_{\beta}(0))$ is open (cf. [1]), $u_t \in \partial B_{\beta}(0)$ and

(12)
$$Au_t + t(Lu_t + \mu F u_t - h) = 0.$$

Now we want to show that there exists a constant $\delta > 0$, independent of $t \in (0,1]$ and μ , such that

$$\langle Fu_t, u_t \rangle \ge \delta$$

for all u_t which satisfies (12). Choose $\varepsilon > 0$ such that $(c-\varepsilon)\beta^2 > (\varepsilon/2)\beta$ and set

$$\overline{W} = W(c - \varepsilon, \varepsilon/2, ||L|| - c, M^*||h||, 2(||L|| + c), E_k).$$

Let $u_t = e + f$, $e \in E_k$, $f \in E_k^{\perp}$. Then

$$\langle Lu_t, u_t \rangle = \langle Le, e \rangle + \langle Le, f \rangle + \langle Lf, e \rangle + \langle Lf, f \rangle$$
$$\langle h, u_t \rangle = \langle h_k, e \rangle + \langle h_k^{\perp}, f \rangle$$

and

$$\begin{split} c||e||^2 + c||f||^2 - 2c||e||\,||f|| &\leq c||u_t||^2 \leq (1/t)\langle Au_t, u_t\rangle \\ &= -\langle Lu_t, u_t\rangle - \mu\langle Fu_t, u_t\rangle + \langle h, u_t\rangle \\ &\leq ||L||\,||e||^2 + \varepsilon||f||^2 + 2||L||\,||e||\,||f|| \\ &+ M^*||h||\,||e|| + (\varepsilon/2)||f||. \end{split}$$

Therefore,

$$(c-\varepsilon)||f||^2 - (\varepsilon/2)||f|| \leq (||L||-c)||e||^2 + M^*||h||\, ||e|| + 2(||L||+c)||e||\, ||f||$$

i.e., $u_t \in \overline{W}$. Using (ii) of Lemma 2, there exists a constant $\delta > 0$ such that $\langle Fu_t, u_t \rangle \geq \delta > 0$.

Now, set

 $t_0 = \inf\{t \in (0,1]: \text{ there exists } u_t \in \partial B_\beta(0) \text{ such that } (12) \text{ is satisfied}\}.$

Then $t_0 > 0$. Suppose not; then there exist sequences $t_n \in (0,1]$, $t_n \to 0$ and μ_n such that u_{t_n} satisfies

$$Au_{t_n} + t_n(Lu_{t_n} + \mu_n Fu_{t_n} - h) = 0.$$

Since the mapping A is strongly monotone and $\langle Fu, u \rangle \geq 0$, we have

$$\begin{split} cb^2 &= c||u_{t_n}||^2 \leq \langle Au_{t_n}, u_{t_n} \rangle \\ &= -t_n \langle Lu_{t_n}, u_{t_n} \rangle - t_n \mu_n \langle Fu_{t_n}, u_{t_n} \rangle + t_n \langle h, u_{t_n} \rangle \\ &\leq t_n ||L||b^2 + t_n ||h||b \\ &\to 0, \quad \text{as } n \to \infty, \end{split}$$

which is a contradiction.

Now, from (12) we have the estimate

$$0 = |\langle (1/t)Au_t + Lu_t + \mu F u_t - h, u_t \rangle|$$

$$\geq \mu \langle F u_t, u_t \rangle - (1/t_0) \sup\{||Au_t|| ||u_t||\}$$

$$- \sup\{||Lu_t|| ||u_t||\} - ||h|| ||u_t||.$$

We can choose $\mu_0 > 0$ sufficiently large such that for all μ with $\mu > \mu_0$ we have

$$\mu\delta - (1/t_0)\sup\{||Au_t||\}b - \sup\{||Lu_t||\}b - ||h||b > 0.$$

This contradiction shows that $0 \in S_t(\partial A(B_\beta(0)))$ for all $t \in (0,1]$. By the properties of the Leray-Schauder degree, equation (5) has solutions in $B_\beta(0) \subset D$. This completes the proof.

