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RIESZ DECOMPOSITION IN
INDUCTIVE LIMIT C*-ALGEBRAS

K.R. GOODEARL

ABSTRACT. As recently proved by Zhang, the projections
in any C*-algebra of real rank zero enjoy the Riesz decom-
position property. Here the Riesz decomposition property is
obtained for projections in several types of C*-algebras with
positive real rank, including the inductive limits with slow
dimension growth introduced by Blackadar, Dadarlat, and
Rgrdam. Waiving the dimension restrictions, weaker forms
of the Riesz decomposition property are established for gen-
eral inductive limits of finite direct products of homogeneous
C*-algebras.

1. Introduction and background. The Riesz decomposition
property (see below) for projections in C*-algebras of real rank zero was
established by Zhang [32, 1.1] and used as a key tool in his investigation
of the structure of such algebras and of their multiplier and corona
algebras—see, e.g., [32, 2.2, 2.3], [33, 1.2], [34, 1.1]. More recently,
Zhang’s result has been used by Elliott as one of the key ingredients in
his classification of certain C*-algebras of real rank zero [10].

Our aim here is to show that Riesz decomposition is more widespread
than Zhang’s theorem indicates. We prove it for a large class of C*-
algebras with positive real rank, including all simple inductive lim-
its with slow dimension growth as in [3], as well as nonsimple induc-
tive limits satisfying a related form of slow dimension growth. Under
somewhat relaxed hypotheses, we obtain weaker forms of Riesz decom-
position, sufficient for instance to prove that for any approximately
semi-homogeneous C*-algebra A (see Section 3), the partially ordered
abelian group K;(A4) ® Q is a Riesz group.

Our work on inductive limits with slow dimension growth relies on
extensions to arbitrary compact Hausdorff spaces of standard cancel-
lation theorems for vector bundles over finite C'W-complexes. Various
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forms of these results exist as folklore, as do their uses in connection
with C*-inductive limits, but they do not seem to be available in the
literature. Therefore, we have taken this opportunity to present state-
ments and proofs of sharp versions of these cancellation results.

1.1. We refer the reader to [1] for basic information and notation
concerning projections in C*-algebras, to [13] for the basic theory of
partially ordered abelian groups, and to [2, 3, 6-8, 10, 21, 24,
25, 27-30] for other perspectives on inductive limits of finite direct
products of homogeneous C*-algebras. In particular, given a C*-
algebra A, we follow [1, 5.1.1] in writing M., (A) for the algebraic direct
limit of the matrix algebras M, (A) under the embeddings

a0
arr (80),
and we denote the orthogonal sum of m copies of a projection p by m.p.
We use ~ to denote Murray—von Neumann equivalence of projections;

the notation p < ¢ means that p is equivalent to a subprojection of g.
We shall consider the following conditions on projections in My, (A):

Cancellation. p@®r ~q®r = p~ q;

Riesz decomposition. p < q1 @ g2 = p = p1 @ pa for some projections
p; with p; < g; fori=1,2;

Riesz interpolation. p; S g; for 4,5 = 1,2 = there is a projection r
such that p; S S gj for ¢,5 =1,2.

~

The latter conditions are parallel, but not in general equivalent, to
corresponding conditions on the pre-ordered abelian group K(A):

Riesz decomposition. 0 < x < y; +yo with y; > 0 for i = 1,2 = there
exist elements x; > 0 such that * = 1 + x2 and z; < y; for ¢ =1, 2;

Riesz interpolation. z; < y; for ¢,7 = 1,2 = there exists an element
z such that z; <z <y; foré,j =1,2.

Note that if the projections in My, (A) satisfy cancellation, then
Ky(A) is a partially ordered (rather than just pre-ordered) abelian
group. Moreover, in this case the Riesz decomposition (interpolation)
property for projections in M., (A) is satisfied if and only if Riesz de-
composition (interpolation) holds in Ky(A). In Ky(A), these properties
are equivalent [13, 2.1].
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We recall the use of the term Riesz group to denote a directed,
partially ordered abelian group satisfying the Riesz decomposition
(interpolation) property.

1.2. It is well known that the state space of a partially ordered
abelian group satisfying Riesz decomposition is a Choquet simplex
[13, 10.17]. Similar reasoning can be used to reach this conclusion
in the setting of pre-ordered abelian monoids, and consequently the
state space of Ky of any unital C*-algebra whose projections satisfy
Riesz decomposition is a Choquet simplex, as stated in the theorem
below. When combined with Zhang’s theorem, we obtain a new proof
of the fact that the state space of Ky of any unital C*-algebra with real
rank zero is a Choquet simplex. The stably finite case of this corollary
is due to Blackadar and Handelman [4, ITI.1.4], and the general case
follows easily by considering the maximal stably finite quotient algebra
of the algebra in question.

Since the proof below parallels that of the corresponding result for
von Neumann regular rings [11, 17.5, 17.12], we omit some of the
details.

Theorem 1.2. If A is a unital C*-algebra such that the projec-
tions in My, (A) satisfy Riesz decomposition, then the state space of
(Ko(A),[14]) is a Chogquet simplex.

Proof. As in [1, 5.1.2], let V(A) denote the set of all equivalence
classes of projections from M, (A); this is an abelian monoid under the
addition operation derived from orthogonal sum of projections. There
is a natural translation-invariant pre-order < on V(A), defined as in
Ko(A); namely, z,y € V(A) satisfy « < y if and only if y = x + 2’ for
some 2’ € V(A). The hypothesis of Riesz decomposition for projections
in M (A) immediately implies that Riesz decomposition holds in V' (A).
The equivalence class of 14 gives an order-unit u € V(A4), and we
can define the state space S of (V(A),u) as the set of all monoid
homomorphisms s : V(A) — R* such that s(u) = 1. Then S is
a compact convex subset of RV (4) (with the product topology), and
the natural monoid homomorphism V(A) — Ky(A) induces an affine
homeomorphism from the state space of (K(A),[14]) onto S. Thus, it
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suffices to show that S is a Choquet simplex.

Let W be the convex cone in RY(4) with base S. Observe that W
consists precisely of all monoid homomorphisms from V(A) to R™, and
that the pointwise ordering on W coincides with the algebraic ordering;
that is, for f,g € W we have f(v) < g(v) for all v € V(A) if and only
if g— f € W. Using the Riesz decomposition property in V(A), one
verifies that W is a lattice with respect to the pointwise ordering, just
as in [11, 17.3] or [13, 2.27]. Therefore, S is a Choquet simplex. o

1.3. We conclude the introduction with the observation that Riesz
decomposition does not hold in general for projections in C*-algebras
of real rank 1. For example, if A = C*(Zy * Z5), then the state space
of (Ko(A),[14]) is a square [1, 6.10.4], and hence by Theorem 1.2 the
projections in My, (A) do not satisfy Riesz decomposition. To see that
A has real rank 1, we first check that it has stable rank 1; then A has
real rank at most 1 by [5, 1.2], while by Zhang’s theorem A cannot
have real rank 0.

