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HANKEL FORMS OF ARBITRARY WEIGHT
OVER A SYMMETRIC DOMAIN
VIA THE TRANSVECTANT

JAAK PEETRE

ABSTRACT. Invariant Hankel forms of higher weight
are constructed corresponding to a symmetric domain. The
construction generalizes the one in the case of the disk [13]
and the ball [16].

0. Introduction. Hankel forms of arbitrary high weight are known
in the case of the disk [13] and the ball [16]. In this paper we suggest a
definition of Hankel form which, in principle, works for any symmetric
domain.

We construct them with the aid of certain bilinear different covari-
ants called transvectants. The use of this strange word (German:
Uberschiebung) is borrowed from classical invariant theory, where ob-
jects called transvectants were defined by P. Gordan [7]; a “rediscovery”
appeared thus nearly 100 years later in [13]. Recall that classical in-
variant theory is mainly about the group SL(2,C). Thus, it is now
a question of generalizing the transvectant to the case of an arbitrary
semi-simple Lie group.

Roughly speaking, the success of our approach depends on the use of
a “higher order version” of the Bergman kernel or, better, the Bergman
operator (the fact that the Bergman kernel is the determinant of the
Bergman operator).

The above is carried out in Section 2. Some auxiliary considerations
are made in Sections 3 and 4; these sections are to some extent
expository. Section 1 contains preliminary material. In Section 5 some
concrete examples of transvectants are worked out and at the end a
general formula stated as a theorem is mentioned.

Received by the editors on December 14, 1992.
Mathematics Subject Classification. 30d407 47B35.
Key Words. Hankel form, transvectant, symmetric domain, Bergman kernel,

Bergman operator.
Copyright ©1994 Rocky Mountain Mathematics Consortium

1065



1066 J. PEETRE

We remark that all this is just part of the vast project in which I have
been engaged since 1983. The basic philosophy is as follows. If a group
acts on a space of functions, then this action extends via conjugation
also to operators and it is of interest to consider operators which behave
nicely under the group action.

The present compilation is just a first step and much work remains
to be done. In particular, we shall have very little to say about the
new Hankel forms introduced. Our goal is simply to lay down here the
purely formal foundations of the subject.

1. Basic facts about symmetric domains. A domain in
complex space is called symmetric if for each of its points there exist
a biholomorphic involution (“symmetry”) which has the point as an
isolated fixed point.

Symmetric domains were introduced by E. Cartan [5] in 1935.1 In
particular, Cartan gave a complete classification of irreducible bounded
symmetric domains. One speaks of “Cartan domains.” Roughly speak-
ing, there are four main series of Cartan domains—these are the “clas-
sical” domains (types I-IV)—and two more “exceptional” domains
(types V and VI in dimension 16 and 27 respectively).?

For example, the type I, , (m < n) domain D(L,, ) is realized by
the set of all complex rectangular m X n matrices of operator norm
less than 1. If m = 1 one has the ball and if both m and n are
1 we get the disk. In a similar way one obtains the type II,, and
III,, domains using skew symmetric respectively symmetric matrices.
Alternatively, one has in these cases a more geometric realization as
certain Grassmannians. The Lie ball (type IV,,) has a realization as
a certain open subset of a quadric lying in P**!. The Lie ball is
also related to the algebra Clifford numbers, exactly as types I-III
correspond to the division algebras over the reals (complex numbers,
quaternions, the reals themselves); types V and VI are connected with
the Cayley-Graves algebra (octonions or octaves).

A Cartan domain has three important invariants: the dimension d,
the rank r and the genus p. Everybody knows what dimension is. The
rank can be defined as the largest number r such that a polydisk of
dimension r can be (properly) imbedded into the domain. The only
rank 1 case is the ball. The disk is specified by dimension 1 and then
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the rank is also 1, while the genus is 2. The definition of the genus—this
involves the boundary structure—is more intricate so we have to refer
to the literature. There are also two more sophisticated characteristics
sometimes written a and b, for which we likewise must make an appeal
to the literature. Let us just recall the relations

ar(r —1)

d=1b
+ 2

+, p=2+a(r—1)+0b.

One can approach symmetric domains along various avenues:
a) the pedestrian way, case by case study [11];

b) the Lie approach [10];

c) the Jordan approach [15, 21].

