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REALIZATIONS OF FINITE DIMENSIONAL ALGEBRAS
OVER THE RATIONALS

C. VINSONHALER AND W.J. WICKLESS

Introduction. The realization problem is recurrent in abelian group
theory: Given a ring R, when can R be realized as R ~ End (G) for
G a certain type of abelian group or module? In this note we will
be interested in a specific form of the realization problem: Given a
finite dimensional vector space V' over the rationals () and a Q-algebra
A C End(V), when can A be realized as A = QEnd(G) for G an
additive subgroup of V' with QG = V'? Here we are identifying End (G)
with a subring of End (V') in the usual way.

A related question arose in [4] and [1]. In general, if G is a
mixed abelian group with torsion subgroup 7', there is a natural
homomorphism 6 : End (G) — End (G/T). In [1], Albrecht, Goeters
and Wickless investigated the image of 6 for G in a class G of groups
in which G/T is always a finite dimensional Q-vector space and also
the image of 6 is a finite dimensional Q-algebra. As above, assume A
is a subalgebra of End (V') where V is a finite dimensional @)-space. If
there exists a group G € G and an isomorphism G/T ~ V such that
the image of the induced composition

End (G) — End (G/T) — End (V)

is precisely A, then A is said to be G-realizable. We shown in Section
2 that a @)-subalgebra A of End (V) can be G-realized if and only if
A can be realized as QEnd (G) for G a full locally free subgroup of
V (Theorem 2.4). In Section 3 we show that if A can be realized by
any group, then A can be realized by a locally free group (Theorem
3.5). This result answers in the affirmative a conjecture made in [5].
In Section 4, we show that the algebras A that can be realized are
plentiful. Some examples are included to illustrate the usefulness of
the theory.
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1. Definitions and preliminaries. All groups are, of course,
abelian; and the torsion-free groups have finite rank. The symbol T’
always denotes the torsion subgroup of a mixed group that should be
clear from the context. Then 7}, is the p-primary component of 7. A
torsion-free group G is locally free if the localization G, at each rational
prime p is a free module over Z,, the localization of the integers Z at
the prime p. Locally free groups have played an important role in the
theory of torsion-free groups, dating at least back to Warfield [6].

The p-adic integers and p-adic numbers will be denoted by Zp and Qp,
respectively. If G is a torsion-free group or ring, denote ép = Zp ®zG.
As usual, we identify G with the subgroup Z ® G of Gp. We also regard
G as a subgroup of its divisible hull QG, so that everything lives inside
Q, ®G.

In Section 2 we will work with a class G of mixed groups defined in
[1] as follows.

Definition 1.1. The class G consists of all groups of the form
H =G @ W, where W is finite and G is a mixed group, with torsion
subgroup T' = @7}, that satisfies the following conditions.

(a) The natural inclusion of T' in IIT), extends to a pure embedding
of G into I17}; and

(b) G/T is a nonzero finite rank group; and

(¢) G contains a maximal-rank free subgroup X that projects onto
each T, via the natural projection IIT}, — T),.

Remark. In view of condition (b) of Definition 1.1, if X and X' are
any two maximal-rank free subgroups of G, then there is a positive
integer n such that nX C X’ and nX’ C X. Thus, condition (c) could
be restated as follows: If X is any maximal-rank free subgroup of G,
then X projects onto 7}, for almost all primes p.

It is shown in [1] that G is precisely the class of reduced mixed
groups H of finite torsion-free rank such that H is self-small and H/T
is divisible. In this setting, the image of the map 6 : End (H) —
End (H/T) is always a finite dimensional Q-algebra A. The algebra
A has a number of useful attributes. For example, the flat dimension
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of H as an End (H)-module is equal to the flat dimension of H/T as
an A-module [1, Theorem 3.1]. The paper [4] initiated the study of
algebras A that occur as the image of #, and offers other applications.