That A has stable rank 1 appears to be known but unpublished.
Several people communicated proofs; we sketch the one suggested by
Elliott. Asin [1, 6.10.4], identify A with the subalgebra of M3(C([0, 1]))
consisting of those matrices whose off-diagonal entries vanish at 0 and
1. Since [0, 1] is 1-dimensional, C([0, 1]) has stable rank 1 [31, Theorem
7], and we proceed as in Robertson’s proof of the fact that stable rank
1 passes up to matrix algebras [26, Proposition 3]. Thus let ¢ > 0 and

fz(‘;f;)eA.

There exists an invertible element u € C([0, 1]) such that ||u — a|| < ¢;
moreover, there exists an invertible element v € C([0,1]) such that
llv — (d — cu™tb)|] <e. If w=wv+cutb, then w — cu~1b is invertible
and ||lw — d|| < e. Finally, elementary row reduction shows that the

matrix
_(ubd
g=(22)

is invertible, and ||g — f|| < e. Since g € A, this proves that the
invertible elements are dense in A, as desired.
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2. Inductive limits with slow dimension growth.

2.1. Let A be the C*-inductive limit of a directed family of C*-
algebras A;, ¢ € I and C*-homomorphisms ¢;; : A; — A;, i < j, where
each

n;

A= H C(Xik, My 1) (C))

k=1
for some (nonempty) connected compact Hausdorff spaces X;; and
positive integers ¢(i,k). While the A; are unital, we do not assume
that the ¢;; are unital homomorphisms. Write elements a € A; as n;-
tuples with components ai. Let e; = 14,; then the components e;; are
the central projections in A; corresponding to the units in the algebras
C(Xiks My(;,1)(C)). We shall identify e A; with C(Xix, My(; 1) (C))
whenever convenient. To ensure that A; has no factors which disappear
in the inductive limit, we assume that ¢;;(e;x) # 0 for j > ¢ and
k= 1, ooy NG

If p is a projection in M, (A4;) we of course write p as an n;-tuple
of projections py from My (C(Xik, My k)(C))). Since the Xy are
connected, each p, has constant rank, which we denote by rank py.

For indices ¢ < j in I, define

d;j = max{t(j, k) 'dim X;x | k=1,...,n;}

pji = min{t(j, k)~ 'rank ¢;;(ei)x
‘ k=1,... y T l=1,...,n; ¢ji(e“)k =+ 0},

where dim X, denotes the covering dimension of X, (see, e.g., [22,
pp. 44-45]). We shall say that the directed family (A;, #;;) has slow
dimension growth in case

iy d; /ji = 0
foralli e I.

2.2. The definition of slow dimension growth just given is a modifi-
cation of the definition given in [3], which requires

lim dj =0.

j—oo
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Since pj; < 1 for j > 4, the condition given in Section 2.1 is stronger
in general than the condition in [3]. However, in [3] slow dimension
growth is only used in connection with simple unital inductive limits,
in which case the two definitions coincide, as follows.

Indeed, assume that A is simple and that the homomorphisms ¢;;
are all unital, and fix an index ¢ € I. Since ¢j;(ey) # 0 for j > 4 and
l=1,...,n,, it follows from the simplicity of A that there is an index
n > i such that the projections ¢,;(e;;) are full. Hence, there exists a
positive integer ¢ such that e, < t.@ni(e;) for all I. For any j > n, we
then have e; < t.¢;i(ey) for all I, whence rank ¢j;(eq)r > t(4,k)/t
for all I,k, and so pj; > 1/t. Therefore, lim; ,od; = 0 implies
lim;>; dj/p;; = 0 in this case.

2.3. Blackadar, Dadarlat and Rgrdam have shown that any simple
unital C*-algebra which is the C*-inductive limit of a countable se-
quence of C*-algebras with slow dimension growth must have stable
rank 1 [3, Theorem 1] (cf. also [7, 3.6]), and hence such algebras have
real rank at most 1 [5, 1.2]. In general, however, C*-inductive limits
with slow dimension growth as in Section 2.1 do not always have sta-
ble rank 1. For our purposes, cancellation of projections suffices—see
Proposition 2.6.

An example in which slow dimension growth does not lead to stable
rank 1 can be obtained as follows. Let D be the closed unit disc in
the complex plane, and let A be the C*-inductive limit of the algebras
A; = M,i(C(D)), with block diagonal connecting maps ¢;; : A; — A;
for i+ < j. Since dim D is finite and the ¢;; are unital, this system
has slow dimension growth. Now let z € Ay denote the inclusion map
D — C. If A had stable rank 1, there would be an invertible element
u € A, for some n such that ||u — ¢n0(z)| < 1. We compute that

l[¢no(2)u" + ¢no(1 — 227) = 1| < [[Bno(2)]] - [[u” — dno()[| < 1,
and 80 @no(2)u* + Pno(l — 22*) is invertible. Set
d = det (¢no(2) + bno(1 — 22%)(u*)™h);

then d is an invertible function in C'(D). Since ¢,0(2) and ¢no(1 —
zz*) are just the diagonal matrices z-identity and (1 — zz*)-identity,
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d = 2"+ (1—2z2*) f for some f € C(D). Now g = d/+/dd* is a continuous
map from D to the unit circle 7. Hence, g|r has winding number 0.
But g|7 = 2", which has winding number n. This contradiction shows
that A cannot have stable rank 1.

We next give a formula for ranks of projections in directed families
of the form in Section 2.1. This formula records the same information
as the observation of Martin and Pasnicu that the diagram [21, 2.7]
is commutative up to an equivalence on projections. We adopt their
method of proof since that is simpler than our original version.

Lemma 2.4. Let (A, ¢ji) be a directed family as in Section 2.1.
Pick indices it < j, and letl € {1,...,n;} and k € {1,... ,n;}. Then

rank ¢;;(f)x = t(i,l)_lrank ¢ji(eq)rrank f

for all projections f € My (e 4;).