Each of these has it own virtues. So far I have myself always preferred
a); this is the first time that I embark on avenue c), taking some
advantage of the Jordan triple system structure. The little that is
needed about this will be summarized in an appropriate location in
Section 2.

As for the theory of function spaces on a symmetric domain, I refer
Arazy’s beautiful survey [1], and I found also his paper [2] helpful,
although the latter addresses itself only to the tube type case (built on
a Jordan algebra, rather than a Jordan triple system!).

2. Transvectants and Hankel forms. Let us fix a bounded
symmetric domain D in C?. We endow C? with the Hermitian norm
| - || induced by the Bergman metric of D, denoting the corresponding
scalar product by (-,7). We may clearly assume that the standard
basis e; (j = 1,...,d) is an orthonormal one, e; = (1,0,...,0) etc.,
(€5, k) = dijk-

Let A%2(D) (a > —1) be the Dzhrbashyan space, i.e. f € A%?(D) if
and only if f is analytic in D and

172 = /D F)PE$ (2, 2)de(2) < oo,

where K(z,w) is the Bergman kernel of D and de the Euclidean
measure in C%, p being the genus of D. It is also expedient to put
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A = a+ p and to have a special notation for the weighted measure du,
du(z) = K'~*P(z,2)de(z). Then the above condition can be written

1712 = /D ()2 du(z) < oo,

The condition o > —1 or A > p— 1 guarantees the convergence of these
integrals for sufficiently many functions f. Note that K (z,w) is the
reproducing kernel in A%?(D).

Remark. In order to indicate the dependence of the various data on
the parameters, one may use a subscript, writing e. g. ||f||, and duq
for ||f|| and dp.

The automorphism group G = AutD acts on A“%(D) via unitary
maps according to the formula

Ue: f(2) = FERNERNY?,  €€G,

where £ is the Jacobian of ¢ (i.e. € = D&(2)/(Dz)).

We would like to define bilinear forms H,, on A*?(D) x A*?(D) 3 de-
pending on a tensor? “symbol” ¢ which behaves nicely (“covariantly”)
under the action of G:

HLP(UfflaUEfQ) = HWgap(flan)a EEG, f17f2 EAQJ(D)’ SOES,

where W is a suitable action on an appropriate space of symbols S.
We shall, informally, refer to such forms as Hankel forms. (Thus the
transformation of a Hankel form is a Hankel form.) We seek them in
the form

Ho(f1, f2) = /D (T(f1, £2)(2), 9(2)s dul2),

where di is the G-invariant (Bergman) measure D, di(z) = K (z, Z)de(z),
(+,7); is a suitable G-invariant inner product (depending on z € D) and
T is a bilinear differential covariant generalizing the transvectant in the
case of the disc [13] and the ball [16]:

T(Ue¢ f1,Ue f2) = We(T(f1, f2)),
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W being a representation of the form W = U ® U ® V with a suitable
finite dimensional representation V. (The meaning of this is simply
that the effect of W on symbols ¢ is:)

p(z) = Vpl(€2)(E(2)MP,  €eG.

Remark. The elements of A%?2(D) should really be viewed as sections
of a certain Hermitian line bundle L) over D, on which G acts via fiber
and metric preserving maps. Then T'(f1, f2) (as well as ) is a section
of a bundle of the type Ly ® Ly ® M, where M is a suitable vector
bundle (cf. infra).

It is clear how to define T in the two “lowest” cases:

To(fr, f2) = f1- fo,
Ty (f1, fo) = dfv - fa — f1 - dfa.

Lemma 0. T is covariant (M = trivial).
Lemma 1. T} is covariant (M = T"™D = complex cotangent bundle).
Proof. Put g = Ug fx, k =1,2. Thenfor z € D, Z € T'M

gu(3 2) = dfel€(:); () EEDNT + ) S EN V(3 2),

where £, is the map on tangent vectors induced by &. It follows that

Ti(g1,92) (1 2) = Ti(f1, £2)(€(2), €:(2)) (6(2)) s

in brief:

T1(g1,92) = € (Tu(f1, f2))(£)*,

which is all that we need. O

We would now like to define “higher” transvectants. We argue as
follows. To establish the covariance of a bilinear differential expression
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T (f1, f2) it suffices to do this when fi, fo are reproducing kernels, say,
fr =K>?(,@y), fo = KMP(-,@,) with wy,wy € D.