2. Equivalent realization problems. In this section we show that
the mixed group realization problem of [1] is equivalent to the locally
free realization problem studied in [5]. The equivalence sheds light
on questions considered in both papers. To formulate our statements
more concisely, we introduce some new definitions. Let V' be a finite
dimensional Q-vector space. A subgroup G of V is called full in V
provided QG = V. If A is a subalgebra of End (V'), we say that A is
G-realizable if there exists a mixed group H € G and an isomorphism
H/T ~ V such that A is equal to the image of End (H) under the
induced map End (H) — End (H/T) — End (V).

A is locally free realizable if there exists a locally free full subgroup
G of V such that

A=QEnd(G)=Q{p € End (V) | G C G}.

For our purposes, the finite summand W of H = G® W in G is
irrelevant. Indeed, if A is G-realized by H, then A is G-realized by
G. Therefore, all groups G chosen from G will be assumed to satisfy
conditions (a), (b) and (c) of Definition 1.1.

Let G € G, and let X be a maximal-rank free subgroup of G. Then
F = (X 4+ T)/T is canonically isomorphic to X. By definition of G,
there is an embedding of G in 11T, giving projection maps G — Tj.
Thus, for almost all p, there is an epimorphism F — T}, given by the
composition of the isomorphism F' — X and the projection X — T,
(see the remark following Definition 1.1). Since T}, is p-local, for almost
all p there is an induced epimorphism m, : F}, = T,.

Definition 2.1. Let V be a finite dimensional Q-vector space, and
suppose that G € G with v : G/T — V an isomorphism. Let X
be a maximal-rank free subgroup of G and F = (X + T')/T. Then
an element ¢ € End (V) is v-realized by G if and only if for almost
all primes p there is a homomorphism ¢(p) : T, — T, such that the



1556 C. VINSONHALER AND W.J. WICKLESS

following diagram is commutative.
F,—* T,

(2.1p) u%uJ J@(P)
Fy T, T,

Note that, given ¢ € End (V), the map v~ 'pv is an endomorphism of
G/T. f F = (X +T)/T is the full free subgroup of G/T from above,
then (v='ovF + F)/F is finite. It follows that, for almost all primes
p, v ovF, C F,. Thus, for any ¢ € End (V), the left vertical arrow
is a well-defined map for almost all primes p. It is easy to check that
v-realizability is independent of the choice of the maximal-rank free
subgroup X of G. Indeed, if X’ is another maximal-rank free subgroup
of G and F' = (X' +T)/T, then F and F’ are finite rank full free
subgroups of G/T. Thus, Fj, = F, for almost all primes p. The next
lemma collects some useful facts from [4]. A proof is included for the
reader’s convenience.

Lemma 2.2. For each prime p, let T}, be a reduced p-group and
suppose G is a pure subgroup of IIT,, containing T = ®T,. Then T is
the torsion subgroup of G and:

(a) G/T is divisible.

(b)  FEach endomorphism of G lifts uniquely to an element of
End (IIT},).

(c) If G has finite torsion-free rank, then a map A € IIEnd (T},)
represents an endomorphism of G if and only if A(X) C G for some
mazimal-rank free subgroup X of G.

Proof. Tt is immediate that T is the torsion subgroup of G. Part (a) is
routine. For (b), note that since G/T is divisible and G is reduced, the
restriction map defines a monomorphism from End (G) onto a subring
of End (T'). But End(7) = End(®1,) = II(End7,) = End (IIT}).
Thus, we can regard End (G) as a subring of End (IIT},). In this setting
End (G) is simply the subring of End (IIT},) consisting of all maps which
send G into G. Since G is pure in IIT}, and contains ®T), it is easy to
show that End (G) is a pure subring of End (IIT},).



