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A BAIRE CATEGORY THEOREM
FOR THE DOMAINS OF ITERATES
OF A LINEAR OPERATOR

CHRIS LENNARD

ABSTRACT. We show that for a densely-defined linear
operator T in a Banach space X, with nonempty resolvent set,
the intersection of the domains of all its successive iterates
must be dense in X. In particular, this is true for a self-
adjoint operator on a complex Hilbert space. Moreover, if
the range of T is dense, then the intersection of the ranges
of all its successive iterates must also be dense in X. We
generalize these results to an extension of Baire’s category
theorem involving sequences of natural open subsets of the
domains of the iterates of 7. We also describe some examples
which show that for closed operators with empty resolvent set
or nonclosed operators with nonempty generalized resolvent
set, the intersection of the domains of all their successive
iterates may not be dense in X.

0. Introduction. We show (see Theorem 1.3) that for a densely-
defined linear operator T in a Banach space X, with nonempty resolvent
set, the intersection of the domains of all its successive iterates must
be dense in X. Moreover, if T has dense range, then the intersection
of the ranges of all its successive iterates must also be dense in X. A
more general statement covering both of these facts is proven.

When applied to complex Hilbert space H, we get that for any self-
adjoint (or maximally symmetric) linear operator T', the intersection
of the domains of all its successive iterates must be dense in H.

We remark that the above results ensure that there exists a common
dense domain for every polynomial in 7" over the scalar field of X.

In Theorem 1.6 we extend Theorem 1.3 in a direction that simulta-
neously generalizes Baire’s category theorem in X. Section 2 provides
examples which show that for closed operators with empty resolvent
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set or nonclosed operators with nonempty generalized resolvent set,
the conclusion of Theorem 1.3 may fail (see Propositions 2.4 and 2.5).

When X is a Banach space, let £(X) be the set of all bounded linear
operators A : X — X. Let I denote the identity operator on X.
Let D(T) be a subspace of X. For a linear operator T : D(T) — X
we define p(T'), the resolvent set of T, to be the set of all scalars
p such that T — ul is a one-to-one mapping of D(T') onto X, and
(T — pI)~' € L(X). This definition follows, for example, Rudin [13,
13.26]. Note that p(T) is always an open subset of the scalar field and
A= (T = X)7t: p(T) — L(X) is analytic. (See, for example, |5,
Lemma XII.1.3 and 4 Lemma VII.3.2]). Moreover, by the closed graph
theorem, when T is a closed operator p(T) coincides with the set of all
scalars p such that 7" — pI maps one-to-one and onto X.

Also consider the generalized resolvent set of T', y(T'), which consists
of all scalars g such that 7" — pl is one-to-one with dense range
V, = (T — pI)D(T) in X, for which (T"— pI)~! is bounded on V,.
If T is a closed operator, then p(T) and y(7T') coincide. To see this,
one must check that v(T') C p(T) when T is closed. We sketch this
argument. Fix A € y(T"). We must show that Vy = X. Fix a sequence
(yn)22; in V) converging in the norm of X to some z € X. Using the
boundedness of (T — AI)~!, the completeness of X and the fact that
T — M is a closed operator, it readily follows that z € V,.

If T is not closed, then p(T) is empty (see Section 1). In this
case y(T) may be nonempty; e.g., T = I|,, and X = Iz, where
ly = {z = (2,)22,: such that each z, is a scalar and ||z|]z :=
(320 |zal?)Y? < oo} and g is the subspace of all finitely nonzero
sequences in ly. Here v(T") consists of every scalar except 1. There are
also examples of densely-defined, nonclosable operators 7' in Hilbert
space with y(T) = p(T) = &. Hence, the fact that y(T) = p(T") does
not imply that T is closed (or even closable). See Reed and Simon
[12], Problem 1, p. 312] for such an example. Moreover, there are
densely-defined, non-closable operators in Hilbert space with v(T') # &.
Susumu Okada made me aware of the work of Gindler [7]. Such an
operator T is the inverse of the operator A defined in [7] on page 529.
An examination of the proof in [5] and [4] mentioned above reveals that
~(T) is also open and A — @, is analytic on v(T'); where Q) € L(X)
is the extension of (7' — AI)~! to all of X.
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We now establish some more notation. N denotes the set of positive
integers, Z denotes the integers, while R and C denote the real and
complex numbers, respectively. Let (X, ||-||x) be a Banach space. We
will often write || - || instead of || - ||x. Let D(T) be a subspace of X
and T : D(T) — X be a linear operator. For each n € N, we define
the domain of 7", D(T™), by

