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ε-SPACES
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ABSTRACT. Consider a Tychonoff space, X, and the
lattice-ordered group C(X) of real-valued continuous func-
tions. Within a certain category of l-groups, the “epicom-
plete epireflection” εC(X) of C(X) looks enough like the l-
group B(X) of Baire functions on X to present the question:
For what X is εC(X) = B(X)? That equality means just
that each homomorphism from C(X) to an epicomplete tar-
get lifts to a homomorphism of B(X) and is, we show, equiv-
alent to this condition on the placement of X in its Stone-
Čech compactification βX: If E is a Baire set of βX which
misses X, then there are zero-sets Z1, Z2, . . . of βX for which
E ⊆ ∪nZn ⊆ βX − X. We call such an X an “ε-space” and
examine these spaces, rather inconclusively.

Algebra to topology. In the first two sections we present a synopsis
of the theory in [1, 2, 3] to motivate the question, “εC(X) = B(X)?”
and to make the topological reduction described in the abstract. The
reader who finds the definition of ε-spaces in the abstract sufficiently
compelling can, for the most part, just skip to Section 3.

1. Epicompleteness. W is the category of Archimedean l-
groups with distinguished weak order unit and morphisms the l-
homomorphisms which preserve unit. Each C(X), with unit the con-
stant function 1, is an object of W , the W-morphisms between C(X)’s
are exactly the homomorphisms described in Chapter 10 of [7] and, in
many other ways, the categoryW generalizes (significantly) the theory
of C(X) in [7]; see, e.g., [8]. The discussion of this section takes place
“in W .”

An epimorphism (or just “epic”) is a homomorphism α : A → B for
which γα = δα (with γ, δ homomorphisms) implies γ = δ. [1] contains
an explicit description of the epics, but we can skip this.
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An object is called epicomplete if it has no proper epic extension,
and an epicompletion of G is an epic extension of G to an epicomplete
object. Let EC denote the class of epicomplete objects.

Proposition 1.1 [1, 2]. The following are equivalent.

(a) G ∈ EC.

(b) G is σ-complete and σ-laterally complete, and divisible.

(c) G “is” a vector lattice of real-valued measurable functions modulo
an abstract σ-ideal of null functions.

Proposition 1.2 [11, 2]. To each G, there corresponds an epicom-
pletion G

εG
↪→ εG such that, given G

ϕ→ E, with E ∈ EC, there is a
unique εG

ϕ̄→ E with ϕ̄εG = ϕ.

Proposition 1.3 [3]. εC(X) is B(βX)/N(C(X)), where βX is
Stone-Čech compactification, B() denotes the l-group of Baire func-
tions, and

N(C(X)) =
{
f ∈ B(βX) | coz f ⊆

⋃
n

(βgn)−1(±∞),

for some g1, g2, . . . ∈ C(X)
}

(where βg : βX → R ∪ {±∞} is the extension of g ∈ C(X)). And,
εC(X) : C(X)→ εC(X) is defined by:

εC(X)(g) = g′ +N(C(X)),

where

g′ =

{
βg on (βg)−1(R)

0, on (βg)−1(±∞).

2. B(X) versus εC(X). Let ϕ label the inclusion C(X)
ϕ

⊆ B(X),
and let us just write ε for the map εC(X) of Propositions 1.2 and 1.3. We
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say that B(X) = εC(X) if these extensions of C(X) are isomorphic over

C(X), i.e., if there is an isomorphism εC(X)
ψ→ B(X) with ψε = ϕ.

Theorem 2.1. C(X)
ϕ→ B(X) is an epicompletion of C(X), and

the unique εC(X)
ϕ̄→ B(X) with ϕ̄ε = ϕ (of 1.4) is a surjection.

B(X) = εC(X) if and only if ϕ is one-to-one, and that occurs if and
only if whenever E is a Baire set of βX with E ∩ X = φ, there are
zero-sets Z1, Z2, . . . of βX with each Zn ∩X = φ, with E ⊆ ∪nZn.

Proof. This information will be extracted in steps from the following
diagram

(2.2)

C∗(X)

�

γ

�
δ B(βX)

�

q
�
�
�

ζ

C(X)

�

ϕ

�
ε εC(X)
�
�
�
��

ϕ̄

B(X)
��
�
�

in which: C∗(X) is the sub-l-group of C(X) consisting of bounded
functions, and γ is the indicated inclusion; δ is the composite C∗(X) �
C(βX) ↪→ B(βX); q(f) = f + N(C(X)) is the quotient map implicit
in 1.3; ζ(f) = f | X is the restriction homomorphism.