REALIZATIONS OF FINITE DIMENSIONAL ALGEBRAS 1557

(c) Since T = @T, is the torsion subgroup of IIT,, we have
A(T) C T C G for each A € End (IIT},). Suppose also that \(X) C G
for some maximal-rank free subgroup X C G. Let g € G be an element
of infinite order. By the maximality of rank (X) there exists a positive
integer m such that mg € X. Thus, mA(g) = A(mg) € G. Since
G is pure in IIT), it follows that mA(g) = mg’ with ¢’ € G. Hence,
AMg) — ¢ €T and A(g) = ¢ + [A(g) — ¢'] is in G. We have shown that
A(G) C G, as required.

Lemma 2.3. Let V be a finite dimensional Q-vector space.

(a) Suppose G € G andv : G/T — V is a fized isomorphism. Then
¢ € End (V) is v-realizable if and only if v 1pv € 6End (G), where
0 : End (G) — End (G/T) is the canonical homomorphism.

(b) If A is a subalgebra of End (V), then A is G-realized by G € G if
and only if there exists an isomorphism v : G/T — V such that A is
precisely the set of v-realizable elements in End (V).

Proof. (a) Let X be a maximal-rank free subgroup of G, and set
F = (X +T)/T. Suppose that v~ v = ¢ for some ¢ € End (G). By
Lemma 2.2(b), ¢ may be written ¢ = Ilp(p) with ¢(p) € End (T},). It is
routine to check that the maps ¢(p) fulfill the conditions of Definition
2.1, so that ¢ is v-realizable. Conversely, we show that each v-realizable
element of End (V) belongs to 6End (G). Let ¢ € End (V) be v-
realizable with maps ¢(p) making the diagram (2.1p) commute for
almost all primes p. If z € X C G C IIT},, then we may represent x as
z = Ilz(p) with z(p) € T,. The diagrams (2.1p) imply the equation

v ou(z + T) = Tp(p)z(p) + T.

Indeed, a diagram chase shows that if v 1gv(z +T) = y + T for some
y = Hy(p), then y(p) = ¢(p)z(p) for almost all p.

Define a map ¢ = IIp(p) € End (IIT},). Observe that for all x = ITx(p)
in X, we have ¢(z) = Hyp(p)z(p), so that ¢(z) + T = v=tpv(x + T).
Furthermore, since (X +7)/T is a finite rank full free subgroup of G/T,
there exists a positive integer m with mv—tov[(X+T)/T) C (X+T)/T.
Thus, m¢(X) C X + T C G. But G is pure in IIT), so that ¢(X) C G.
By Lemma 2.2(c), ¢(G) C G, that is, ¢ represents an endomorphism of
G. Finally, the equality ¢(z)+7T = v~ pv(x+T) shows that ¢ agrees
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with v~ tpv on F = (X +T)/T. Hence, 8¢ = v 1pv on V = QF and
v~ lov € 0End (G), as desired.

Part (b) is an immediate consequence of (a) and the definitions. o
We are ready for the main theorem of this section.

Theorem 2.4. Let V be a finite dimensional Q-space and A a
subalgebra of End (V). The following are equivalent:

(a) A is G-realizable.
(b) A is locally free realizable.

Proof. (a) — (b). Suppose that A is realized by G € G, with
accompanying isomorphism v : G/T — V. Since it will greatly simplify
our discussion to do so, we identify V' with G/T and set v = 1. Thus,
A becomes a subalgebra of End (G/T'). The skeptical reader can easily
convert the following proof to the general setting.

Our task is to construct a full locally free subgroup H C V with
QEnd (H) = A. To begin, let X be a maximal-rank free subgroup of
G,and F = (X +T)/T ~ X. Choose R to be a full free subring of A
such that RF C F. Write T = @pesT)p, where S is the set of primes p
such that T}, # 0. By Lemma 2.3 each r € R C A is v-realizable. That
is, there are endomorphisms 7(p) of T}, such that for almost all p, the
diagram (2.1p) (reproduced below with v = 1) is commutative.