D(T") :={zx € D(T) : Tz, T*z,... ,T" 'z € D(T)}.

D(T°) means the domain of I, which is X. II(T') denotes the set of all
operators a1 + 81, where a and 8 are scalars; while X(T') is the set of
all S € II(T) for which S(D(T)) is dense in (X, || -]|/x)-

I thank the referee for pointing out that some of the techniques used
herein are similar to those used when discussing hypercyclic vectors.
See, for example, [1, Section IIL.5] and [8, Section 1]. Also see [3] and
[9] for recent work concerning hypercyclic vectors, related to [8].

1. The intersection of the domains of iterates of a linear
operator. We will use the following result from Bourbaki [2, Theorem
2.3.1]. (Also see Esterle [6, Corollary 2.2]).

Theorem 1.1. Let {(X,,d,)}S2, be a sequence of complete metric
spaces and {T,}52, be a sequence of continuous mappings such that
each T,, maps X,, into X,,—1 and each T,, has dense range. Then

(T TuX, s dense in (Xo,do).
n=1

The following simple lemma shows that the operators under consid-
eration are always closed. We include a proof, for completeness.

Lemma 1.2. Let T be a linear operator from a dense domain D(T)
in a Banach space (X, || - ||x) into (X, || -|Ix). If p(T) # @, then T is
closed.

Proof. Fix p € p(T). Then (T'— pI)~! is a bounded linear operator
on X. So it is closed. Thus 7" — u[ is closed, and hence 7" is closed.
O
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We come now to our first result, the proof of which is briefly post-
poned.

Theorem 1.3. Let T be a linear operator from a dense subspace
D(T) of a Banach space (X,||-||x) into X. Suppose that the resolvent
set p(T) of T is nonempty.

If {Sn}22, is any sequence of operators in X(T') then
ﬁ 5182+ 5, D(T") s dense in (X, || ||x)-
n=1

In particular,
ﬁ D(T™) is dense in (X,]|-||x)-
n=1

Moreover, if T has dense range, then

ﬂ T"D(T™) s dense in (X, ]| - ||x).
n=1

Let us consider a simple example, to which Theorem 1.3 applies. Let
X = complex-valued L,(R), 1 < p < o0; i.e., X is the Banach space of
all (equivalence classes of) Lebesgue-measurable functions f : R — C
such that |f|P is integrable, with the usual norm. Define x(t) := ¢,
for all t € R and D(T) := {f € X : x-f € X}. Further define
T :D(T) — X by setting T'f := x - f. It is straightforward to check
that T is an unbounded linear operator in X with dense domain and
dense range. Moreover, i € p(T).

In the case where X is a Hilbert space, Theorem 1.3 has an immediate
corollary.

Corollary 1.4. Let T be a self-adjoint linear operator in a complex
Hilbert space H. Then
D(T") is dense in H;

n=1
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and if T also has dense range then

ﬂ T"D(T") is dense in H.

n=1

Proof of Corollary 1.4. It is enough to note that D(T) is dense, by
definition, and i € p(T'). o

We remark that if T is a closed, densely-defined, maximally symmet-
ric linear operator in a complex Hilbert space 7, then the above corol-
lary still holds and every self-adjoint operator is maximally symmetric.
On the other hand, a closed, densely-defined, symmetric operator may
be maximally symmetric, yet not self-adjoint. (See Rudin [13, Chap-
ter 13], for example, for more information about maximally symmetric
operators.)