By Proposition 1.1, B(X) ∈ EC so there is a unique ϕ̄ with ϕ̄ε = ϕ.
The first paragraph of Theorem 2.1 (and more) is included in

Proposition 2.3. Diagram (2.2) has these features:

δ is epic; ζ is onto; ζδ = ϕγ; ϕ is epic;
εγ = qγ; ϕ̄q = ζ; ϕ̄ is onto.

Proof. δ epic: 5.3(b) of [2]. (This requires the characterization of
epics in [1].)
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ζ onto: Let g ∈ B(X). We are to find f ∈ B(X) with f | X = g.
Fix k ∈ N . For each integer n, g−1([n/k, (n+ 1)/k)) is a Baire set on
X, which by 8.7 of [4] extends to a Baire set F kn of βX; by induction
on n, we may and do assume the F kn , n ∈ Z, disjoint. Let χkn be the
characteristic function of F kn . Then fk ≡ ∑

n(n/k)χkn ∈ B(βX), and
|fk(x) − g(x)| ≤ 1/k for each x ∈ X. But (fk) is uniformly Cauchy
and thus converges uniformly to the desired f ∈ B(βX).

ζδ = ϕγ. Obvious.

ϕ epic: ζ is onto, hence epic. ζδ is the composition of two epics,
hence is epic. So ϕγ = ζδ is epic. Thus, ϕ is epic, as a second factor of
an epic.

εγ = qγ. Reflection upon the definitions.

ϕ̄q = ζ. ϕ̄qδ = ϕ̄εγ = ϕγ; since γ is epic, ϕ̄q = ζ.

ϕ̄ onto: From ζ onto, and ϕ̄q = δ.

We now establish the second paragraph of Theorem 2.1.

If an isomorphism ψ witnesses B(X) = εC(X), of course ψ = ϕ̄ (by
uniqueness of ϕ̄), so ϕ̄ is one-to-one. Conversely, ϕ̄ is already onto, so
if one-to-one, ϕ̄ is the desired ψ.

Finally, since ζ = ϕ̄q, it is visible in (2.2) that ϕ̄ one-to-one means
f ∈ B(βX), f | X = 0 ⇒ f + N(C(X)) = 0. Now f + N(C(X)) =
0 means coz f ∈ N(C(X)), i.e., coz f ⊆ ∪n(βgn)−1(∞) for some
g1, g2, . . . ,∈ C(X). But the sets of the form (βg)−1(∞), g ∈ C(X),
are exactly the zero-sets of βX which miss X (by inverting functions).
And the set coz f is a typical Baire set of βX which misses X. Thus,
ϕ̄ one-to-one is equivalent to the topological condition in Theorem 2.1.

The proof of Theorem 2.1 is concluded.

We summarize the situation:

Proposition 2.4. An ε-space is a Tychonoff space X which satisfies
the following equivalent conditions:

(a) Each W-homomorphism ϕ : C(X) → E, with E ∈ EC, has an



ε-SPACES 871

extension ϕ̄ : B(X)→ E;

(b) Each Baire set of βX which misses X is contained in a “Zσ”
of βX which misses X (i.e., the condition of Theorem 2.1 and the
abstract).

Here (a) is just the statement εC(X) = B(X), since B(X) is an
epicompletion of C(X) by Proposition 2.1 and εC(X) is, up to isomor-
phism, the only epicompletion of C(X) with the universal mapping
property of (a) (or Proposition 1.2).

What spaces are ε-spaces? Various versions of this question
occupy the rest of the paper; sometimes we will apply Proposition
2.4 (a) and sometimes 2.4 (b), and sometimes both. But we try to
emphasize the topology.

For brevity in the sequel, we let B(Y ) stand for the σ-field of Baire
sets of the space Y (the σ-field generated by the zero-sets). “Space”
always means “Tychonoff space.”

3. Compact and pseudocompact spaces are ε. For, compact
X has βX = X and condition 2.4 (b) holds. (Alternatively, one
may use Proposition 1.3 in which, when X is compact, βX = X and
N(C(X)) = (0).)

If X is pseudocompact, then no nonvoid Baire set of βX misses X,
since this is true of zero-sets [7, 6I], and each Baire set is the union of
zero-sets [4; 8.2]. Thus condition 2.4(b) holds (just as with compact).

(Also, “compact are ε” implies “pseudocompact are ε,” via Theorem
6.1 below.)

4. Absolute Baire spaces. If X ∈ B(βX), then X is a Baire set
in any compactification, and is called “absolute Baire” [4; p. 79].

Theorem 4.1. The following are equivalent about X.

(a) X is an ε-space and an absolute Baire space.

(b) There are cozero-sets C1, C2, . . . of βX with ∩nCn = X.