F, T T,
(2.1p) TJ JT(P)
Fy T, T,

Because each 7, is an epimorphism, the commutativity of (2.1p) implies
that the endomorphism 7(p) is uniquely determined by r. It follows
that, for r,s € R,

(r+s)(p) = r(p) +5(p), and (rs)(p) = r(p)s(p)

whenever p is a prime such that (2.1p) commutes for both r and s.
Since R is a finitely generated Z-module, we may in fact conclude that,
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for almost all p € S, there is an induced R-module structure on 7}, given
by r& = r(p)x for r € R and = € T,. Denote by S’ the set of all primes
p € S for which 7}, becomes an R-module in this way. Our remarks to
this point show that S\’ is finite. Since RF C F', each localization F),
is an R-module. Moreover, for p € S’, the induced R-module structure
on T}, makes mp, : Fj, — T}, an R-epimorphism.

For p € S, let N, = kerm,. Then N, is an R-submodule of F,, with
p*®)F, C N, for some nonnegative integer k(p) (since G € G each T,
is finite). Thus,

F,Cp *PIN, Cp *PE, cV =G/T.

For p € S’ define H, = p’k(p)Np; and for all other primes put
H, = F,. Let H = NH,. Then H is a torsion-free group of rank
n with FF C H C V. The group H is locally free since, for p € S’,
H,/F, = p~*®)N,/F, C p~*®F,/F, is finite; while for p ¢ S,
H,=F,.

We claim that QEnd (H) = A. Indeed, for p € S', N, is an
R-submodule of F, so that H, = p_k(p)Np is an R-submodule of
p‘k(p)Fp. Thus, RH, C H, for all primes p in the set S’. Moreover,
RF C F implies RH,, C H, for all primes p not in S’. It follows that
R C End (H) and hence that A = QR C QEnd (H). On the other
hand, let ¢ be an element of End (V)\A. Then the map ¢ is not v-
realizable (v = 1) by Lemma 2.3(b). Since ¢(F,) C F, for almost
all p, it follows that, for infinitely many primes p, ¢ does not induce
an endomorphism ¢(p) on T, making diagram (2.1p) commute. This
assertion is equivalent to the fact that IV, is not a p-invariant subgroup
of V for an infinite set of primes p. But then pH, Z H,, for infinitely
many p and ¢ € QEnd (H). Thus, H realizes A.

(b) — (a). Suppose that there exists a full locally free H C V with
QEnd (H) = A. Using the techniques of [1], it suffices to show that A
can be G-realized under the additional assumption that H has no rank
one summand of type equal to outer type H. Choose a maximal free
subgroup F' C H. As before, choose a full free subring R of A such
that RF C F. Since R is a finitely generated subring of QEnd (H),
we can assume without loss of generality that RH C H. Thus, for all
primes p, we have F), a full R-submodule of the R-module H,,. Since
H is locally free, H,/F), is finite. Consequently, for each prime p, there
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exists a nonnegative integer k(p) with F, C H, C p~*®)F,. We have
an exact sequence of R-modules:

(1) 0= H,/F, = p *PE /F - p O F /H, =~ F,/p*P H, — 0,

where all of the maps are the natural ones.

For each prime p, let 1}, be the finite p-group Fp/pk(p)Hp. Let Ge G
be the pure subgroup of IIT), generated by @7}, and canonical image of
FinIIT, = HFp/pk(p)Hp. Then there is a natural isomorphism v from
G/T = G/(®T,) to QF = V. Note that v~ F is then a maximal-rank
free subgroup of G/T. This represents a slight change of notation.