Proof of Theorem 1.3. Define Xy := X and || - ||o == || - ||x- Let
X, :=D(T") for all n € N. Let pu € p(T) so that (T — uI)~! exists in
L(X). Define T}, := T — pI, and for all n € N, let

2lln := [l + | Tuzll + - - + |73 2]l,  forall z € X,

Each (Xp,|| - ||») is a normed linear space. Moreover, as p(T) # &, T
is a closed operator by Lemma 1.2, and consequently, each (X, || ||»)
is a Banach space.

Consider a fixed n € N. Both T and I map (D(T"),]| - [|n) —
(D(T™Y),|] - lln-1)- Fix & € D(T™). Then it is easy to see that
[l Iz||n-1 < ||z||n, While

T2 ln1 < |[Tuzlln—1 + [l |2l
= | Tuall + | Tu (L)l + - + T (D) | + |l ]l
< el + [l llelln = 1+ [p)]]]n-

So T and I are continuous linear maps. Further, for all scalars o and S,
S := oT+BI maps (D(T"),||-||n) continuously into (D(T™~ 1), [|-||n_1)-
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Let us now show that S(D(T™)) is dense in (D(T™ '), || ||n—1) when
S(D(T)) is dense in (X, || -||). Fixy € D(T™ ') and then fix ¢ > 0.
Since S commutes with 7},, we have that for any « € D(T™),

ly — Sz|[n-1 = |ly — Sz|| + || Tu(y — Sz)|| + -
+ T2 (y — So)l| + | T; (y — Sz)|

_ —1\n—1 m—1 m—1
= (T )" (T y = ST, )|

+ (T2 (T y = ST )|
+ o+ |IT, Ty = ST )|
+ || Ty = ST e
<M I 2+ 1T+ 1)
Tty — ST |
= K,|[T;~ty — ST =,

where K, == 14 ||T'|| +--- +||T/"(|*"" is a finite constant. Now
consider 77~y € X. S(D(T)) is dense in X. So there exists z € D(T)
such that ||T} 'y — Sz|| < ¢/K,. But T,;* maps X onto D(T), so if
we define 2o = (I}, ')" 'z, then z, belongs to D(T™). Moreover,

ly = Szolln1 < KT}y — ST |
g

K—n:€.

= K, ||} 'y — Szl| < K, -
Hence, if {S,}22, is any sequence of operators in X(7'), then each S,
maps (D(T™),||-||») continuously and densely into (D(T" 1), ||-||n_1).
The result now follows by applying Theorem 1.1. O

In [10, Theorem 1.2] we proved a generalization of Theorem 1.1 above.
The referee provided us with a more succinct proof that we realized
allows for a slightly broader generalization of Theorem 1.1, which is
Theorem 1.5 below (Theorems 1.5 and 1.1 are, in fact, equivalent
because the proof of Theorem 1.5 uses Theorem 1.1). Theorem 1.5
includes Baire’s category theorem for complete metric spaces and also
a result of Beauzamy [1, Proposition 1.B.1]. We will use Theorem 1.5
to derive a generalization of Baire’s category theorem in our setting of
domains of iterates of a linear operator in a Banach space (Theorem
1.6).
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Theorem 1.5. Let {(X,,d,)}52, be a sequence of complete metric
spaces and {T,}5°; a sequence of continuous mappings such that each
T, maps X, into X,, 1. Let {©,}5°, be a sequence of sets such that
©9 is a dense open set in (Xo, dg), while for eachn > 1, O, is an open
set in (X,,d,) and T,,0,, is dense in (X,,—1,dn—1). Then the set T is
dense in (Xo,dy), where

I':.= 60 N ﬂ T1T2Tn®n

n=1

Proof of Theorem 1.5. Define Ay := Og and, inductively, define
A, =0, NT;1(A, ;) for all n € N. For every n € N, A, is an
open set in (X,,d,) and T,,(4,,) C A,,_1; while Ay is dense in (X, dp).
Moreover, the closure of T;,(A,) coincides with the closure of A, _; in
(Xn—1,dn—1) for all n € N. For each n > 0, we can endow A, with
a topologically equivalent metric g,, such that (A4,,q,) is complete.
Further, it is easy to see that each T, is continuous from (A,,q,) to
(An—1,9n-1) and that the range of T, restricted to A,, is dense in
(An—1,qn-1). By Theorem 1.1,