(c) X is Lindelöf and Čech-complete (i.e., a Gδ in βX).
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Proof. (a) ⇔ (b). If X ∈ B(βX), then βX − X ∈ B(βX) and
Proposition 2.4(b) is equivalent to Theorem 4.1(b), by complementing.

(b) ⇒ (c). Such an X is clearly Gδ in βX and is Lindelöf by [4, 9.8].

(c) ⇒ (b). We shall need the following (now and later); see [5, p.
165].

A space X is normally placed in its superspace K if each closed set
in K which misses X is contained in a zero-set of K which misses X.
(This definition, and Proposition 4.4 below, are due to Yu.M. Smirnov.)

Proposition 4.4. These are equivalent about X.

(a) X is normally placed in βX.

(b) X is normally placed in some compactification of X.

(c) X is normally placed in every superspace.

(d) X is Lindelöf.

To prove (c) ⇒ (b) in Theorem 4.1, suppose X = ∩nGn for open Gn
in βX, and suppose X is Lindelöf. Then, for each n, there is a zero-set
Zn with Zn ∩X = ∅ and Zn ⊇ βX −Gn (by condition 4.4(a)). Thus,
βX −X = ∪nZn and condition 4.1(b) holds.

Corollary 4.5. The space P of irrationals is an ε-space. The space
Q of rationals is not an ε-space.

Proof. P is Lindelöf and Čech-complete, and Q is not Čech-complete
[5, p. 146].

We shall see in (5.4) below that a Lindelöf ε-space need not be
absolute Baire.

5. P -spaces. Recall from [7; 4J] that a space is called a P -space if
each Gδ is open, equivalently, each zero-set is open, or cozero. It follows
easily that X is a P -space if and only if each Baire set is a zero-set,
equivalently, C(X) = B(X). Then, vacuously as it were, B(X) has the
universal mapping property of Proposition 2.4(a), so that
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Theorem 5.1. A P -space is an ε-space.

On the other hand, the topologist would like to see a topological proof
of Proposition 2.4(b), so here is an elegant one.

The following slight variant on the famous Loomis-Sikorsky (Stone-
von Neumann) theorem is articulated in [3, III] (and probably elsewhere
too), and proved just as in [9].

Given Y with its Baire field B(Y ), let ZM be the σ-ideal in B(Y )
generated by the nowhere dense zero-sets (the ideal of “zero-meager”
sets).

Theorem 5.2. If Y is basically disconnected (i.e., each cozero set
has open closure), then for each B ∈ B(Y ) there is a unique clopen C
such that (B − C) ∪ (C − B) ∈ ZM (and thus the composite Boolean
homomorphism clopY ↪→ B(Y )→ B(Y )/ZM is an isomorphism).

We also need, from [7; 4K].

Proposition 5.3. Each P -space is basically disconnected, and Y is
basically disconnected if and only if βY is.

Proof of Theorem 5.1. We now prove Theorem 5.1 again, by showing
condition 2.4(b).

Let X be P , and let B ∈ B(βX) with B ∩ X = ∅. Since βX is
basically disconnected (5.3), there is clopen C in βX with (B − C) ∪
(C − B) ∈ ZM, i.e., there are nowhere dense zero-sets Z1, Z2, . . . of
βX with (B − C) ∪ (C − B) ⊆ ∪nZn. But, when X is P , if Z is a
nowhere dense zero set of βX, then Z ∩X is clopen and nowhere dense
in X, thus void. Therefore, Zn ∩X = ∅ for each n. Then

C ∩X = C − (βX −X) ⊆ (C −B) ∩X ⊆ (∪nZn) ∩X
= ∪n(Zn ∩X) = ∅,

so that C = ∅ (being clopen). Thus,

B = B − C ⊆ ∪nZn ⊆ βX −X.
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Example 5.4. Let λD denote an uncountable discrete space D,
with one point P adjoined, each of whose neighborhoods has countable
complement in D. Then λD is a Lindelöf P -space (hence an ε-space)
which is not absolute Baire since it is not Gδ in βλD. (If λD were a
Gδ in βλD, there would be a perfect function f from λD onto a metric
space [4, 9.5], and f−1(f(p)) would be compact. But f(p) is a Gδ, so
f−1(f(p)) is a Gδ, thus a neighborhood of p, and cannot be compact.)

6. ε is algebraic. We ask the reader to recall the Hewitt real-
compactification υX from [7].

Theorem 6.1. X is an ε-space if and only if υX is.

Proof. Of course, υX ⊆ βX. For B ∈ B(βX) B ∩X = ∅ if and only
if B ∩υX = ∅ (because that is true for zero-sets via [7, 8.7], and every
Baire set is the union of zero-sets [4, 8.2]. Now Theorem 6.1 is easy.

