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STABILITY OF RANDOM MATRIX MODELS
MICHELINE A. SCHREIBER AND HAROLD M. HASTINGS

ABSTRACT. Random matrices have been widely studied
as neutral models for the stability of large systems and, in
particular, ecosystems. However, many ecologists interpret
stability in terms of low variability and persistence, not Lya-
punov stability studied in matrix theory. Following Harrison
[5], Hastings [6] suggested a close relationship between Lya-
punov stability and low variability for random matrix models
with additional noise terms. We report on a simulation study
confirming this conjecture and its extension to certain prod-
ucts of random matrices.

1. Introduction. “Will a large complex system be stable?” (May
[11]). This important and intriguing problem has been extensively
studied by Gardner and Ashby [4], May [11, 12], Hastings [6], Cohen
and Newman [3], and Hastings, Juhasz and Schreiber [7] using linear
models of the form

(1) 2t +1) = Ma(t)

in which M is a random matrix. Following Wigner [14], May [11] made
the following conjecture.

The May-Wigner stability theorem. Let M be an n X n matrix
with connectance C (each entry of M is nonzero with probability C,
independent of other entries) and root mean square (rms) interaction
strength a (the nonzero entries are chosen independently from a sym-
metric distribution with expected square o*). Then the spectral radius
of M 1is given by

(2) p=p(M) = a(nC)"/?

asymptotically for large n.
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Bai and Yin [1] proved the May-Wigner upper bound,
p(M) < a(nC)"?,

under suitable technical hypothesis, and an extension to somewhat
more general matrices. Let M be an n X n matrix with independent,
identically distributed (iid) entries selected from a fixed distribution of
expectation 0, expected square o2, and bounded fourth moment. Then,
almost surely,

(3) limsup((1/n)p(M)) < a®.

n— oo

In addition, under these hypotheses, extensive numerical evidence
supports May’s original conjecture (cf. McMurtrie [13]) in the form

(4) limsup((1/n)p(M)) = o>.

n—r0o0

The May-Wigner stability theorem implies asymptotic estimates on
the growth of z(t) in equation (1), namely,

(5) lz(t)|| ~ p*
in the sense that

. —1 o
(6) Jim (1 log [l2(1)]) = o

whenever z(0) # 0. Cohen and Newman [3] proved similar results for
time-dependent systems

(7) z(t+1) = M(t)z(t)

under suitable technical hypotheses. Here the random matrices M (¢)
are chosen independently from a suitable statistical universe, and the
growth rate p is given by the formula

(8) logp = E(log ||M(1)z|l/||z]}),  z#0.

This estimate is similar but slightly less than the corresponding May-
Wigner estimate

p=E(IMM)z||/llz])),  z#0
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since the graph of the logarithm function is concave.

Lyapunov stability and low variability. Ecologists usually interpret
stability in terms of low variability of population numbers and per-
sistence of species rather than in terms of Lyapunov stability (cf.
MacArthur [10], May [12], Harrison [5], Hastings [6]). How are these
stability concepts related in the case of random matrix models?

Hastings [6] suggested an answer by considering stochastic models of
the form

(9) z(t+1) = Mz(t) + Aw(t)

in which the random walk process {w(t)} represents environmental
noise. We call this noise external, in contrast to the internal noise
of equation (4), since it does not affect the interspecific interactions.
He then argued that, at large times

(10) lz()]” ~ B(Aw®)/(1 - p%),

provided that the system for the mean process (equation (1)) is Lya-
punov stable, that is, provided that [p| < 1.

2. The models. We shall study stochastic models of the form
(11) z(t+1) = (M(t))z(t) + Aw(t)

where M(t) = M + N(t). These models combine relevant features of
both the Cohen-Newman models (equation (6)) and those previously
studied by Hastings (equation (9)). Here the M is a time-independent,
random n X n matrix with root mean square interaction strength o and
connectance C. The community matrix M represents the mean value
of the interspecific interactions in an ecological community. The n x n
matrices N (t) are independent samples from a fixed statistical universe
and represent fluctuations in ecosystem dynamics (internal noise). The
stochastic terms Aw(t) are the increments in a discrete-time random
walk representing ezternal noise. Of course, the increments Aw(t) are
iid, Gaussian and of mean zero. Let o2 denote the expected square of

Aw(t).
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The spectral radius of M(t) = M + N(t) is readily estimated with
Bai and Yin’s version of the May-Wigner theorem and numerical
techniques. We obtain

(13) p = p(M(1)) = (a2C + 12) /2012
in the sense of equations (4) and (5) above. As in formula (10), we
conjecture that

2 2

(14) @)~ 17 = T oo

provided that the expected spectral radii |p| of the matrices M (t) are
strictly less than 1.