Proof. As in Section 2.1, we identify the algebras e;;A; and ejrA4;
with C'(Xy, My(;,1)(C)) and C(X g, My(j k) (C)). We have a nonunital
C*-homomorphism e;;A; — ejrA; given by the rule g — ¢;i(9)x.
Given a point y € Xy, it follows from [21, 2.5] that there exist points
T1,...,2, € Xy and a unitary u € M, »)(C) such that

#5i(9)x(y) = u(diag (g(z1),...,9(xn),0,...,0))u"

for all g € e;;A;. Consequently, rank ¢;;(f)r = n.rank f for any projec-
tion f € e;; A;, and similarly for any projection in M, (e;;4;). In partic-
ular, rank ¢;;(ei)r = n.t(i,1) and therefore n = t(i,!) ~‘rank ¢;;(€i)k,
proving the lemma. O

2.5. In order to make efficient use of slow dimension growth, we
shall need some cancellation results for projections in matrix algebras
over a homogeneous C*-algebra C'(X) (cf. [1, 6.10.3] and [3, Lemma
D]). While the first two of these results are standard and well known
in the case that X is a finite CW-complex, we have not located a
detailed reference for the general case, and so we sketch an argument
below. Part (c) has been independently observed by N.C. Phillips
[unpublished].
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Observe that if p is a projection in M (C(X)), then the rule z —
trace p(z) = rankp(z) defines a continuous map X — Z. Hence, X
must be a finite union of pairwise disjoint clopen subsets on which p
has constant rank.

Theorem 2.5. Let X be a compact Hausdorff space with dim X =
d < oo, and let p,q,r be projections in M. (C(X)).

(a) Ifrankp(z) > k+(d—1)/2 for some k € N and all z € X, then
klex) S p-

(b) Ifp®r ~qg&dr and rankp(z) > d/2 for allx € X, thenp ~ q.

(¢) Ifrankg(z) —rankp(z) > (d—1)/2 for allxz € X, thenp < q.

Proof. After restricting to suitable clopen subsets of X, there is no
loss of generality in assuming that p, ¢, have constant rank, say ranks
a,b,c. We may also assume that p,q,r € M;(C(X)) for some t € N.

By a theorem of Mardesi¢ [22, 27-8], X is homeomorphic to an inverse
limit of compact metric spaces X, with dim X, < d for all a. The
corresponding natural maps 7, : X — X, induce C*-homomorphisms
ny @ C(Xe) = C(X), and the union of the images n%(C(X,)) is a
*-subalgebra of C'(X) which separates points of X and so is dense in
C(X). Hence, there exist projections py,qi,m1 € M(C(X,)) for some
a such that % (p1), 7% (q1), 75 (r1) lie within 1/¢ of p, g, r; moreover, in
case (b) we may assume in addition that py ®ry ~ ¢ ®ry. For z € X,
we have

[rank p1 (na(2)) — af = |trace (15 (p1)(z) — p(2))]
< tl|n5(p1) (@) = p(2)[| < tlng (p1) —pll <1

and so rankp;(n.(z)) = a. Likewise, rankgq(n.(z)) = b and
rank 1 (no(z)) = ¢ for all z € X. Consequently, there exists a clopen
subset Y, C X, such that 7,(X) C Y, and p;,q;,r; have constant
ranks a,b,c on Y,. As a result, it suffices to prove the theorem for the
restrictions of py,q1,71 to Y.

Thus we may assume that X is a compact metric space. In this case
a theorem of Freudenthal [22, 27-4] shows that X is homeomorphic
to the inverse limit of a sequence of finite CW-complexes X; with
dim X; < d for all . Arguing as above, we see that it now suffices
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to prove the theorem for projections over subcomplexes of the X;. (A
reduction from compact Hausdorff spaces directly to CW-complexes is
not possible, in view of Marde§i¢’s example of a compact Hausdorff
space of dimension 1 which cannot be obtained as an inverse limit of
CW-complexes with dimension at most 1 [22, 27-12].)

Therefore, we may now assume that X is a finite CW-complex. At
this point we quote the Serre-Swan theorem [20, 1.6.18]: the section
functor induces a category equivalence from the category of complex
vector bundles over X to the category of finitely generated projective
C(X)-modules. Statements (a) and (b) now follow from [18, 8.1.2
and 8.1.5]. To prove (c), we may assume that rankp > 0, and
so rankq > d/2. Choose a projection p' € My (C(X)) such that
p®p' ~ k.1g(x) for some k € N. Then rank ¢®p’ > k+(d—1)/2 and so
q®p' ~klox)@r' ~p@p @1’ for some projection ' € M. (C(X)),
by (a). Since rankq > d/2, we conclude from (b) that ¢ ~ p ® ', and
therefore p < q. o

The following proposition was independently proved for simple C*-
inductive limits with slow dimension growth by Martin and Pasnicu in
[21, 3.7], using essentially the same method. We use the same technique
again in Theorem 2.7 and Lemma 2.8.

Proposition 2.6. Let A be the C*-inductive limit of a directed
family (A;, ¢ji) as in Section 2.1, with slow dimension growth. Then
the projections in My, (A) satisfy cancellation.

Proof. Tt suffices to show that if p, ¢, r are projections in M, (A;) for
some ¢ such that p ® r ~ q @ r, then there exists an index 7 > ¢ such
that ¢;i(p) ~ ¢;i(q).

Now p, g, r are orthogonal sums of projections pg, gi, 7% € Moo (€irAs),
and pr @ 1T ~ qr D ri for all k. Since it suffices to find an index
J > i such that ¢j;(pr) ~ ¢;ji(qr) for all k, we may concentrate on one
component. Thus, there is no loss of generality in assuming that p, q,r
all lie in My (e;14;). If p =0, then r ~ ¢ ® r and immediately ¢ = 0
since A; is stably finite. Hence, we may also assume that p # 0.

Using the slow dimension growth hypothesis, there is an index j > i
such that d;/p;; < 2/t(i,1). We show that ¢j;(p)r ~ ¢;i(q)r for
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each k = 1,...,n;, from which the desired conclusion ¢;;(p) ~ ¢;i(q)
follows. In case ¢j;(ei1)r = 0, we have ¢;;(p)r = ¢;i(¢)r = 0 and there
is nothing to prove. Now assume that ¢;;(e;1)r # 0. Then

t(i, l)dlm Xjk.