We note from [8] that a map ϕ : C(X) → C(Y ) is a W-
homomorphism if and only if it is a ring homomorphism preserving
identity, and from [7] that such ϕ has the form ϕ(f) = f ◦τ , f ∈ C(X),
for a unique continuous υX τ← υY , and ϕ is an isomorphism if and only
if τ is a homeomorphism.

The following is what the title of this section means.

Corollary 6.2. Suppose C(X) and C(Y ) are W-isomorphic. Then
X is an ε-space if and only if Y is.

Proof. Suppose X is ε, ϕ : C(X) → C(Y ) is an isomorphism, and
υX

τ← υY is the homeomorphism with ϕ(f) = f ◦ τ . Evidently, υX is
ε if and only if υY is, and the result follows by Theorem 6.1.

Remarks 6.3. Corollary 6.2 implies Theorem 6.1, since C(X) and
C(υX) are isomorphic.
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One can argue Corollary 6.2 from condition 2.4(a) as well, the key
being that an isomorphism ϕ : C(X) → C(Y ) lifts to an isomorphism
ϕ̄ : B(X)→ B(Y ). We omit the details.

7. ε-placement, and absolute ε-spaces. The notions (defined
shortly) seem natural (perhaps in view of Proposition 4.4) and useful
in the study of ε-spaces (but certainly raise more questions than they
answer).

Definition 7.1. (a) Let X ⊆ Y . X is ε-placed in Y if, whenever
B ∈ B(Y ) and B ∩ X = ∅, there are zero-sets Z1, Zn, . . . of Y , each
with Zn ∩X = ∅, and B ⊆ ∪nZn. (Thus, X is an ε-space if and only
if X is ε-placed in βX.)

(b) If X is ε-placed in each of its compactifications, X is called an
absolute ε-space.

(c) If X is ε-placed in some compactification, X is called a weak
ε-space.

Among many immediate questions concerning these notions, we ar-
ticulate only a few:

Questions 7.2. (a) Must an ε-space X be absolute ε? Response:
No (Example 7.3 below), but yes for Lindelöf X (Theorem 7.5 below).

(b) What are the absolute ε-spaces? Response: We do not know, but
it seems plausible that they are ε-spaces X with υX Lindelöf. We have
proved neither implication.

(c) If X is ε-placed in some compactification, must X be an ε-space?
Response: Yes for σ-compact X (Theorem 7.8 below) but, in general,
no (Example 7.4 below).

(d) What are the weak ε-spaces? Response: We do not know,
but they include all “weakly pseudocompact” spaces, and thus every
Hedgehog with uncountably many spines [6].

Example 7.3. An uncountable discrete space X (hence ε, by
Theorem 5.1) with a compactification K in which X is not ε-placed.
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Remark. It is not hard to see that, for discrete spaces X ⊆ Y , if K is
a compactification of X in which X is not ε-placed, then K+β(Y −X)
is such a compactification of Y . Thus, one wants an example X with
minimum cardinal, optimally ω1. The construction below has X of
cardinal c, and (superficially, at least) difficulties develop upon trying
to reduce to ω1. However, H. Zhou asserts that this is possible; see
[14].

The construction which follows comes from page 172 of [13] and is
attributed to M. Katětov. The (Boolean algebraic) purpose in [13] is
to construct, in a compact K, a meager Baire set B not contained in
any countable union of nowhere dense zero-sets. One notes that, for
any such, X ≡ K −B fails to be ε-placed in K.

Let I = [0, 1], and let B ∈ B(I) with the features:

(a) For each countable E ⊆ I, B ∪ E is not Fσ;

(b) C ≡ I −B is dense.

(One may take for B any Baire set in the Cantor set which is of
“exact class 3.” These exist by a theorem of Lebesgue, see page 207 of
[10].)

Now an Alexandrov-doubling construction is made, as follows:

Let X be a disjoint copy of C, and let K = I ∪X, topologized like
this:

(i) For each x ∈ X, {x} is open;

(ii) For each y ∈ I, a basic open neighborhood of y is of the form
G∪ [(G∩C)′−F ], where G is an open neighborhood of y ∈ I, (G∩C)′

denotes the copy of G ∩ C in X, and F is finite.

It is easily seen that K is a compactification of discrete X, and I
inherits from K its original topology, that B is a Baire set of K with
B ∩X = ∅, and that Z is a nowhere dense zero set of K if and only if
Z is closed and Z −B is countable.