We first illustrate this idea in concrete cases.

Example. D = D(I;;) = disc, d = 1. Then according to [13]
we have for each s = 0,1,2,... the bilinear differential covariant
(transvectant)

Ts(f1, f2) = Z(—l)j
D= %, (A); = A+ 1) (A4 — 1).

In this case K(z,w) = (1 — zw)™2 and p = 2, so f; = (1 — 2w;) ™7,
f2 = (1 — 2w2)~* and we find

- (V)] — (A)s—j@5 "
Dif; = . D¥if, = 2
fl ( —Z ))\"FJ, f2 (1—Z'LU2)A+S_J
Hence, by the binomial theorem,
1 w1 () s
Ts(fh f2) = )

(1 — Z’U_)l)’\)(l — ZU_)Q))‘ 1— zuq B 1 — zwsy
_ (01 — wp)*
(]_ — zwl)’\+5(1 — Zlf)g))‘+s )

The covariance of the last expression is obvious.

Example. D = D(I; q) = ball. This case is very similar (cf. [16]).
We shall not enter into details here, because in Section 5 we shall treat
this case from a general point of view.

Returning to the general case we can at least at once write down the
formula

o A K(z,u‘;l
(1) T\ (f1, f2) = ;f1f2 dlog Kz @)’

~—
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By Lemma 1 we know that the differential involved here must behave
in a covariant manner. However, it is possible to prove this also in a
more direct fashion.

To do this, let us recall the formula [15, (2.10)]
(2) K (z,@) = det B(z,w) ?,
where B(z,w) is the Bergman operator defined as [15, (2.9)]
(3) B(z,w) =id — D(z,w) + Q(2)Q(w).
Here D and @ are certain Jordan theoretic data. More exactly, if {-, -, -}
stands for the Jordan triple product on C? x C? x C? defined by D,

then for a € C¢

D(z,w)a = {zwa},
Q(z)a = 1{zaz}.

Note that, for any given z,w € C¢, D(z,w) is a linear operator on C?,
while Q(z) is an anti-linear one.

Example. D = D(I,,,,) (type I). The elements of D are rectangular
m X n matrices (d = mn, p=m + n) and

{zwa} = D(z,w)azw*a + aw*a

Q(z)a = za*z.
It follows that in this case

B(z,w)a = (1 — zw*)a(l — w*z)
so (cf. [11, p. 84])

K(z,w) = det B(z,w) ™" = det(1 — zw*)~(m+n),

From (2) it follows that the differential in (1) can be written

—tr[dB(z,w1) - B~ (2,w1) — dB(z,Ws) - B~ (2, w2)].
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We further record the formula [15, (2.10)]

(4) B(£(2),€(w)) = &(2) - B(z, @) - &« (w)"

(Here the upper * denotes the adjoint of a matrix, while a dot - stands
for matrix multiplication. Incidentally, the proof of (2) can be based
on this formula, see [15, (2.12)].

Differentiating (4) with respect to z (keeping w fixed) we find

dB(£(2),§(w)) = &u(2) - dB(2,W) - & (w)* + déu(2) - B(z, @) - & (w)*.
On the other hand, we have, likewise by (4),
B (€(2),E(w)) = Eu(w)" - BTN (z,0) - £u(2) 7Y

so that altogether if we multiply together

dB(¢(2),&(w)) - B7H(¢(2), &(w))
= &(2) - dB(2,@) - B~ (2,0) - €77 (2) + déu(2) - €77 (2)

or, in abbreviated but more readable form, with B = B(z,w)
¢ (dB-B ') =¢ dB- &' +de, £

We write this formula twice with w replaced by w; and ws and form
the difference. Then the last terms drop out and we obtain, introducing
the notation

Q= dB(z,m) - B~ (z,w1) — dB(z,2) - B~ (2,02),

which we again may abbreviate to (with By = B(z,w1), B2 = B(z,w2))
Q=dB,-By' —dBy- B;*,
an end result which we can write in condensed form as

=696

(This time an upper * is interpreted as pullback of exterior differential
forms.) This formula again gives, taking the trace,

& (trQ) =trQ .
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Example. D = D(I; 1) = disc. Then, as we know,

wy — We

= Ao = i)

dz.