To complete the proof, it suffices by Lemma 2.3(b) to show that A
coincides with the set of v-realizable elements in End (V). Since, for
all p, pk(p)Hp is an R-submodule of F},, each element of R induces a
legitimate endomorphism r(p) on T}, = Fp/pk(l”)Hp. That is, there is a
commutative diagram,

—1 Tp
v ip, — T,

(21p) Vl’r‘lIJ/ JT(P)
v, ——— T,

This shows that R, and hence A = QR, are contained in the set of v-
realizable elements of End (V). Suppose ¢ € End (V)\A. We will show
that ¢ is not v-realizable. First, ¢ ¢ QEnd (H) = A. Since H is locally
free, it follows that ¢H, ¢ H, for infinitely many p. But F is finite
rank free, so (pF + F')/F is finite. Hence, ¢F,, C F, for almost all p.
Thus, for infinitely many p, the map ¢ induces a natural endomorphism
of the group p~*P)F,/F, such that H,/F, is not p-invariant. In view
of the exact sequence (1), for these p there cannot be an endomorphism
¢(p) on T, = F,/p*®) H, which makes (2.1p) commute. Thus, ¢ is not
v-realizable, and the proof is complete. a

3. Locally free realizability. In this section we show that if A is
a subalgebra of End (V) with A = QEnd (H) for some full subgroup H
of V, then H can be chosen locally free. We begin with a proposition
due to J.W.S. Cassels.
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Proposition 3.1 [3, Chapter 5, Theorem 1.1]. Let K be a finitely
generated field extension of the rational numbers Q. Then K embeds
into the p-adic numbers Q, for infinitely many primes p.

We are grateful to the referee for providing a reference for Proposi-
tion 3.1. The next lemma records a well-known result in the theory
of torsion-free groups. Let H be a torsion-free group, and let R be
a subring of End (H). Then H, = Z, ® H becomes a module over

R, = Z, ® R in the usual way. Also standard is the fact that any endo-
morphism of QH may be regarded (uniquely) as a Qp-endomorphism
of QH,,. We denote the divisible subgroup of H, by div (H,).

Lemma 3.2. Suppose that A is a Q-algebra and H is a finite
rank torsion-free group with QEnd (H) = A. Then, for each ¢ €
End (QH)\A, one of the following conditions must hold:

(a) @(H,) € H, for infinitely many primes p, or
(b) @(div H,) Z div H,, for some prime p.

We also list for reference a combination of Lemma 1.4 and Proposition
1.5 from [5].

Lemma 3.3. Let V be a finite dimensional Q-space, A a subalgebra
of End (V) and R a full free subring of A. The following are equivalent.

(a) There is a full locally free subgroup H of V' such that QEnd (H) =
A.

(b) For each ¢ € End (V)\A, there exist infinitely many primes p
and elements w(p) € V such that p(w(p)) ¢ Ryw(p).

(c) For each ¢ € End (V)\A, there ezist infinitely many primes p
and elements w(p) € V,, such that p(w(p)) ¢ Ryw(p).

The next proposition will be used in the proof of the main theorem
of this section, as well as in Section 4.

Proposition 3.4. Let V be a finite dimensional Q-vector space, A



1562 C. VINSONHALER AND W.J. WICKLESS

a subalgebra of End (V) and ¢ € End (V)\A. Suppose that, for some
prime p, there exists w € V, such that pw ¢ Apw = (Z, ® A)w.
Then, for infinitely many primes q there exists w(q) in Vq such that

pw(q) ¢ Aqw(q).

Proof. Write w = So;; @ h; € V, = Q, ® V, with oy € Q,, h; € V,
and let K be the finitely generated extension of @) (contained in Qp)
generated by {a;}. By Proposition 3.1, K may be embedded in Qq
for infinitely many primes g. For such a prime ¢, we may identify K
with a subfield K’ of )y, whereby w = Xa; ® h; is identified with
an element w' of K' @ V. C Q, ® V = V,. With this identification,
ow' ¢ (K' ® A)w', because pw ¢ (K ® A)w C A,w. Suppose that
pw' € Agw' = (Qu®A)w'. Then puw' € (K'@V)N((Q,®A)w'). Write
Qq = K'® L as K'-modules, and let 7 denote projection onto K’. The
idempotent 7 induces a K'-projection of Qq ®V onto K’ ® V. Then
puw' =mpw' €T[(K'@V)N(Q,@ A)w')] = (K' @ V)N (K'® A)w' =
(K’ ® A)w', a contradiction. We have shown that there are infinitely
many primes ¢ for which there is a w(g) € V, with pw(q) ¢ Aw(q).
O

Theorem 3.5. Let V be a finite dimensional Q-space and A a
subalgebra of End (V). Then A is realizable by a full subgroup of V
if and only if A is locally free realizable.