Then, if we had zero-sets Zn of K, each with Zn ∩ X = ∅, and
B ⊆ ∪nZn, then we would have ∪nZn = B ∪∪n(Zn −B); here the left
side is Fσ, while each Zn is nowhere dense, hence Zn −B is countable,
thus too ∪n(Zn −B), so the right side is not Fσ (by (a) above).
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Example 7.4. A locally compact space which is not an ε-space.

(This substantiates the “no” in Question 7.2(c), since a locally com-
pact space is always ε-placed in its one-point compactification. We note
that the example below is not realcompact; a realcompact example has
failed to occur to us.)

Let I = [0, 1], Q̂ = Q ∩ I, P̂ = P ∩ I; here Q is the rationals and P
is the irrationals. We will use the fact that P is not σ-compact later.

Observe that P̂ is a Gδ-subset of I, and hence belongs to B(I). Also
observe that P̂ is not σ-compact.

ω = {0, 1, . . . } with the discrete topology. As usual, put ω∗ = βω\ω.
We will use the well-known and easily established fact that every
nonempty Gδ subset of ω∗ has nonempty interior in ω∗ (see [7] or
[4]).

Let π : ω → Q̂ be a surjection, let f = βπ : βω → I be its Stone-Čech
extension, and let g = f |ω∗. It is clear that g is surjective. For every
q ∈ Q̂, let Sq denote the interior of g−1(q) in ω∗. By what we just
observed, each Sq is nonempty.

Put X = ω ∪ ∪q∈Q̂Sq. Notice that ω ⊆ X ⊆ βω so that βX = βω.
Also, notice that X is locally compact, because its complement is a
closed subspace of ω∗, and hence is compact. LetB = f−1[P̂ ] = g−1[P̂ ].
Observe that B is a Baire subset of βω and that B ⊆ βX\X.

The promised example is X. Observe that X is not pseudocompact
because f maps X onto Q̂. We claim that there is no countable
collection A of zero-sets of βω such that B ⊆ ∪A ⊆ βX\X. To
the contrary, assume that such a family exists. Fix an arbitrary
member A ∈ A. Then A is a Gδ-subset of ω∗. Assume that there
exists q ∈ Q̂ such that A ∩ g−1(q) �= ∅. Then A ∩ g−1(q) is a
nonempty Gδ-subset of ω∗ and consequently has nonempty interior.
As a consequence, A intersects the interior in ω∗ of g−1(q). But this
is impossible because this interior is in X and A is in βX\X. We
conclude that A ∩ g−1(q) = ∅. Since A, and in turn q, was arbitrary,
we find

( ⋃
A

)⋂
g−1[Q̂] = ∅,
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i.e., ⋃
A ⊆ g−1[P̂ ].

So it follows that ⋃
A = g−1[P̂ ]

because also g−1[P̂ ] ⊆ ∪A. By the continuity of g, this now implies
that P̂ is σ-compact, which is a contradiction.

Theorem 7.5. Let X be a Lindelöf ε-space. If X ⊆ K, and K is
compact, then X is ε-placed in K. Thus, X is absolute ε.

Lemma 7.6. If f : Y → K is continuous and closed, and onto, if
Lindelöf X ⊆ f(Y ), and if f−1X is ε-placed in Y , then X is ε-placed
in K.

Proof of Lemma 7.6. Let B ∈ B(K) with B ∩ X = ∅. Then
f−1B ∈ B(Y ) and f−1B ∩ f−1X = ∅, so there are zero-sets Zn of Y
with f−1B ⊆ ∪nZn and each Zn ∩ f−1X = ∅. Then B ⊆ f(f−1B) ⊆
f(∪nZn) = ∪nf(Zn) and each f(Zn) ∩ X = ∅. Since f is closed,
each f(Zn) is closed, and since X is Lindelöf, Proposition 4.4 provides
a zero-set Wn of K with f(Zn) ⊆ W , W ∩ X = ∅. We then have
B ⊆ ∪nWn ⊆ K −X, as desired.

Proof of Theorem 7.5. Use Lemma 7.6 with f : βX → K the Stone-
Čech extension of the inclusion X ⊆ K.

Lemma 7.6 has a Corollary in another direction, which may be
interesting. We ask the reader to recall, say from [12], the “absolute of a
space,” say πX : aX → X, and that, for the absolute πβX : aβX → βX,
we have aX = π−1

βXX, with πX = πβX |X.

Corollary 7.7. If X is Lindelöf and aX is an ε-space, then X is an
ε-space.

Proof. Use Lemma 7.6 with Y = aβX, K = βX, and f = πβX .
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Thus, aQ is not an ε-space, by Corollary 7.7 and Corollary 4.5.