As plainly (1) can be rewritten as

(5) Tl(flaf2):%flf2tr9a

the above proves the desired covariance. (If M = T™D, we must
interpret V¢ as £*.)

Remark.  The form tr{2 can be expressed in terms of the quasi-
inverse (see [15, Section 7.2]. Indeed, using formula JP31 (see [15,
Appendix], we find that

dB(z,®) = —D(dz, ) + Q(dz,2)Q(2)
= —D(dz,w*)B(z,®),

whence
Q =tr D(dz, w3 — w7) = (dz, w5 — @7).

The point is now that this can be exploited to define higher weight
generalizations. In particular, imitating what was done in [16], we
are led to set for each s = 0,1,2,... (and still for f; = KM?(- @),
f2 = KMP( wy) with wy,ws € D)

Ts(fr, f2) = comst. f1 fo(trQ)©°.

The exact value of the constant is here of no importance; the symbol
© stands for the symmetric tensor product. Thus now M = (T"*D)®.

Now we can also get rid of the restriction that f;, fo be reproducing
kernels. Indeed, for general fi, fo in A%%(D) we set

Ts(f1, f2) = const./ KMP (2,01 KNP (2, w9) (tr Q)©°

(6) DxD
x f1(w1) f2(we)dp1 (w1)dpz (w2);



1074 J. PEETRE

this should be viewed as a definition. Its covariance is manifest.

But we can do even more. For we can equally well consider the
case when the single parameter s is replaced by a “signature” s =
(s1,82,-..,84), that is, a nonincreasing sequence of integers s; > sy >
<o+ > 8q > 0, or a “partition” of “length” d. Namely, we observe that
as a generalization of (4) we have

EQAQNAQ) =6 QAQA---AQ-EH].

Therefore we can as a generalization of (5) set

T5(f1, f2) = const. flfg(trQ)G(SrsZ) ® (tr QA Q)®(52753)

6
©) @ - (trQAQA--- AQ)O%

The covariance of this bilinear expression is immediate. This time we
take M = (T"*D)®(s1752) @ (T"™*D)O(52753) @ ... @ (T'*D)®%4.

This time we set for fi, f2 in A%?(D)

(7) Ta(fr, f2) = comst. / [ KM K )

x (trQ)°Cr752) @ (trQ A Q)27 52)
@ (tTQAQA--- AQ)O%d
x f1(wr) fa(we)dps (wr)dpz (w2);

again it is clear that this is a covariant being.

Remark. In general, the corresponding Hankel forms denoted H! - Say,
may not give an irreducible component in the spectral decomposition
of the Hilbert space of Hilbert-Schmidt forms over A*2(D).

Remark. It is not quite clear what is the real bearing of this last
generalization. For instance, it is easy to see that trQ2 A Q = 0, so
that one should put some restrictions on the signatures s to be used.
In what follows, we shall therefore mainly have the case of the trivial
signature s = (s,0,...,0) in mind.

One thing remains to be checked, namely that the transvectant is
a local operator.> Because of the covariance already established it
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suffices to do the computation for z = 0. As B(0,w) = 1, dB(0,w) =
—D(dz,w) (see (3)), it is clear that the integral in (7) comes then as a
sum of product of two integrals of the form

(8) /D 0" f(w) dp(w),

where we have denoted by w’! a general monomial, w! = wil w? ... wff
where wy,...,wg now denote the coordinates of the vector w. Let
f(w) =3, f(I)w! be the Taylor development of the analytic function
f at the origin. Introduce also the Gram matrix

Ty = / w'o? dp(w).
D

Let |I| denote the length of the integer vector I, |I| = iy + -+ + ig.
Then we know that I';; = 0 for |I] # |J|. It follows that each integral
(8) comes as a finite sum

> AT,

{J:11=171}

that is,

(J)
SR

{:11=1I1}

where f(/) = 8|J|f/8z{1 ...azéd, J!'=j1!...j4!. Thus we have proved
that there is a formula of the type

T, )00 = > a0 (0.

H1+J]=ls|

But by the covariance already established we must have exactly the
same formula for any point (just write 0 in place of z). Indeed,
to see this we need only apply the formula already proved with f;
and fa replaced by the functions U, fi and U,_f2, o, being the
symmetry interchanging the points 0 and z. This substantiates our
claim concerning the local character of the transvectant.