N | =

. 1.
rank ¢ ;i (ei1)r > t(j, k)pji > Qt(],k)t(% 1)d; >

Using Lemma 2.4, we obtain

i,1) ‘rank ¢ji(ein)rrank p
1

rank ¢;i(p)k = t(
t(i,1) " ‘rank ¢;; (e:1)x

AV

Y

1
Since also ¢;i(p)k ® ¢;i(T)k ~ ¢ji(@)k & ¢;i(r)k, We conclude from
Theorem 2.5(b) that ¢;;(p)k ~ ¢;i(q)x, as desired. O

Theorem 2.7. Let A be the C*-inductive limit of a directed family
(A, ¢ji) as in Section 2.1, with slow dimension growth. Then the
projections in M, (A) satisfy the Riesz interpolation and decomposition
properties, and Ky(A) is a Riesz group.

Proof. Since the projections in M, (A) satisfy cancellation (Propo-
sition 2.6), it suffices to prove that they also satisfy the Riesz decom-
position property. It is enough to show that if p, g1, g2 are projections
in My (A;) for some i such that p < g1 ® go, then there exist projec-
tions 71,72 € Moo (A;) for some j > i such that ¢j;(p) ~ r1 @ r2 and
Ta S ¢5i(ga) for each o

Now p,q1,q2 are orthogonal sums of projections pg,qig,qer €
Moo (eirAs), and pr < qux @ gox for all k. Since it suffices to find projec-
tions 71, 7ok € Moo (A;) for some j > i such that @j;(pr) ~ 1k © rak
and roar S ¢ji(gak) for all a, k, we may concentrate on one component.
Thus, there is no loss of generality in assuming that p, g1, g2 all lie in
Moo (eilAi).

Note that rankp < rankgq; + rankgs. If equality holds, it follows
that p ~ ¢ ® ¢2, and we are done. Thus, we may assume that
rank p < rank ¢; + rank go. Further, if rank g; = 0, then p < ¢» and we
are done. Hence, we may also assume that rankg; > 0.
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Next suppose that rankp < rankq;. Because of the slow dimension
growth hypothesis, there exists an index j > 7 such that d;/pu;; <
1/t(¢,1). Consider k € {1,... ,n;} such that ¢j;(e;1)r # 0; then

rank ¢ji(ei1)k Z t(j, k)/,tji Z t(j, k)t(i, l)dj Z t(i, 1)diijk.
Using Lemma 2.4, we obtain

rank ¢;;(q1)r — rank ¢j;(p)r = t(i, 1)~ 'rank ¢ji(ei1)r(rank ¢ — rank p)
> t(i, 1)71rank ¢ji(ei1)k > dim X]‘k.

Then ¢;;(p)r S ¢ji(¢1)r by Theorem 2.5(c). On the other hand, for
ke {1,...,n;} such that ¢;;(e;1)r = 0, we have ¢;;(p)r = ¢;i(q1)r =
0. Therefore, ¢j;(p) < ¢;i(¢1) in this case, and again we are done.

Finally, suppose that rankp > rankg;. Using the slow dimension
growth hypothesis a second time, we again obtain an index j > i
such that d;/pj; < 1/t(i,1). Consider k£ € {1,...,n;} such that
#ji(ei1)r # 0. As in the previous paragraph, it follows from Lemma
2.4 that

rank ¢;;(p)r > rank ¢;;(q1)r > dim X
rank ¢;;(q1)r + rank ¢;;(g2)r — rank ¢;;(p)r > dim X .

Let my be the largest integer not exceeding the difference
rank ¢,;(¢1)x — (dim X, — 1)/2, and note that

0 < my, < rank ¢;i(q1)x
(diijk - 1)/2 < rankq&ji(ql)k —mg < (diijk + ].)/2

Choose a projection r1; € My (ejrA;) with rank ri; = my. Then
rank ¢;;(p)r — rank ry > rank ¢;;(q1)r — rank 7y > (dim X5 — 1)/2.

By Theorem 2.5(c), rix S ¢ji(p)r and 1 S #5i(q1)x- In particular,

~ ~

®ji(P)k ~ T1k D T2k for some projection ro, € Mo (ejxA;). Further,
rank ¢;;(q2)r — rank ro, = rank ¢;;(g2)r — rank ¢;; (p)r + myi
> diijk — rankqﬁji(ql)k + myg
> diijk — (diijk + 1)/2
= (dim X5, — 1)/2,
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and so o S @;i(g2)x by Theorem 2.5(c).

For k € {1,...,n;} such that ¢;i(e;1)r = 0, we have ¢;i(p)r =
Tk @ rop with 7o = 0 = ¢ji(ga)r- Collecting all the rq, we
therefore obtain projections ro = (ra1,- -+ ;Ta,n;) in Moo (4;) such that
¢ji(p) ~ 71 @7 and 7o S ¢ji(ga) for each a. O

The method used in proving Theorem 2.7 can easily be modified to
establish Riesz interpolation. While this results in a slightly shorter
proof of the theorem (with fewer separate cases), we have chosen the
present proof in order to keep the focus on Riesz decomposition.

We refer the reader to [2, 3, 14] for examples of C*-inductive limits
with slow dimension growth which have real rank 1.

After seeing an early version of this paper, Handelman pointed out
that the methods used to prove Proposition 2.6 and Theorem 2.7
also show that for C*-algebras A of the type considered there, K((A)
satisfies the weakened form of unperforation introduced by Elliott in [9].
We include this result because it implies that the Riesz decomposition
and interpolation properties carry over from Ky(A) to the quotient of
K((A) modulo its torsion subgroup (see Theorem 2.11).

Lemma 2.8. Let A be the C*-inductive limit of a directed family
(A;, ¢j;) as in Section 2.1, with slow dimension growth. Let p,q,r be
projections in Mo, (A).

(a) If mp < m.q for some m € N, then there exist projections
p,0",¢,q¢" € My (A) such that p = p' @ p" and ¢ = ¢ & ¢" while
P < ¢ and mp"” ~ m.q".

(b) If there exist m,n € N such that m.q ~ m.r and r < n.p @ gq,
thenr <p®qand ¢ Spdr.

Proof. (a) It suffices to show that if f, g are projections in My, (4;) for
some i such that m.f < m.g, then there exist projections f’, f', ¢',¢" €
My, (A;) for some j > i such that ¢;;(f) = f'@ f and ¢;;(9) = ¢' B g"
while f' < ¢ and m.f"” ~ m.¢g". Since it is enough to find such
decompositions for the images under ¢;; of each component of f and
g, there is no loss of generality in assuming that f,g € M (e;14;). It
follows from the assumption m.f < m.g that rank f < rankg.
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If rank f = rank g, then since m.f < m.g, we must have m.f ~ m.g.
In this case, take j =i and f' = g’ = 0, while f” = f and ¢" = g.