Theorem 7.8. Let X be σ-compact, and ε-placed in some compact
space. Then X is an ε-space, indeed, absolute ε.

Lemma 7.9. If f : Y → K is continuous with Y compact, if σ-
compact X ⊆ f(Y ), and if X is ε-placed in K, then f−1X is ε-placed
in Y .

Proof of Lemma 7.9. Let B ∈ B(Y ) with B ∩ f−1X = ∅. Since Y
is compact, B is Lindelöf [4, 9.10], and thus so is f(B). Of course,
f(B) ∩X = ∅. Now,

(∗) In a space K, if X is Fσ and Lindelöf L ⊆ K −X, then there is
an F ∈ B(K) with L ⊆ F ⊆ K −X.

Proof of (∗). Write X = ∪nXn with Xn closed in K. Then, for each
n, L ∩ Xn = ∅, and by Proposition 4.4, there is a zero-set Zn with
Zn ⊇ Xn, Zn ∩L = ∅. Thus, L∩∪nZn = ∅, and ∪nZn ⊇ ∪nXn = X,
and so L ⊆ K − ∪nZn ≡ F ⊆ K −X. So (∗) is proved.

We can apply (∗) to L = f(B) and the FσX, finding F ∈ B(K) with
f(B) ⊆ F ⊆ K −X. Since X is ε-placed in K, there are zero-sets Wn

with f(B) ⊆ F ⊆ ∪nWn ⊆ K −X, and thus B ⊆ f−1f(B) ⊆ f−1F ⊆
f−1(∪nWn) = ∪nf−1(Wn) ⊆ f−1(K−X) = Y −f−1(X), and we have
proved Lemma 7.9.

Proof of Theorem 7.8. Let X be ε-placed in K, and use Lemma 7.9
with f : βX to K the Stone-Čech extension of the inclusion X ⊆ K.

Corollary 7.10. If X is a σ-compact ε-space, then its absolute is an
ε-space.

Proof. As with Corollary 7.7, using Lemma 7.9.
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Combining Theorem 7.5 and Theorem 7.8 with Section 4, we find

Corollary 7.11. (a) A Lindelöf Čech-complete space is absolute ε.

(b) Q is ε-placed in no compact space.

8. Subspaces. What kinds of subspaces of ε-spaces are again ε?
We hardly know the complete answer, but

Theorem 8.1. If X is an ε-space, and Z is a C∗-embedded zero-set
in X, then Z is an ε-space.

Remarks 8.2. (a) In Theorem 8.1, “zero” cannot be replaced by
“closed”; see Proposition 8.7 below.

(b) In Theorem 8.1, “zero” cannot be replaced by “open”: Example
7.4.

(c) Example 7.4 also shows that the euphonious statement
(∗) “An ε-placed subspace of an ε-space is an ε-space,”

is false: the space in Example 7.4 is ε-placed in its one-point compactifi-
cation, which is an ε-space. Nonetheless, (∗) may represent some truth,
since Theorem 8.1 can be viewed as a weak version of it: a zero-set is
always ε-placed, since its complement is cozero and thus the union of
a sequence of zero-sets.

(d) We do not know if, in Theorem 8.1, the hypothesis “C∗-
embedded” can be dropped.

Corollary 8.3. A clopen subset of an ε-space is an ε-space.

We set out to prove Theorem 8.1. For spaces A ⊆ B, we say that A
is Baire-embedded in B if each Baire set of A is the intersection with
A of a Baire set of B.

Lemma 8.4. Let Y ⊆ K, with Y Baire-embedded in K. If Y is
ε-placed in K, then Y is ε-placed in Y .
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Proof. Let E ∈ B(Y ) with E ∩ Y = ∅. By the hypothesis, there is
an E′ ∈ B(K) with E′ ∩ Y = E, and thus E′ ∩ Y = ∅. Thus, we have
zero-sets of K, Zn, with E′ ⊆ ∪nZn ⊆ K − Y , and then

E = E′ ∩ Y ⊆ (∪nZn) ∩ Y
= ∪n(Zn ∩ Y ) ⊆ (K − Y ) ∩ Y
= Y − Y,

as desired.

Remark 8.5. Conversely, it can be shown that, when K is compact,
if X is ε-placed in X, then X is ε-placed in K. We omit this proof.

Lemma 8.6. Let X be an ε-space and Z ′ ∈ B(βX). Then Z ′ ∩X is
ε-placed in Z ′.