Remark. As far as we know, the Gram matrix {I'r;} has never been
computed in the rank greater than 1 case (cf. [11]), so we cannot write
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down the explicit form of the transvectant in any such case. If the rank
is 1 (the ball), we have an orthogonal basis of monomials so there is no
problem. In Section 5 we suggest a slightly different approach, based
on representation theory, which gives concrete results at least in some
cases.

Remark. Note that the transvectant behaves covariantly even if we
pass from G to its complexification G¢, which is a complex Lie group.

3. Discussion. We have now defined on a symmetric domain D in
C? a covariant Hankel form on the Hilbert space A%?(D) corresponding
to any given integer s or, more generally, a signature s = (sy,..., 8q).
Our considerations have, however, been purely formal. The next
issue on the agenda would now be to prove that they are Hilbert-
Schmidt on a suitable space of tensor symbols ¢. If we also knew that
our procedure exhausts all irreducible covariant Hankel forms—this
would be a completeness result—we would then have a Plancherel
theorem for bilinear forms analogous to the one (implicit!) in [13]
in the case of the disc (cf. also [17]). On the abstract level tensor
products of representations in the discrete series have been investigated
by Repka [20], so in principle it should be possible to read off the
desired completeness from his results, but much work remains to be
done. Writing out the corresponding orthogonal decomposition in
terms of appropriately chosen bases, would then lead then to interesting
considerations involving special functions (generalized hypergeometric
functions); cf. [18].

Next, one would also ask the usual other questions pertaining to
the “size” of a bilinear form (boundedness, compactness, membership
Schatten-von Neumann (S,-) classes); though usually it is the Ss-
case that is the hardest. This would then similarly correspond to a
Hausdorft-Young theorem for forms. None of this will be carried out
here but will be left for the future. Note however that this, in particular,
calls for developing a theory of invariant tensor spaces over a symmetric
domain; so far only invariant function spaces have been studied and this
theory is despite everything still an embryonic (Hilbert space) level (see
1, 2]).8
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4. Other uses of transvectants. The covariant Hankel forms
were, in Section 2, constructed with the aid of the transvectant. It
turns out that the transvectant is a very useful tool in this type of
analysis in general. In the present Section we point out three more
instances of this.

4.1. Big Hankel operators. First, we remark that the study
of Hankel forms is equivalent to the study of “small” Hankel opera-
tors (linear operators from A%?(D) to the space of conjugate-analytic
functions A*2(D)). But we can apply our ideas equally well in the
context of “big” Hankel operators (operators that map A*?(D) into
its orthogonal complement (A%?(D))+ in the Hilbert space L?(D,dpu).
Following [4] let us consider operators whose kernels are of the form
KMP(21,29)F (21, 22), where F is a function which is analytic in both
its arguments. We subject F to the transformation rule F(z1,22) —
F(&(21),£(22)), € € G, so it is a “scalar” quantity. (Its restriction to
the diagonal {z; = 23} is essentially (up to a conjugation) the Berezin
covariant symbol; cf. [3, 18].) Let us return for a moment to the Hankel
forms H,, (Section 2), writing them now in the form

(1 f2) = [ (Folen ). 1) © faG)- i) dn().
Here the transformation rule for F,, apparently, reads

Fp(21,22) = Frep(€(21),€(22)) (€(21))(E(2))Y, € €G.

Suppose now that the corresponding transvectant 7" viewed as a func-
tion of A can be continued analytically all the way down to A = 0. Then
we can take A = 0 in the above formula. Thus we get a candidate for
a big Hankel operator. (For the case of the ball see [16].)

4.2. Orthogonal decomposition of L?(D,du). Our second
application concerns the discrete parts the orthogonal decomposition of
the Hilbert space L?(D, du) under the action of the group G. In the case
of the disk and the ball this decomposition was written down explicitly
in [16] and [23], respectively, and the discrete parts were investigated.
We remark that our transvectants T'(f, f2) as constructed in Section
3 make sense also if the function f; or fs are not necessarily analytic
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and we have the same covariance. Therefore we can corresponding to
each transvectant T write down a discrete part, A;’Q(D), say, in the
said decomposition (for a general domain D) according to the following
recipe: it consists of (tensor valued) functions f that are of the form

f=KPT(g,KM?)

with g analytic. If T = Ty (see Section 2), we get of course back the
space A%?(D) itself.