Proof. The “if” direction is obvious. Conversely, suppose that A is
realizable by a full subgroup H of V. That is, H is a full subgroup
of V with A = QEnd (H). In particular, there is a full free subring
R of A with RH C H. In view of Lemma 3.3, to show that A is
realizable by a locally free submodule of V, it suffices to show that
for ¢ € End(V)\A, there exist infinitely many primes p such that
ow ¢ Ryw for some w = w(p) in V,. Given such a ¢, there is nothing
to show if condition (a) of Lemma 3.2 holds. Thus, we may assume
that (div IAIP) Z div ﬁp for some prime p. In particular, there exists
w E ﬁp such that pw ¢ (Qp ® R)w = fipw. By Proposition 3.4, there
are infinitely many primes g for which there exists w(g) € V, with
pw(q) ¢ Aqw(q). Plainly, for such a w(q), pw(q) ¢ wa(q). From
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Lemma 3.3, it follows that A is locally free realizable. a

A special case of Theorem 3.5 confirms a conjecture made in [5]:
Every algebra that can be realized by a quotient divisible group can be
realized by a locally free group.

4. Realizable algebras. We conclude with some results, an
example and a conjecture on the set of all realizable subalgebras of
End (V), V a fixed Q-vector space. In view of Theorem 2.4, “realizable”
can be taken to mean either G-realizable or locally free realizable. Thus,
the results of [5] and [1] can be combined to show that the realizable
subalgebras form a large subset of the set of all subalgebras of End (V).

If dimV = n, let {u;; : 1 < 4,5 < n} be a subset of End (V)
corresponding to a complete set of matrix units: w;jur = &jpUi-
Suppose U is a subset of {u;;} such that the Q-vector space spanned by
U U {1} is a Q-subalgebra of End (V). That is, the subspace spanned
by U is closed under products. We call such an algebra a subalgebra
generated by matrix units.

Proposition 4.1. Let V be a finite dimensional Q-vector space and

A={ACEnd(V): A is realizable}.

(a) A is closed under conjugation by any invertible element of

End (V).

(b) A contains all semisimple subalgebras of End (V). More gen-
erally, A contains all subalgebras of End (V') that satisfy the double
centralizer condition in End (V).

(c) A contains all subalgebras of End (V') generated by matriz units.

Proof. (a) If A is locally free realized by H C V, then pAp~1! is
locally free realized by pH.

(b) [5, Theorem 2.1].
(¢) [1, Theorem 4.2]. O
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Curiously, the set of realizable subalgebras is not closed under algebra
isomorphism, as the next example shows.

Example 4.2. Let V = Q*, and let A be the subalgebra of End (V)
defined as the set of all rational matrices of the form

with z = w — z + 2y.

@ 8 O
w8 8 O
o oo
2 coo

Example 2.6 of [5] shows that A is not realizable. However, the algebra
A is isomorphic to the algebra A’ consisting of all rational matrices of
the form

a 0 0 O
0 a 0 O
w z a 0
y 0 0 a

The algebra A’ is a subalgebra generated by matrix units and is
therefore realizable by Proposition 4.1(c).

Example 4.2 tempts us to offer a final conjecture.

Conjecture. Let V be a finite dimensional vector space over Q.

Then every subalgebra of End (V') is isomorphic to a realizable subalge-
bra of End (V).
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