Proof. Let E ∈ B(Z ′) with E ∩ X = ∅. Now Z ′ is Lindelöf [4,
9.10], thus z-embedded in βX [4, 9.11], thus Baire embedded (by an
easy transfinite induction on the class of the Baire sets). So there is an
F ∈ B(βX) with F ∩ Z ′ = E so E ∈ B(βX). Then, since E ∩X = ∅,
there are zero-sets Zn of βX with E ⊆ ∪nZn ⊆ βX −X. Then

E = E ∩ Z ′ ⊆ (∪nZn) ∩ Z ′ = ∪n(Zn ∩ Z ′)
⊆ (βX −X) ∩ Z = Z ′ − Z ′ ∩X.

Proof of Theorem 8.1. Let Z be a C∗-embedded zero-set in the ε-space
X. Since C∗-embedding implies “z-embedding,” there is a zero-set Z ′

of βX with Z ′ ∩X = Z. Now Z ′ ∈ B(βX), so Lemma 8.6 says that Z
is ε-placed in Z ′. Now use Lemma 8.4 with Y = Z and K = Z ′: since
Z ′ is compact, so is Z (closure in Z ′), and thus Z is “Baire-embedded”
in Z ′ (since it is C∗-embedded). So Lemma 8.4 says Z is ε-placed in
Z. This closure in Z ′ is also the closure in βX since Z ′ is closed. By
C∗-embedding, Z is βZ, and we are done.

Proposition 8.7. Each space F is a C∗-embedded closed set in a
pseudocompact (hence ε-) space X(F ).

Proof. Let F be given, and let Y be any pseudocompact noncompact
space. Then Y × βF is pseudocompact [7, 9.14]. Choose any p ∈
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βY − Y , and let X(F ) be the following subspace of (Y ∪ {p})× βF :

X(F ) = (Y × βF ) ∪ ({p} × F ).

Then, X(F ) is pseudocompact, since X(F ) contains densely the pseu-
docompact space Y ×βF , and the copy {p}×F of F in X(F ) is easily
seen to be closed and C∗-embedded.

9. Sums. For {Xα | α ∈ A} a set of spaces,
∑
α∈AXα (called the

sum) denotes the disjoint union with the topology: G is open if and
only if G ∩Xα is open for each α.

Theorem 9.1. (a) If
∑
α∈AXα is an ε-space, then each Xα is an

ε-space.

(b) If A is countable, and each Xα is an ε-space, then
∑
α∈AXα is

an ε-space.

Proof. (a) By Corollary 8.3.

(b) Let X =
∑
Xn, n ∈ N , suppose each Xn is an ε-space, and let

E ∈ B(βX) with E ∩X = ∅. Since Xn is clopen in X, it follows that
βXn is the closure of Xn in βX and is clopen there. Thus, Y ≡ ∪nβXn

is a cozero set of βX, so βX − Y is a zero-set.

Now En ≡ E ∩ βXn ∈ B(βXn), and En ∩Xn = ∅, so there are zero-
sets Znk of βXn with En ⊆ ∪kZnk ⊆ βXn−Xn. Since βXn is clopen in
βX, each Znk is a zero-set of βX as well. We now have

E = (∪nEn) ∪ (E ∩ (βX − Y ))
⊆ (∪n ∪k Znk ) ∪ (βX − Y )
⊆ βX −X,

showing X is an ε-space.

Remarks 9.2. (a) In Theorem 9.1, the hypothesis “A is countable”
cannot be dropped. This is due to H. Zhou [14]: the sum of ω1 unit
intervals is not ε. This is quite complicated, and [14] contains numerous
other results involving ordinals and set-theoretic assumptions.



ε-SPACES 883

(b) What about unions (which are not sums) of ε-spaces? Doubtless,
there are positive results, but we know no interesting ones. Here are
two negative results.

Example 9.3. A countable disjoint union of C∗-embedded closed
ε-spaces which is not ε: the rationals Q.

Example 9.4. A disjoint union of two ε-spaces which is not ε: the
space X = ω ∪ ∪q∈Q̂Sq of Example 7.4.

Proof. We shall refer to Example 7.4. As seen there, X is not ε. By
Theorem 4.1 or 5.1, ω is ε. We want to see that ∪q∈Q̂Sq is ε. Now,
in its inherited topology, this union is the sum (since each Sq is open,
and thus too its complement equals ∪r �=qSr), so by Theorem 9.1(b), we
want to see that each Sq is ε. Indeed, each Sq is pseudocompact (thus
ε by Section 3), as we now explain.

A space Y is called ω-bounded if each of its countable subsets has
compact closure (in Y ). Clearly, such a space is countably compact,
thus pseudocompact. The following, well-known to aficionados, applies
to each Sq.

Lemma 9.5. In ω∗, the interior of a zero-set is ω-bounded.