4.3. Laguerre-Forsyth type invariants. In [8] it was indicated
how the transvectant could be used to construct differential invariants
connected with mth order ordinary differential operators on a Riemann
surface. Every such operator L, say, determines a projective structure
on the Riemann surface such that in terms of any projective coordinate
z one has Lf = d™f/dz™ and terms of degree less than or equal to
m — 2. We can now recover the lower order terms by adding to the
leading term d™f/dz™ terms of the form MPf = T(f,©), where T
stands for the [th order transvectant and © is a differential form of order
m — 1, or weight 2m — 21,1 =0,1,...,m — 2.7 The question now arises
whether something similar can also be done in connection with total
partial differential equations associated perhaps with a quotient of a
symmetric domain, which is a natural higher dimensional generalization
of the notion of a Riemann surface. This suddenly puts us in the realm
of automorphic functions!

Remark. The leading part d™ /dz™ of the operator L is known as the
Bol operator (see [9]). It can indeed be viewed as a special case of the
transvectant. Namely, let us write down the expression for 75 when
f1 and fy change with different weights, say, v; and vy respectively
(see [9]). By analytic continuation we can extend Ty to the case of
arbitrary complex values of these parameters and T still transforms
covariantly. Now the Bol operator (the case v; = 1 — s) arises appears
essentially as a residue. I wonder if this can be done also in higher
dimensions also.
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5. Concrete examples of transvectants and a general
formula.® We describe a general technique for handling integrals of
the type

(1) (f.0) = /D 2(w)  (w) dp(w),

where f is an arbitrary holomorphic function and ¢ a polynomial.

First we recall the so-called F-norm:®

) 11 = ca [ £GP 1T ),

where ¢4 is a normalization constant chosen such that |1 = 1. It
may be viewed as the limit of the whole family of norms || f||,. Indeed,
changing scale and renormalizing the measure we can write

1F12 = cu /D ) |f(z)|2det<1 D), Q(zga) )

where Dp, is the domain D blown up in the ratio R. If we recall that [15,
(2.10)] ||z||* = tr D(z, z), we see that if we pass to the limit (o — oo,
R — 00, a/R? — 1) this becomes (1).

We recall further that we have for the corresponding scalar product

(e =a( 5 ) 10)

provided ¢ is a polynomial.

Finally, we mention that if we consider the action of the isotropy
group K of G at the origin 0 on polynomials then by a fundamen-
tal result due to Schmid (see, e.g., [1]) each irreducible component
(subrepresentation) comes with multiplicity one. In other words, they
are labeled by a signature m = (my,...,m,), a partition of length r,
not d. Let Py, be the corresponding space of (homogeneous) polyno-
mials. Because of the irreducibility the norms ||f|| = ||f||, and || fl|#
are proportional on Pp,:

1
2 _ L onpp2
1f1I" = amllf\lp,
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where the proportionality factor ay, > 0 will be considered as a function
of A = a + p, writing ay, = am(A).
Having mentioned all of these facts, let us consider the orthogonal (or

Peter-Weyl or Hua or Schmid) decomposition of f and ¢: f = >_ fm,
¢ =) g¢m- Then we find using (2) that

(£,0) =D (fmr@m) = Y ' (fns Gm)
=Y a (f,Gm)F = Y 0 Gm ( )(0)-

In particular, this computation is applicable when ¢ is a monomial,
q = 2! for some multi-index I.

Example. D = D(I; 4) = ball. In this case r = 1, while p = d + 1
(as @ = 1, b = d). Therefore to each degree of homogeneity there is
only one signature and one irreducible component, implying by what
has been said that the monomials are orthogonal. For the norm of a
monomial one has the formula

r()I! I . ; . .
117 = s = s Mg, D

On the other hand, it is well-known that
2 =1, L =m
Comparing the two expressions we conclude that in this case
Am = am(A) = (A)m (= A(A+1) --- (A+m—1)), (Pochhammer symbol).
It follows that

[+ p(epauz) = ﬁf“) (0).

It is now readily seen that
S

s\ d f1 d°79 fo
To(fi f2) = Y (-1)° <]> & (A>sfj’

i=0
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which is the formula given in [16] (explicitly at least for s = 1,2).