A= ﬁ Ty To Ay
n=1

is dense in (Ag, qo). So A is dense in (Og, dp) and hence also dense in
(Xo,dp). But 4,, C ©, for all n € N. So I, as defined above, contains
A; and this completes the proof. O

Consider now a Banach space (X, ||-||x) with a dense subspace D(T)
and a linear operator T': D(T') — X for which p(7T') is nonempty. Let
p € p(T). It is simple to check that T, = T — pl is a Banach space
isomorphism of (D(T'),|| - ||.) onto (X, || -|/x), where

(1) 2]l == [lz]|x + || Tuzllx,  for all z € D(T).
Thus © is an open set in (D(T'),||-||,.) if and only if U = T},© is an open

set in (X, || - ||x)- Now all the norms defined on D(T) as in (1) above
by members p and v of p(T) are equivalent. So, for all u,v € p(T), ©



622 C. LENNARD

is an open set in (D(T),|| - ||,) if and only if U = T,,© is an open set
in (X, [ -[|x)-

Moreover, we may replace the phrase ‘an open set’ everywhere in the
previous paragraph by ‘a dense set’ everywhere, and all the statements
remain true. Iterating the above arguments, we see that all the Banach
spaces D(T™), with a norm || - ||,, defined as in the proof of Theorem
1.3, are isomorphic to (X,||-||x) and each other, under the obvious
mappings. Fix n € N. Let py,...,un € p(T), and U C X and
© C D(T") be related by

©:= (T —m) (T —p2) " (T = pn) U

Then © is an open set in (D(T"),]| - ||») if and only if U is an open
set in (X, || - ||x). Further, for any S € II(T), and U C D(T) and
© C D(T™*1) related as above, S(U) is dense in (X, ||-||) x if and only
if S(©) is dense in (D(T™), || - ||n)-

The above discussion pertains to our second result below, which
follows readily from Theorem 1.5 and the proof of Theorem 1.3. We
therefore omit the proof.

Theorem 1.6. Let T be a linear operator from a dense subspace
D(T) of a Banach space (X,||-||x) into X. Suppose that the resolvent
set p(T) of T is nonempty. Let {S,}52 1 be a sequence of operators in
II(T). Further suppose that {©,}22  is a sequence of sets such that O
is a dense open set in (X, ||-||x), and for alln € N, ©,, is an open set
in (D(T™), ]| - ||n) while S,(©,,) is dense in (D(T""1),|| - ||n_1).- Then

©¢ N ﬂ S5182-++-5,0, isdense in (X, | -||x)-

n=1

In particular, if ©,, is dense in (D(T™71),|| - ||ln=1) for all n > 1, then

BN ﬂ O, s dense in (X,]|||x)-

n=1

2. Some examples. Fix an infinite matrix A = (a;;){5_;, where
=
each a;; is a scalar. As usual, ¢ is the row index and j is the column
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index. Let B = (b;){5-; = (@ji);5=1. We define D4 to be the set of
all z = (z,,)22; in Iy for which each Z]Oi1 a;jx; converges in the scalar

field to some {!(x) and (p(x))$°, € lo. Dp is similarly defined. Let
Ta:Da—la:az— (i ()52,
and define Tg : D — l3 similarly. Then T4 and T are linear operators

in I3. Our discussion of these operators follows, for example, Weidmann
[15, Section 6.3]. Let us emphasize the following simple fact.

Note 2.1. The following are equivalent
(l) Coo g DA.

(2) (aij)2; = (pt(ej))22, €l for every j € N; where e; is the j-th
unit vector in [s.

Next, let £4 := the domain of T}, which is the set of all z € I with
YAz (Tyx,z) : Dy — K bounded. Here (,-) is the usual inner
product on . £p is similarly defined.