Proof. All operations shall refer to ω∗. Let U = intZ, and let A be a
countable subset of U . We show that A ⊆ U (which suffices, since ω∗

is compact). Choose a cozero-set C for which A ⊆ C ⊆ Z (possible,
since the cozero-sets form a base, A ⊆ intZ and A is Lindelöf). Now
C and ω∗−Z are disjoint cozero-sets in the F -space ω∗ [2, 14.27], and
thus have disjoint closures [7, 14.N]. So C ⊆ intZ = U , hence A ⊆ U .

10.The Sorgenfrey line. This space, S, is the real numbers with
the topology generated from the open basis of all [a, b)’s. Note that,
for a function f from S to another space, f may be viewed as defined
on the usual real line R, and as such, for p ∈ R, f may or may not be
continuous at p. If not, we say that f is R-discontinuous at p.
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Our theorem here is the following special result. We find it interest-
ing, and do not know about S × S.

Theorem 10.1. S is an ε-space.

Proof. Let E be a Baire set of βS which misses S. By [4, 9.1], there
are metrizable M with a Baire set F and continuous g : βS → M
for which E = g−1(F ). Let f be the restriction g | S, and let
D = {p ∈ R | f is R-discontinuous at p}. By Proposition 10.2(c)
below, D is countable: we write D = {rn | n ∈ N}.

Let i : S → R be the identity function, continuous in the direction
indicated, with βi : βS → βR the Stone-Čech extension. Let Z0 =
(βi)−1(βR−R), and, fixing a metric ρ on M , let Znm = (βi)−1({rn})∩
{x ∈ βS | ρ(g(x), f(rn)) ≥ 1

m}. For elementary reasons, all these Z’s
are zero-sets of βS which miss S. (Znm ⊆ βS − S since x ∈ S and
βi(x) = rn imply g(x) = f(rn).)

We claim that g−1((M − g(S)) is contained in the union of the Z’s,
whence the Z’s cover E, as desired. To see that: if x /∈ Z0, then
βi(x) ∈ R, and if also x /∈ ∪n,mZnm, then f is R-continuous at βi(x),
whence g(x) = f((βi(x)) (one sees readily); thus g(x) ∈ g(S).

The following will conclude the proof of Theorem 10.1.

Proposition 10.2. (a) S is hereditarily Lindelöf.

(b) If X is hereditarily Lindelöf, and U ⊆ X, then Eu ≡ {x ∈ U |
U ∩Gx is countable for some open Gx containing x} is countable.

(c) If M is metrizable, and g : S →M is continuous, then the set D
of R-discontinuity points of g is countable.

Proof. (a) See [5, p. 141].

(b) For each x ∈ Eu, choose Gx per the definition. Then {Gx∩U | x ∈
Eu} is an open cover of Eu consisting of countable sets, and extraction
of a countable subcover shows that Eu is countable.

(c) Let w : R → R be the usual oscillation function for g : R → M ,
with respect to a fixed metric ρ on M , so D = {y | w(y) > 0} =
∪m∈N{y | w(y) ≥ 1/m}. It suffices that, for each m, the set U = {y |
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w(y) ≥ 1/m} is countable. In the space S, now use (a) and (b) to write
U = Eu ∪ (U − Eu) with Eu countable. If x ∈ U − Eu, then for each
a > x, [x, a] ∩ U is uncountable, so there is a y ∈ (x, a) ∩ U . Since
w(y) ≥ 1/m, there are y1 and y2 ∈ (x, a) with ρ((g(y1), g(y2)) ≥ 1/m.
Thus, on any S-neighborhood of x, g varies ≥ 1/m and cannot be S-
continuous at x. This contradiction shows U − Eu = ∅, so that U is
countable.

(Proposition 10.2(b) is a variant of the Cantor-Bendixson theorem,
alluded to in [10; p. 159]. Proposition 10.2(c) may well be known, but
was not previously known to us.)

11. Concluding remarks. We collect together some of the issues
we have left unresolved. (Neither their difficulty, nor their lasting
importance, are clear to us, but they seem interesting.)

(1) What are the absolute ε-spaces? (υX Lindelöf?)

(2) What are the weak ε-spaces?

(3) Is there a real-compact locally compact non-ε-space?

(4) What kinds of subspaces of ε-spaces are again ε?

(5) When is the union of two ε-spaces again ε?
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Universidad Nacional Autónoma de México, Inst. de Mate., 04510 Mexico
DF, Mexico

Department of Mathematics, Wesleyan University, Middletown, CT
06459-0128

Vrije University Amsterdam, Dept. of Math., De Boelelaan 1081A,
1081HV Amsterdam, Netherlands

Department of Mathematics, Wesleyan University, Middletown, CT
06459-0128