Theorem 2. Let $A:\overline{D(A)}\subset X\to X^*$ be maximal monotone and strongly monotone with constant c. Let $f:\overline{D(A)}\subset X\to X^*$ and $L:X\to X^*$ be compact and linear, compact, respectively. Assume that there exists a mapping $g:\overline{B_1(0)}\to R_+$ which is demiclosed at 0, g(u)=0 implies u=0, and that

$$\langle Fu, u \rangle \ge g(u/||u||)||u||^{\rho+1}$$

holds for a fixed number $\rho > 1$. Then the operator equation (5) is solvable for all $h \in X^*$ and $\mu > 0$.

Proof. We consider the approximating equations

(15)
$$Au + Lu + \mu Fu + (1/n)Ju = h.$$

Since A is maximal monotone, $R(A+(1/n)J)=X^*$ and so (15) is equivalent to

(16)
$$v + (L + \mu F)J_n v - h = 0,$$

where $J_n = (A + (1/n)J)^{-1}$. First, we will show that (16) has solutions for any n. Since the mapping $v \to (L + \mu F)J_nv - h$ is compact, the Leray-Schauder degree $d(I + (L + \mu F)J_n - h, B_b^*(0), 0)$ is well defined. It suffices to show that there exists a number b > 0 such that

$$0 \in (I + t[(L + \mu F)J_n - h])\partial B_b^*(0)$$

for all $t \in (0,1]$. To this end, assume the contrary and let $t_m \in (0,1]$, $v_m \equiv v_{t_m}$ be such that

$$(A + (1/n)J)J_n v_m + t_m[(L + \mu F)J_n v_m - h] = 0$$

and $||v_m|| \to \infty$ as $m \to \infty$. Set $x_m = J_n v_m$, we obtain

(17)
$$Ax_m + (1/n)Jx_m + t_m[(L + \mu F)x_m - h] = 0.$$

Since $L + \mu F$ is compact, by equation (17) and $v_m = Ax_m + (1/n)Jx_m$, there exists a subsequence of $\{x_m\}$ converging to ∞ (again denote by $\{x_m\}$).

Let
$$x_m = e + f$$
, $e \in E_k$, $f \in E_k^{\perp}$. Then
$$\langle Lx_m, x_m \rangle = \langle Le, e \rangle + \langle Le, f \rangle + \langle Lf, e \rangle + \langle Lf, f \rangle$$
$$\langle h, x_m \rangle = \langle h_k, e \rangle + \langle h_k^{\perp}, f \rangle$$

and

$$\begin{split} c||e||^2 + c||f||^2 - 2c||e||\,||f|| &\leq c||x_m||^2 \leq (1/t_m)\langle Ax_m, x_m \rangle \\ &= -\langle Lx_m, x_m \rangle - \mu \langle Fx_m, x_m \rangle + \langle h, x_m \rangle \\ &- (1/nt_m)\langle Jx_m, x_m \rangle \\ &\leq ||L||\,||e||^2 + \varepsilon||f||^2 + 2||L||\,||e||\,||f|| \\ &+ M^*||h||\,||e|| + (\varepsilon/2)||f||. \end{split}$$

So,

$$(c-\varepsilon)||f||^2 - (\varepsilon/2)||f|| \le (||L||-c)||e||^2 + M^*||h|| ||e|| + 2(||L||+c)||e|| ||f||,$$

i.e., $x_m \in \overline{W}$. Applying Lemma 2, there exists a number $\delta > 0$ such that $g(x_m/||x_m||) \geq \delta > 0$. Thus,

$$0 = \langle (1/t_m)Ax_m + (1/nt_m)Jx_m + (L+\mu F)x_m - h, x_m \rangle$$

$$\geq \mu \delta ||x_m||^{\rho+1} - ||L|| ||x_m||^2 - ||h|| ||x_m||$$

$$> 0, \quad \text{as} \quad m \to \infty,$$

which gives us the desired contradiction. It follows that (15) is solvable for every $n=1,2,3,\ldots$. Let u_n denote a solution of (15). A similar argument to the one above shows that $\{u_n\}$ is uniformly bounded. Thus, there exists a sequence $\{(L+\mu F)u_{n_j}\}$ which converges strongly. Therefore,