Now suppose that rank f < rankg. By the slow dimension growth
hypothesis, there is an index j > ¢ such that d;/u;; < 2/t(i,1). For
ke {1,...,n;} such that ¢j;(e;1)r # 0, it follows that rank ¢;;(e;1)r >
(1/2)t(i,1)dim X 5. Using Lemma 2.4, we obtain

s 1.
rank ¢;i(g)r — rank ¢;;(f)x > t(4,1) Lrank djilein)k > §d1m Xk,

and hence ¢;;(f)r < ¢5i(g)r by Theorem 2.5(c). On the other hand, for
k€ {1, ce ,’n]‘} such that ¢ji(ei1)k = 0, we have (b],(f)k = ¢ji(g)k =0.
Thus, ¢;i(f) < ¢ji(9), and so we may take f” = ¢” = 0 while
f'=¢;:(f) and ¢' = ¢;i(9)-

(b) It suffices to show that if f, g, h are projections in My, (4;) for
some 4 such that m.g ~ m.h and h < n.f@g, then there exists an index
j = i such that ¢;i(h) < ¢;i(f ®g) and ¢;i(9) < ¢;i(f ® h). There is
no loss of generality in assuming that f,g,h € M (e;14;). Note that
rank g = rank h.

If f =0, then h < g, and since rank g = rank A we must have g ~ h.
In this case take j = 1.

Now suppose that f # 0, and choose an index j > 4 such that
d;j/pii < 2/t(i,1). For k € {1,...,n;} such that ¢;i(e;1)r # 0, it
follows using Lemma 2.4 that

1

rank ¢;;(f @ g)r — rank ¢j;(h)i > 3 dim X,
1

rank ¢;;(f ® h)r —rank ¢;;(g)r > 3 dim X .

Then ¢ji(h)r S ¢5i(f © 9)x and ¢;i(9)x < #ji(f ® h)x by Theorem
2.5(c). On the other hand, for k € {1,... ,n;} such that ¢;;(e;1)r =0,
we have ¢;i(g9)r = ¢;i(h)r = 0. Therefore, ¢;i(h) < ¢;i(f ® g) and
¢ji(9) S ¢ji(f@h). O

2.9. Let G be a partially ordered abelian group, and let tor G denote
its torsion subgroup. Then G is weakly unperforated provided

(a) Whenever z € G and m € N such that mz > 0, there exists
y € tor G such that x +y > 0 and my = 0.
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(b) Whenever x € GT, y € tor G, and n € N such that nz +y > 0,
then x £y > 0.

For the equivalence of this definition with the weak unperforation
condition given by Elliott in [9], see [15, 8.1].

Proposition 2.10. Let A be the C*-inductive limit of a directed
family (A;, ¢;;) as in Section 2.1, with slow dimension growth. Then
Ko(A) is weakly unperforated.

Proof. First, let x € Ky(A) and m € N such that mz > 0. Write
x = [q]—[p] for some projections p,q € M, (A). Since the projections in
M. (A) satisfy cancellation (Proposition 2.6), the hypothesis mz > 0
implies that m.p < m.q. By Lemma 2.8(a), there exist projections
p',0",¢,q" € My (A) such that p = p' @ p” and ¢ = ¢ ® ¢” while
p' < ¢ and m.p” ~ m.q"”. Set y = [p"] — [¢"]. Then my = 0 and
z+y=Iq]-[p]=0.

Second, let z € Ko(A)T, y € tor Ko(A), n € N such that nz +y > 0.
Write ¢ = [p] and y = [¢] — [r] for some projections p,q,7 € My (A).
Then r < n.p ® q and m.q ~ m.r for some m € N. By Lemma 2.8(b),
rSp®qand g <p@r, and therefore z £y > 0. i

Theorem 2.11. Let A be the C*-inductive limit of a directed
family (A;, ¢ji) as in Section 2.1, with slow dimension growth. Then
Ko(A)/tor Ky(A) is an unperforated Riesz group.

Proof. Since Ky(A) is directed, so is Ko(A)/tor Ko(A). By [15,
8.1], Ko(A)/tor Ko(A) is unperforated. Since K((A) satisfies Riesz
decomposition by Theorem 2.7, it follows from Proposition 2.10 and
[9, 4.5] that Ko(A)/tor Ko(A) satisfies Riesz decomposition. O

2.12. Under the hypotheses of Theorem 2.11, it follows from [15,
8.5b] that, whenever x,y € Ko(A)™ and m € N such that (m + 1)z <
my, then x < y. Since the projections in M, (A) satisfy cancellation,
this result implies that whenever p and g are projections in M, (A) with
(m+1).p < m.q for some m € N, then p < ¢q. The latter result can
also be proved directly, using the methods of Proposition 2.6, Theorem
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2.7 and Lemma 2.8.

3. Approximately semi-homogeneous C*-algebras. Without
any assumptions such as slow dimension growth, the projections in an
inductive limit as in Section 2.1 need not satisfy Riesz decomposition.
However, a weak form of Riesz decomposition still holds, as we will see
in this section. Here we work in a more general setting than Section
2.1. First, rather than dealing directly with inductive limits, we work
with a C*-algebra A which has “enough” sub-C*-algebras isomorphic
to finite direct products of homogeneous C*-algebras. Second, we
make no connectedness assumptions on the spectra of the homogeneous
C*-algebras that occur. While conceivably this “approximately semi-
homogeneous” setting might not be any more general than that of
arbitrary inductive limits, we prefer it for the sake of notational
convenience.

3.1. For the sake of convenient terminology, let us say that a C*-
algebra B is semi-homogeneous provided B is isomorphic to a finite
direct product of homogeneous C*-algebras of the particular form
Co(X, My(C)) where X is a locally compact Hausdorff space and ¢
is a positive integer. Any such C*-algebra B can be uniquely presented
in the form

Co(X1, My, (C)) % - - x Co(Xp, My, (C))

where the X; are nonempty locally compact Hausdorff spaces and
t1 < -++ < t,. We shall refer to t; as the minimum matriz rank of
B, and to t,, as the mazimum matriz rank of B.

3.2. We call a C'*-algebra A approzimately semi-homogeneous pro-
vided that for each € > 0 and each finite subset F' C A, there is a
semi-homogeneous sub-C*-algebra B C A such that each element of F'
lies within ¢ of (an element of) B.