We shall now derive formula (14) in the case of no noise, N(¢) =
0. However, error estimates appear difficult to estimate analytically,
especially for the small systems of ecological interest. The general case,
N(t) # 0, is even harder. We shall therefore turn to simulation methods
in Section 4.

3. Derivation of formula (14) in the case of no noise. In the
case of no noise, the state of the system described by equations (11)
and (12) above is given by

(15) z(t) = M'z(0) + SM 5T Aw(s).
Here and below, all sums range over 0 < s < ¢t — 1. Let p = p(M)
denote the spectral radius of M.

We now make precise the assumption that the matrices M(t) have
expected spectral radius strictly less than 1. Assume that, for some
>0,

a(nC)t/? <1 — 2.

By Bai and Yin [1], we may also assume that n is sufficiently large that
E(p)<1-e.
We are now ready to compute the right-hand side of equation (15).

Our assumptions imply that

lim M'z(0) = 0,

t—o0
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and thus
. 2y _ 1 t—s+1 2
Jim E(la(0)]?) = Jim B(ISM Aw(s)]2).
Since the terms Aw(s) are independent by assumption, for s # s’
E(M' Aw(s)] - [M' T Aw(s)]) = 0.
Therefore,

(16)  lim B(lz()]?) = lim SE(IM Aw(s)]|[).

The required asymptotic estimate (formula (14)) now follows easily
from formula (5).

4. Simulation analysis. We studied the dynamics of both the
autonomous stochastic model (equation (8), above)

z(t+1) = Mz(t) + Aw(t)

(the May- Wigner case) and an analogous time-dependent model (equa-
tions (11) and (12), above):

(17) z(t+1) = (M + N(t))z(t) + Aw(t).

In both models, M is an n X n random matrix of connectance C.
We chose the rms interaction strength a = (2nC) /2 in order to
the expected spectral radius p(M) = 1/2. As above, the terms
Aw(t) are the increments in a random walk. In addition, M is either
fully connected (C' = 1) or nC > log(n), making the graph of M
connected with high probability (cf. Bollobas [2]). Here is the detailed
methodology.

The May-Wigner case. First generate a random matrix M as above.
Next, compute the actual spectral radius of M by studying the growth
rate of M*. Then let z(0) = 0, and use equation (18) to generate 50
successive values of z(t). Finally, compare the theoretical value of the
asymptotic mean square norm of the vector z(t), namely 1/(1 — p?)
by Section 2, with the average of the last 25 experimental values of
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l2(t) 1% that is, ||2(26)]1%,|12(27)|[%, .. , la(50)| . (As it is customary
with stochastic models, we let the model stabilize before gathering
statistics.)

The case with internal noise included. We followed the same simula-
tion methodology as above, using the time-dependent model (17). The
noise matrices N(¢) are fully connected (C' = 1), have rms interaction
strength v = 0.01 or 0.1, and were chosen independently at each time
t. In order to compare theoretical and experimental results, we com-
puted the expected spectral radius of each of the matrices M + N (t) in
equation (17) using equation (13) above. We then proceeded as in the
May-Wigner case.

We used the same values of n and C used previously in [6]; these
values seem typical of small ecosystems. We ran 25 replicates for each
choice of parameters. The results are given in Table 1. As we have
shown, experimental values tended to agree closely with theoretical
values of equation (14); however, we do not understand why large
amounts of internal noise reduced experimental values below theoretical
values.

TABLE 1. Ratio of experimental to theoretical values of ||z(t)||2.

Size Connectance Internal Noise (mean =+ standard error)

8 1 0.0 1.017 £0.018
0.01 1.015 £ 0.017
0.1 0.979 £ 0.019
16 1 0.0 1.008 = 0.014
0.01 1.030 £ 0.014
0.1 0.987 £ 0.017
16 0.5 0.0 1.001 £0.013
0.01 1.008 £ 0.018
0.1 0.986 £ 0.017

5. Discussion. We have found a simple relationship between
Lyapunov stability and persistence and, in particular, the following
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equation relating ecosystem parameters (size, connectance, interaction
strength), the maximum acceptable amount of environmental noise
(internal noise \/E(Aw?) and external noise v) to the size of population
fluctuations z(¢):
2
Ble(0)]) = et
a?2C +v?)n

This equation relates Lyapunov stability of model ecosystems to vari-
ability, and thus indirectly to persistence. Thus, random matrix models
can be used to study persistence in the presence of environmental noise.
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