Example. D = D(I;2) = 4-dimensional matrix ball. In this case
p = 2, while p = 4 (as a = 2, b = 0). We consider T in the
simplest (nontrivial) case s = 2. Then there are only two competing
signatures (1,1) and (2,0). In the general case of the domain D(I, ;)
the proportionality factor is (see [1])

am = am(A) = H <)‘_ (J— 1)%) K
So in our case we have
(3) a(,ny) = (A)1(A =11 =A(A=1),
(4) a0 = (N2 =AA+1).

Let us write the elements of D = D(I,1), unimodular 2 x 2 matrices of
operator norm less than 1 as

(202,
23 24
Then a monomial z7z% (with j < k) belongs to P 1) unless (j,k) =
(1,4) or (j,k) = (2,3). In this case we thus have

ik _ _10%£(0)
/DZJZ f(2)dpu(z) = ayy 5%

On the other hand, the space F(3 () is one dimensional and is spanned
by the polynomial z124 — 2223 (determinant). We have the orthogonal
decomposition

1 1
2l = §(z1z2 + 2324 + E(zlz2 — 232%).

This gives

o 20 T
/D 224 (2) dp(z) = aﬁﬁgzl +5( 20— 011 H,
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where we have put

O*f o*f

Hf= 021024 022023

In the same way we find (change of sign!)

N L) L
[ #50e) aus) = a0 - ez — Ay

It is likewise easy to prove that

[ #@aut) =a .

Putting all this information together gives

To(fr, f2) = ar'd*f1 © fo — 2a; °dfs @ dfs + agi fr © &> f2
1

+ i(ai(l) - ai})(Hfl ® fo— Hfy ® f1)(dz dz* — d2%dz?),

where the numbers a are those from (3) and (4).

We end this Section by stating a general formula for 7s which in
principle works for any bounded symmetric domain. We observe that
we can write for each j

(4) (dzvu_})j = Z Qm(dzvu_))a

|m|=j

where gy, is a polynomial in two arguments, which, when the first one
is kept fixed, belongs to Py, in the second argument. (Here (dz,w) =
> dz/@’ and we treat dz',...,dz" as commuting variables.) From
(4) we readily derive

(dz, @, — Wa)°® :Z(—l)s<j> © Y qm(dz,m1) Y quldz,ds)|.

3=0 |m|=j In|=s—j

This, apparently, yields the end result:
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Theorem. We have the following expression for the transvectant Ts:

° m(dz0/0z) f n(dz0/02) f:
T )= 31 (j)z (B o 3 wlEL

=0 |m|= @m Inj=s—j

Example. Returning to the four-dimensional matrix ball D(Iz ) we
see that (4) in this case taking j = 2 gives us the decomposition

(dz,w)? = [(dz,w)? — (@'@* — @*@>)(dz'dz* — dz?d2®)]
+ (@l — w?w3)(dztdzt — d2?d2?),

which of course yields the result in a previous example.

Acknowledgment. My thanks are due to Prof. H. Upmeier for en-
couragement and for suggesting some improvements of the exposition.

ENDNOTES

1. The year I was born!

2. This terminology, apparently, is parallel to the one employed in group theory
(classical groups versus exceptional groups).

3. The case when the factors are different has, if D is a disk, been studied by
Zhang [23].

4. We use the word tensor informally in the sense of H. Weyl, to denote the
elements of any vector space on which G acts.

5. Here I am obliged to Svante Janson for a helpful remark; at an earlier stage
of this investigation I had thought, erroneously, that this might not be the case.

6. Recently, we received an interesting preprint from Pro. K. Zhu [24] where he
does study Besov spaces in the context of symmetric domains; however, it is not
yet clear that his spaces possess the right transformation properties. There is also
a preprint by Hahn-Youssfi [9] on the same subject.

7. We have been informed by Prof. C. Itzykson that this is of interest also from
the point of view of physics, in connection with so-called W-algebras; see e.g., [12].
See also [6], where such questions are considered in the “super” context.

8. In an earlier version of this paper, circulated as Mittag-Leffler report No. 25,
1990/91, Section 5 had a different content; the computations there (omitted now!)
must be fixed up, as we overlooked the fact that d2B # 0.

9. The letter F' can be read in various ways: Fis(c)her, Fock, ... .
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