Lemma 3.2. Let A be an approximately semi-homogeneous C*-
algebra, let ty,... ,t, € N, and for j =1,... ,n let p; be a projection in
M;;(A). Lete >0, let I be a finite subset of A, and let (a;;) and (b;j)
be mxn matrices of nonnegative integers such that a;1.p1P- + - Pain.Prn ~
bi1-p1 D - Pbin.pn for all i. Then there exist a semi-homogeneous sub-
C*-algebra B C A and projections q; € My, (B) for each j such that
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(a) [lpj —gjll <& and p; ~ q; for all j.
(b) ai1-q1 ® - D ain-qn ~ bi1.q1 B - - B bin-qn in M (B) for all 3.
(c) Each element of F lies within € of B.

Moreover, if A is unital, then B can be chosen to be a unital subal-
gebra.

Proof. We may assume that ¢ < 1/12. Choose partial isometries
z; € My(A) such that z;zf = a;1.p1 @ -+ @ ain.pr and zfz; =
bi1.p1 ® -+ - @ bip.p, for each i. There exists a semi-homogeneous sub-
C*-algebra B C A such that each z; lies within ¢ of some y; € M (B),
each p; lies within €/16 of some z; € M;,(B), and each element of F
lies within € of B. Without loss of generality, each z; is self-adjoint.

For each j, observe that [[2§ — zj|| < ¢/4. Hence, there exists a
projection g; € My, (B) such that ||z; —q;|| < &/2 (see, e.g., [12, 19.8]),
and so ||p; — ¢;|| < e. In particular ||p; — ¢;|| < 1 and thus p; ~ g;.
Furthermore,

|[(@i1p1 @ @ @in-pn) — (@i1.q1 B -+ B ain.qn)|| <€
[|(bin.p1 @ - B bin.pn) — (bir.q1 D -+ P bin.gn)|| < €

for all 7. Next, observe for each ¢ that

[[(@i1.q1 @ - @ Ain-qn)yi(bi1.q1 ® -+ - D bin.qn) — yil| <4 <1/3
llyiy; — (ai1.q1 @ - @ Ain-qn)|| < 4 < 1/3
[lyfyi — (bi1.q1 B -+ D bin-qn)|| < 4e < 1/3,
from which it follows that a;1.q1 D P @in-Gn ~ bi1-q1 D -+ - P bjn-q, in
My (B) [12, 19.7].

Now suppose that A is unital. In this case we can choose B as
above such that B also contains a self-adjoint element w satisfying
[|l1 — w|| < 1/16. It follows that there exists a projection e € B such
that ||1 —e|| < 1, and then e = 1. o

Observe that this lemma also applies to subequivalences, since for
instance any subequivalence of the form a;.py ® -+ @ an.pn S b1.p1 &
-+ ® b,.p, can be rewritten as

a1.p1 D D anpp DLppy1 ~b1.p1 @ - D bp.pp @ 0.ppy1
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for some projection py41.

Corollary 3.3. FEvery approzimately semi-homogeneous C*-algebra
A is stably finite.

Proof. Consider projections pi,ps € My (A) such that p; ~ p; & po.
By Lemma 3.2, there exist a semi-homogeneous sub-C*-algebra B C A
and projections g1, g2 € My (B) such that p; ~ g; for each j while also
g1 ~ @1 ® q2. Since B is stably finite, go = 0, and therefore ps = 0.
O

Proposition 3.4. Let A be an approzimately semi-homogeneous C*-
algebra.

(a) Ifp,q,r are projections in My, (A) such thatp ®r ~ q®r, then
there exists a positive integer m such that m.p ~ m.q.

(b) Let p1,p2,q1,q2 be projections in My, (A) such that p; < q; for
all i,j. Then there exist a projection r € M (A) and a positive integer
m such that m.p; S S m.g; for all 4,j.

Proof. (a) In view of Lemma 3.2, there exist a semi-homogeneous sub-
C*-algebra B C A and projections p’, ¢', 7" € M, (B) such that p’, ¢, '
are equivalent to p,q,r while also p’ @ r' ~ ¢ @1’ in M, (B). Since
it suffices to show that m.p’ ~ m.q’ for some m € N, there is no loss
of generality in assuming that A itself is semi-homogeneous. We then
immediately reduce to the case that A = Cy(X) for some nonempty
locally compact Hausdorff space X and p,q,r all have constant rank.
Moreover, since there is nothing to prove if r = 0, we may further
assume that r # 0. Then ||r(z)|| = 1 for all z € X, which forces X to
be compact.

By, e.g., [23, Theorem VII.3], X is homeomorphic to an inverse limit
of finite CW-complexes X,. As in the proof of Theorem 2.5, A is thus
isomorphic to the C*-inductive limit of the algebras C(X,), and we
can reduce the problem to the case of projections in My, (C(X,)) for
some «. Hence, we may now assume that X is a finite CW-complex.
In particular, dim X < oo.

If p =0, then r ~ ¢ ® r and immediately ¢ = 0. Now assume
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that p # 0, and choose m € N such that rankm.p > (1/2)dim X.
Since m.p & m.r ~ m.q ® m.r, we conclude from Theorem 2.5(b) that
m.p ~ m.q.

(b) As in the proof of (a), we may reduce to the case that A = C(X)
for some finite CW-complex X and p1, p2, ¢1, g2 all have constant rank.

If rank p; = rank ¢; for some s, t, then since ps < ¢; we obtain ps ~ g,
and consequently p; < ps < g; for all 4, 5.

Now suppose that rank p; < rankg; for all ¢,j. Set ¢ = max{rankp,,
rank po} and b = min{rank g;,rank g2}, and choose m € N such that
m(b—a) > 2dim X. Then choose a projection r € M, (A) with constant
rank ma + dim X. Since

rankr —rankm.p; > dim X and rankm.q; —rankr > dim X

for all 4, j, we therefore conclude from Theorem 2.5(c) that m.p; S <
m.q; for all 4, 5. O

3.5. Given any partially ordered abelian group G, the tensor product
G ®Q has a natural partially ordered abelian group structure (cf. [16]),
with positive cone (generated by) the set {r®a |z € GT;a € Q*}.
It is advantageous to write the elements of G ® Q as fractions z/n
(=z®n ') where z € G and n € N. Such a fraction z/n is zero in
G ® Q if and only if z is a torsion element of G, and z/n > 0in G® Q
if and only if there is some m € N such that mz > 0 in G. Note that
G ® Q is automatically unperforated.

We next prove that for any approximately semi-homogeneous C*-
algebra A, the rationalized Ky-group K((A) ® Q is a Riesz group. (In
the case that A is homogeneous, this can easily be obtained from known
general results, as pointed out by Blackadar.)

Theorem 3.6. Let A be an approzimately semi-homogeneous C*-
algebra.