(18)
$$c||u_{n_{j}} - u_{n_{k}}||^{2} \leq \langle Au_{n_{j}} - Au_{n_{k}}, u_{n_{j}} - u_{n_{k}} \rangle$$

$$= -\langle (L + \mu F)u_{n_{j}} - (L + \mu F)u_{n_{k}}, u_{n_{j}} - u_{n_{k}} \rangle$$

$$- \langle (1/n_{j})Ju_{n_{j}} - (1/n_{k})Ju_{n_{k}}, u_{n_{j}} - u_{n_{k}} \rangle$$

$$\to 0, \quad j, k \to \infty.$$

Thus, $u_{n_j} \to u_0$, $j \to \infty$. Since A is demicontinuous and demiclosed, $Au_0 + Lu_0 + \mu Fu_0 = h$. The proof is complete.

Theorem 3. Let $A, L: X \to X^*$ be such that A is strongly monotone and demicontinuous and L is linear and compact. Let $F: X \to X^*$ be compact, and there exists a weakly continuous function $g: \overline{B_1(0)} \to R_+$ such that g(u) = 0 implies u = 0 and

$$\langle Fu, u \rangle \ge g(u/||u||)||u||^{\rho+1}$$

for all $u \in X$ and a fixed number $\rho > 1$. Then equation (5) has solutions $u \in X$ for every $\mu > 0$.

Proof. Without loss of generality, we assume A0=0. First, we consider the following finite dimensional problem: For a fixed number m, find $u_m \in E_m$ such that for all $u \in E_m$

$$\langle Au_m + Lu_m + \mu F u_m, u \rangle = \langle h, u \rangle.$$

Let $\xi=(\xi_i)_1^m\in R^m$ and $u=\sum_1^m\xi_ix_i\in E_m$. Define the mapping $T_m:R^m\to R^m$ by

$$(T_m(\xi))_i = \langle Au + Lu + \mu Fu - h, x_i \rangle, \qquad i = 1, 2, 3, \dots, m.$$

To find a solution u_m of (19) is equivalent to find a zero for map T_m . Due to the finite dimensionality of E_m and that g is weakly continuous, there exists a constant $\delta_m > 0$ such that

$$g(u/||u||) \geq \delta_m$$

for all $u \in E_m \setminus \{0\}$. Thus,

$$\langle T_m(\xi), \xi \rangle = \langle Au + Lu + \mu Fu - h, u \rangle$$

 $\geq \mu \delta_m ||u||^{\rho+1} - ||L|| ||u||^2 - ||h|| ||u|| > 0$

on $||\xi|| = r_m$. Hence equation (19) has a solution u_m . Next, we will sho that $\{u_m\}$ is uniformly bounded. As in the proof of Theorem 2, we have $u_m \in \overline{W}$. Using Lemma 2, there exists $\delta > 0$, independent of E_m , such that

$$\langle Fu_m, u_m \rangle \ge \delta ||u_m||^{\rho+1}.$$

By (19), we obtain

$$|\mu\delta||u_m||^{\rho+1} \le ||L|| ||u_m||^2 + ||h|| ||u_m||.$$

Therefore, $\{u_m\}$ must be uniformly bounded. Referring to (18) in the proof of Theorem 2, there exists a subsequence $\{u_{n_j}\}$ which converges strongly to u_0 . Since A is demicontinuous,

$$\langle Au_0 + Lu_0 + \mu F u_0 - h, u \rangle = 0$$

for all $u \in E_m$, $m = 1, 2, \ldots$. Furthermore, it is true for all $u \in X$. Thus,

$$Au_0 + Lu_0 + \mu F u_0 = h$$

and the proof is complete.

Acknowledgment. The author would like to thank the referee for his valuable comments.

REFERENCES

- ${\bf 1.}$ Klaus Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, Heidelberg, 1985.
- **2.** A.G. Kartsatos and R.D. Mabry, On the solvability in Hilbert space of certain nonlinear operator equations depending on parameters, J. Math. Anal. Appl. **120** (1986), 670–678.
- 3. S. Kesavan, Existence of solution by the Galerkin method for a class of nonlinear problem, Appl. Anal. 16 (1983), 279–290.
 - 4. Ivan Singer, Bases in Banach spaces, Springer-Verlag, Berlin, New York, 1970.

Department of Mathematics, Marshall University, Huntington, West Virginia 25755