The following two propositions are easy to check, and the second
follows from the first (see, for example, Stone [14, Theorem 3.2] or
Weidmann [15, Theorem 6.20]). We use the notation established above.

Proposition 2.2. Suppose that each row (a;;)32, of A is inly. Then
Da=Ep, Ta=Tg and Dp is dense in ly. Indeed, coop C Dp.

Proposition 2.3. Suppose that each row (aij);?‘;l of A and each
column (a;;)2, of A belong to ly. Then Dy and D both contain coo,
Ty =Tg and Tp = T}. In particular, both Ty and Tp are densely-
defined and closed.

We can now state and demonstrate the following result, which shows
that Theorem 1.3 may fail for a closed operator T' (which necessarily
has p(T) = 9).

Proposition 2.4. There exists a closed, densely-defined linear
operator T in ly such that D(T?) = {x € D(T) : Tz € D(T)} is
not dense in ls.
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Proof. Note that Iy is isometrically isomorphic to Iy @ lo under the
correspondence

(5171,.7!1,51727@/2,---) A ((331,»’62,---)a(y1,y2a---))-
Define P = (pij)?z'zl and @ = (Qij)?;:l by

4i—1

7, lf]ZZandp” = 0,

Dij =
if j <i; and
for all ,5 € N.

qij ‘= ﬁ’

We introduce T : Dg @ Dp — l> @ l2 by setting
T(xa y) = (pra TQl‘)
Clearly, by Proposition 2.3, D(T) := Dg @ Dp is dense in I, &[> and
T is a closed operator.
D(TQ) = {(l‘,y) € DQ @ Dp : (pr,TQm) € DQ ) Dp}
- {I € Dg : Tz EDP}EBI2.

Now Dg = {z € Iy : eachy; = (E;’il z;/j)1/2" converges and
Yy = (yz)fil S 12} So DQ = 5. Thus,

{LL‘E'DQ:TQIEDP}

= melgzy:< mn—><—> E’Dp}
{ nZ::l n)\2/ ja

e 41'71

> 1
=<z €ly: each z; := <Zmn—> .
{ n=1 n j=i 4

converges and z = (z;)72, € lz}

< 1\/111 1
feeniem (San) Gagge) <o)

n=1

=1
—{LIZEIQ:ZI"E—O}.
n=1
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Thus D(T?) C{z €ly: Y o, ,/n =0} ® Iy, which is the hyperplane
{((1/n)54,0)}* in Iy © I2. So D(T?) is not dense in Iy @ I. o

We remark that the above example shows that the hypothesis ‘p(T")
is nonempty’ in Theorem 1.3 cannot be weakened to ‘T is closed’.
On the other hand, there do exist closed operators 7" in a Hilbert
space with p(T) = @ and yet NS ;D(1™) is dense. Indeed, following
Rudin [13, Example 13.4 and Chapter 13 Exercise 19] define Ty, T
and T3 in X = complex-valued L,[0,1], 1 < p < o0, in the following
way. Let AC (respectively, C*°) denote the set of all absolutely
continuous (respectively, infinitely differentiable) functions from [0, 1]
into the complex numbers. Define D; = {f € AC : f' € L,},
Dy:={feD;:f(0)=f(1)} and D3 :={f € Dy, : £(0) = f(1) = 0}.
We set T f :=if for all f € D;, j=1,2,3.

Straightforward calculations show that each T; : D; — X is closed
and densely-defined. Moreover, p(T1) = p(T3) = &, while p(T3) =
C\{27k : k € Z}. Thus N>, D(1%) is dense in X, by Theorem 1.3. Of
course, Dy C Dy and Ty|p, = T so it follows that N, D(T7*) is dense
in X also. Moreover,

ﬁ D(TF) = {f € €= : f™(0) = f™(1) = 0 for all n > 0}.

n=1
Consequently, N5, D(T3') is also dense in X = L,[0,1], 1 <p < oo.