(a) Given any x1,2,y1,y2 € Ko(A) such that x; < y; for all i, j,
there exist z € Ko(A) and m € N such that mz; < z < my; for all i,j.
(b) The partially ordered abelian group Ko(A) ® Q is a Riesz group.

(c) If A is unital, then the state space S(Ko(A),[14]) is a Choquet
stmplex.
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Proof. (a) After translating z1,z2,y1,y2 by some common element
of Ky(A), we may assume that there are projections pi,p2,q1,ge in
M (A) such that each x; = [p;] and each y; = [g;]. Then there is a
projection f € My (A) such that p; & f < g; @ f for all 4,j. Hence,
after a further translation of z1,x2,y1,y2 by [f], we may assume that
pi S g; for all 4, j. Now Proposition 3.4(b) provides us with a projection
r € Moo (A) and a positive integer m such that m.p; < r < m.g; for all
i,j. Therefore mz; < [r] < my; in K(A) for all 7, j.

(b) This is clear from (a).

(¢) The natural map Kyp(A) — Kp(A) ® Q induces an affine
homeomorphism from the state space S(Ko(A) ® Q,[14]/1) onto
S(Kop(A),[1a]). Since the state space of any Riesz group with order-
unit is a Choquet simplex [13, 10.17], we are done. O

3.7. For unital inductive limits of semi-homogeneous C*-algebras,
Theorem 3.6(c) can be proved using several standard facts. First, the
state space of K of any unital commutative ring is a Choquet simplex
by [17, 3.9b], from which it immediately follows that the state space of
K of any unital semi-homogeneous C*-algebra is a Choquet simplex.
To pass to inductive limits, recall that Ky preserves inductive limits
[12, 19.9], that the state space functor converts inductive limits to
inverse limits [18, 6.14], and that inverse limits of Choquet simplices
are Choquet simplices [13, 11.7].

3.8. Let D denote the unital AF (C*-algebra obtained as the C*-
inductive limit of the matrix algebras M, (C) for n € N and the
unital block diagonal maps M,,(C) — M,(C) for m | n. (This
algebra is sometimes called the universal Glimm (UHF) algebra.) Then
Ky(A® D) = K¢(A) ® Q for any C*-algebra A.

Corollary 3.8. If A is an approximately semi-homogeneous C*-
algebra, then Ko(A® D) is a Riesz group. Furthermore, the projections
in M (A ® D) satisfy cancellation, and the Riesz interpolation and
decomposition properties.

Proof. That Ky(A® D) is a Riesz group is immediate from Theorem
3.6(b). Using Proposition 3.4(a), we infer that the projections in
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Mo (A ® D) satisfy cancellation, and then Riesz interpolation and
decomposition follow. o

4. Simple approximately semi-homogeneous C*-algebras.
For a simple unital approximately semi-homogeneous C*-algebra A,
the weak form of Riesz decomposition obtained in Theorem 3.6 can be
improved somewhat. In particular, it can be improved sufficiently to
show that Riesz decomposition in Ky(A) will follow from strict unperfo-
ration, the advantage being that strict unperforation is an “equational”
condition rather than an “existential” condition. It follows that Riesz
decomposition for projections holds in some simple inductive limits
which do not satisfy slow dimension growth, such as those investigated
n [14]. Although the inductive limits used in [14] can be modified to
a form in which slow dimension growth holds, it seems unlikely that
such a modification is possible in general.

4.1. Suppose that A is the C*-inductive limit of some directed
family of unital semi-homogeneous C*-algebras A; and injective unital
C*-homomorphisms. It is a well-known piece of folklore that if A is
simple and infinite-dimensional, the minimum matrix ranks of the A;
must be unbounded. An analogous result holds for approximately semi-
homogeneous C*-algebras, as follows.

Lemma 4.1. Let A be a simple, unital, infinite-dimensional, approz-
imately semi-homogeneous C*-algebra. Let m € N, let € > 0, and let
F be a finite subset of A. Then there exists a unital semi-homogeneous
sub-C*-algebra B C A such that the minimum matriz rank of B is
greater than m and each element of F' lies within € of B.

Proof. Assume that the conclusion fails. We claim that the mazimum
matrix rank of any unital semi-homogeneous sub-C*-algebra C C A is
at most m.

If n is the maximum matrix rank of C, there exists a nonzero
projection p € C such that n.p < 1¢. By simplicity, p is full in A, and
hence 14 < k.p for some k € N. According to Lemma 3.2, there exist
a unital semi-homogeneous sub-C*-algebra D C A and a projection
g € D such that p ~ ¢in A and n.g < 1p < k.q in D while also each
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element of F lies within ¢ of D. Since 1p < k.q in D, the projection
q is full in D. Hence, it follows from the relation n.g < 1p that the
minimum matrix rank of D is at least n. On the other hand, since the
conclusion of the lemma was assumed to fail, the minimum matrix rank

of D cannot be greater than m. Thus n < m and the claim is proved.

Let s; denote the standard identity of degree t = m? + 1, that is, the
t-variable function given by the rule

se(xy, ... @) = Z g (0)To(1)To(2)  * * To(t)
oeS

where S; denotes the symmetric group of degree t. By, e.g., [19,
Example (4), pp. 13-14], s; vanishes on (¢-tuples from) any matrix
ring of rank m or less over any unital commutative ring. (Actually sz,
vanishes on all such matrix rings, but this fact—the Amitsur-Levitzki
theorem—is a much deeper result.) In view of the claim just proved, s;
vanishes on all unital semi-homogeneous sub-C*-algebras of A. Since
s¢ is uniformly continuous, it therefore vanishes on A.

Now A is a primitive ring with center C, and we have just seen that A
satisfies the polynomial identity s;. But then the Kaplansky-Amitsur
theorem [19, p. 17] implies that A is finite-dimensional over C. This
contradiction establishes the lemma. O

4.2. Under the conditions of Lemma 4.1, we can of course prove a
strengthened version of Lemma 3.2, in which the semi-homogeneous
sub-C*-algebra B has minimum matrix rank greater than a pre-
assigned integer. The following statement contains as much of the
strengthened version as we shall need.

Lemma 4.2. Let A be a simple, unital, infinite-dimensional, approz-
imately semi-homogeneous C*-algebra. Let mg,ty,... ,t, € N, and for
j=1,...,n let p; be a projection in M ,(A). Let (a;;) and (b;;) be
m X n matrices of nonnegative integers such that a;1.p1®- -+ ® Ain-Pn ~
bi1.01D: - Dby -pr, for all i. Then there exist a unital semi-homogeneous
sub-C*-algebra B C A and projections q; € My, (B) for each j such
that B has minimum matriz rank greater than mo and p; ~ gq; for all
J, while also a;1.q1 D+ D ain-qn ~ bi1.q1 B+ + D bin.qn in M (B) for
all 1.
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The notation p < ¢, for projections p and g, means that p is equivalent
to a proper subprojection of ¢q. In the presence of stable finiteness, p < ¢
if and only if p < ¢ but p £ g.

Lemma 4.3. Let mg € N, let X be a locally compact Hausdorff
space, and let pi,p2,q1,q2 be projections in My (Co(X)) such that
rank g;(z) — rankp;(z) > mo + 1 for all 4,5 and all x € X. Then
there exist a projection r € My (Co(X)) and a positive integer m such
that m.p; < mmg.r < m.q; for alli,j.

Proof. Invoking again the reductions used in the proof of Proposition
3.4, we may assume without loss of generality that X is a finite
CW-complex and that pi,ps2,q1,q2 have constant rank. Set a =
max{rank p;,rankps} and b = min{rank ¢;,rank¢s}. Since b —a >
mo + 1 by hypothesis, there exists ¢ € N such that a < myc < b.
choose a projection r € My (C(X)) with constant rank ¢, and set
m = max{1l,dim X}. The desired conclusions follow from Theorem
2.5(c). O

Proposition 4.4. Let A be a simple, unital, infinite-dimensional,
approzimately semi-homogeneous C*-algebra. Let my € N, and let
P1,P2,q1, g2 be projections in My (A) such that p; < gq; for all i,j.
Then there exist a projection r € My, (A) and a positive integer m such
that m.p; < mmg.r < m.q; for all i,j.

Proof. For each i, j, there is a nonzero projection s;; € My, (A) such
that g; ~ p; ® s;;. Since A is simple, the s;; are full, and hence there
is some n € N such that 14 < n.s;; for all ¢,j. By Lemma 4.2, there
exist a unital semi-homogeneous sub-C*-algebra B C A and projections
Pi» s S € Moo(B) such that B has minimum matrix rank greater than
(mo+1)n and the projections p;, g3, s;; are equivalent to p;, gj, si; while
also ¢; ~ p; @ s;; and 1p S n.s}; in M (B) for all 4, j. Now

B=B" = C(Xy1, M, (C)) x -+ x C(Xn, My, (C))

for some compact Hausdorff spaces X and some integers t >
(mo + )n.  Let pf,q},s;; denote the projections corresponding to

P;»q;, 8;; under the induced isomorphism of Mo, (B) onto Mo, (B").
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Since 1p» < n.sj; for all i,j and tx > (mo + 1)n for all k, we see
that the components si;; of each s; satisfy rank s, (z) > mo + 1
for all 4,5,k and all x € Xj. Therefore, by Lemma 4.3 there ex-
ist a projection " € My (B"”) and a positive integer m such that
m.p; < mmg.r'" < m.q; for all i,j. The projection 7 € M (B) corre-
sponding to '’ satisfies the desired conditions. O

Theorem 4.5. Let A be a simple, unital, infinite-dimensional,
approximately semi-homogeneous C* -algebra.

(a) Givenmgy € N and z1, 2, y1,y2 € Ko(A) such that z; < y; for all
i,j, there exist z € K¢(A) and m € N such that mz; < mmoz < my;
for alli,j.

(b) Define a new ordering <; on Ky(A) by declaring v <y y if
and only if either x = y or there exists m € N such that mz < my.
Then (Ko(A), <1) satisfies the Riesz interpolation and decomposition
properties.

(c) Given z,y1,ys € Ko(A)T such that x < y;+ys, there existm € N
and z1,x2 € Ko(A) such that x = z1 + 22 and 0 < mz; < my; for each
7.

Proof. (a) After translating x1,z2,y1,y2 by a suitable common
element of K(A), we may assume that each z; = [p;] and each y; = [g;]
for some projections p1,p2,q1,92 € My (A) such that p; < g; for all
i,7. By Proposition 4.4, there exist a projection r € My (A) and a
positive integer m such that m.p; < mmg.r < m.qg; for all 4,j. Then
ma; < mmg[r] < my; for all ¢, j. For each i, we have mmyg.r ~ m.p; ®e;
for some nonzero projection e; € My, (A). Since A is stably finite
(Corollary 3.3), [e;] # 0 in Ky(A), and hence mz; < mmyg[r]. Similarly,
mmg[r] < my; for each j.

(b) It is clear that (K((A), <) is a partially ordered abelian group.
Consider 1, 2, Y1, y2 in Ko(A) such that z; <, y; forall i, j. If z; =y,
for some s,t, then z; <; s <y y; for all 4,5. If z; <y y; for all 4,7,
there exists mo € N such that mox; < moy; for all ¢,j. By (a), there
exist z € Ky(A) and m € N such that mmoz; < mmez < mmgy;
for all 4, j, whence z; <; z <y y; for all ¢,j. Therefore, (K(A4),<1)
satisfies Riesz interpolation, and Riesz decomposition follows.
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(c) Observe that x,y1,y2 € (Ko(A4),<:)" and that = <; y; + yo.
In view of (b), there exist z1,29 € Ko(A) such that x = 1 + zo
and 0 <; x; <y y; for each i. Then there exists m € N such that
0 < mz; < my; for each i. ]

4.6. We note that a “fragment” of Riesz decomposition can be
obtained from Theorem 4.5(c) in case the projections in My, (A) satisfy
cancellation. Namely, if p, q1, g2 are projections in M, (A) such that
P S @1 © ¢2, then there exist m € N and projections p;,p2,71,72 €
Mo (A) such that p®rq1 ®re ~ p1 ®p2 and m.r; S m.p; S m.q; ®m.r;
for each 1.

Better results follow from Theorem 4.5 under the assumption that
Ko(A) is strictly unperforated, meaning that whenever m € N and
z € Ko(A) with ma > 0, it follows that > 0. (See, e.g., [1, 10.11.2]
or [14, Example 12] for examples of simple C*-algebras A for which
Ky(A) is strictly unperforated but still perforated.) Namely:

Corollary 4.7. Let A be a simple, unital, infinite-dimensional,
approzimately semi-homogeneous C* -algebra.

(a) If Ko(A) is strictly unperforated, then it satisfies the Riesz
interpolation and decomposition properties.

(b) If Ko(A) is strictly unperforated and the projections in My, (A)
satisfy cancellation, then the projections in My, (A) satisfy the Riesz
interpolation and decomposition properties.
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