We next ask whether the hypothesis of Theorem 1.3 that ‘p(T) is
nonempty’ can be weakened to ‘the generalized resolvent set v(T') is
nonempty’? Recall that a linear operator 7" in X is closable if the
closure of its graph in X x X is also a graph. (See, for example,
[15, Chapter 5] for more information on closable operators in Hilbert
space). If T is closable, with closure S, then p(S) = v(T). So, if v(T)
is nonempty, then N2 ;D(S™) is dense in X. But N2 D(T") need not
be dense, as the following example shows.

Proposition 2.5. There exists a densely-defined, linear operator T
in ly that is bounded on its domain and D(T?) is not dense in ls.

Proof. Fix a and f in l3. Define the matrices A = (a;;)75_; and
B = (bij){5=1 by aij == a; and b;; := B;/j. Define D := {z €[5 :
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oo, @y = 0}. It is straightforward to check that D is a dense subspace
of I5. The operator T4 is identically zero when restricted from D4 to
D, while T is a bounded, linear operator on Dp = l5. Let us introduce
the linear operator T : D @ ls — ls ® Iy by T(z,y) := (Tpy, Tax).

D(T?) = {(z,y) € DDz : (Try,Taz) € D D12}

o0 yn -
Now choose 3 € I, by setting 3; := j 2 for each j € N. Then Z;i1 Bj
converges in R to L = 72/6. So,

D(T2):D@{y612:Z%"-L:O}:D@H,

n=1

where H := {y € I5 : Z;’il y;j/j = 0} is a hyperplane in l,. Thus,
D(T?) is not dense in ly. O

In passing, we note that the example, from [7] discussed in the
introduction, of a densely-defined, nonclosable operator T' with v(T") #
@, satisfies N2, D(T™) = D(T), since the range of T is contained in
D(T). We remark that the phenomenon of ‘range (') C D(T')’ for
closed operators T has been studied by Ota [11].

Acknowledgment. I thank Alan McIntosh, Bernard Beavzamy,
Richard Aron and Susumu Okada for helpful suggestions and commu-
nications; and Catherine for typing the manuscript. I am grateful for
the support of a University Fellowship from Kent State University and
a University of Pittsburgh Internal Research Grant.

REFERENCES

1. B. Beauzamy, Introduction to operator theory and invariant subspaces, North
Holland, Amsterdam, 1988.

2. N. Bourbaki, Topologie générale, Hermann, Paris, 1960.

3. P. Bourdon and J.H. Shapiro, Spectral synthesis and common cyclic vectors,
Michigan Math. J. 37 (1990), 71-90.

4. N. Dunford and J.T. Schwartz, Linear operators I: General theory, John Wiley
and Sons, New York, 1988.



DOMAINS OF ITERATES OF A LINEAR OPERATOR 627

5.
1988.

6. J. Esterle, Mittag-Leffler methods in the theory of Banach algebras and a new
approach to Michael’s problem, Contemp. Math. 32 (1984), 107-129.

7. H.A. Gindler, Eztensions of linear transformations, Amer. Math. Monthly 71
(1964), 525-529.

8. G. Godefroy and J.H. Shapiro, Operators with dense, invariant, cyclic vector
manifolds, J. Funct. Anal. 98 (1991), 229-269.

9. D.A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal.
99 (1991), 179-190.

10. C.J. Lennard, A generalization of Baire’s category theorem, J. Math. Anal.
Appl. 168 (1992), 367-371.

, Linear operators 11: Spectral theory, John Wiley and Sons, New York,

11. S. Ota, Closed linear operators with domain containing their range, Proc.
Edinburgh Math. Soc. 27 (1984), 229-233.

12. M. Reed and B. Simon, Methods of modern mathematical physics 1. Func-
tional analysis, Academic Press, Boston, MA, 1980.

13. W. Rudin, Functional analysis, McGraw Hill, New York, 1973.

14. M.H. Stone, Linear transformations in Hilbert space and their applications
to analysis, Amer. Math. Soc. Colloq. Publ. XV, 1932.

15. J. Weidmann, Linear operators in Hilbert space, Springer-Verlag, New York,
Inc., 1980.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH, PITTSBURGH,
PENNSYLVANIA 15260



