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EXPONENTIAL DICHOTOMIES IN LINEAR SYSTEMS
WITH A SMALL PARAMETER

ZENG WEIYAO

1. Introduction. Using Melnikov’s technique in bifurcation theory,
we investigate the theory of exponential dichotomy in linear systems
depending on a real parameter. We generalize a well-known result on
the exponential dichotomy in K.J. Palmer [8]. It is well known that the
theory of exponential dichotomy plays very important roles in studying
nonautonomous dynamical systems and has received much attention.
For example, on the stability theory, we refer to Coppel [2]; on the
existence of almost periodic solutions, to Fink [3]; on the theory of
topological equivalence, to Palmer [7]; on the bifurcation theory and
chaos, to Meyer and Sell [5, 6], Palmer [8, 9] and Battelli and Palmer
[1]. About the theory of exponential dichotomy, we refer to Sacker and
Sell [10] and Coppel [2].

We consider a linear differential equation
(1) T =A(t)x

where z € R™ and A(t) is an n X n continuous bounded matrix defined
on R. We say that the linear differential equation (1) admits an
exponential dichotomy with constants K and « on an interval J if
there exist a projection P and the fundamental matrix, denoted by
X (t), of equation (1) satisfying

I X(H)PX '(s)| < Ke @), t>s
IX()(I— P)X (s)| < Ke G, s>

fort,s € J. In particular, when A(t) = A is a constant matrix, equation
(1) possesses an exponential dichotomy on R if and only if the real parts
of the eigenvalues of the matrix A are different from zero. We are only
interested in exponential dichotomies on J = R, RT and R™.
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In studying bifurcation theory of ordinary differential equations, we
often want to consider a linear differential equation depending on a real
small parameter

(2) &= A(t,e)z

where z € R", ¢ is a real small parameter and A(t,e) is an n X n
continuous bounded matrix defined on R x (—lg,lp), ((—lo,lo) stands
for an interval from —ly to lp), and we want to study the following
problem. Suppose when € = 0 the linear equation

(3) &= A(t,0)z

has an exponential dichotomy on both RT and R~ (but not an expo-
nential dichotomy on R), then under what conditions can we guarantee
the linear equation (2) admits an exponential dichotomy on R when ¢
is sufficiently small and nonzero? Palmer proved the following theorem
in [8].

Theorem A. Suppose equation (3) has an exponential dichotomy on
both R and R™, and the sum of the dimensions of stable and unstable
subspaces of equation (3) is n. Also, the derivatives A., A.. exist
and are continuous bounded on R x (—lg,lo). Moreover, suppose that

equation (3) has (up to a scalar multiple) a unique nontrivial solution
©(t) bounded on R.

Then the equation adjoint to equation (3) has (up to a scalar multiple)
a unique nontrivial solution (t) bounded on R and if

(4) [fwwm%wmwwa¢o

(* denotes transpose), the equation (2) has for € # 0 sufficiently small
an ezponential dichotomy on R. If, however, (4) does not hold the
inhomogeneous equation

(5) i = A(t,0)z + A.(1,0)p(1)

has a solution w(t) bounded on R and then if

(6) /_Oo *(8){Ace(t,0)p(t) + 2A(t,0)w(t)} dt # 0
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the equation (2) admits for € # 0 sufficiently small an exponential
dichotomy on R.

It is natural to ask if (6) does not hold, what condition can guarantee
that linear equation (1) admits for € # 0 sufficiently small an exponen-
tial dichotomy on R? The main purpose of this paper is to solve the
above problem. We obtain a general result on this problem.

2. Main result and proof. Before giving the main result of this
paper, we need the following lemmas.

Lemma 1. Suppose the matriz A(t,0) is bounded on R and linear
equation (3)
T = A(t,0)z

admits an exponential dichotomy on both Rt and R~ and (up to a
scalar multiple) unique bounded solution on R, then for a continuous
bounded function f(t), the equation

(6) &= A(t,0)x + f(¢)

has bounded solutions on R if and only if
") | wwrwa=o

holds for all bounded solutions ¥(t) on R of the equation adjoint to
equation (3). Moreover, if (7) holds, then equation (6) has a unique
bounded solution x(t) satisfying ¢*(0)z(0) = 0 where p(t) is a bounded
solution of equation (3).

The first part of this lemma is due to Palmer [9], the second part is
due to Gruendler [4].

Lemma 2. Suppose the matriz A(t,0) satisfies the conditions of
Lemma 1. Moreover, we assume the sum of dimensions of stable and
unstable subspaces of equation (3) is n. If, for € # 0 sufficiently small
and any continuous bounded function f(t), the equation

&= A(t,e)z + f(t)
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has a bounded solution on R, then for € # 0 sufficiently small the linear
equation
&= A(t,e)x

possesses an exponential dichotomy on R.

Proof. 1t follows from the assumption of Lemma 2 and roughness of
exponential dichotomy that, for € # 0 sufficiently small, linear equation
(2) admits an exponential dichotomy on both Rt and R™, and the sum
of dimensions of stable and unstable subspaces of equation (2) is n. If
we can show for ¢ # 0 sufficiently small equation (2) has no bounded
solution on R, it follows from the proof of Proposition 8.2 in Coppel
[2, p. 69] that equation (2) possesses an exponential dichotomy on
R for ¢ # 0 sufficiently small. Suppose for £ # 0 sufficiently small,
equation (2) has a solution bounded on R. Then the equation adjoint
to equation (2) also has a solution ¥(t,¢) bounded on R (refer to Zeng
[11] or Palmer [9]). From the assumption of the Lemma, we see the
equation

&= A(t,e)z+ ¥(t,¢€)
has a solution bounded on R for ¢ # 0 sufficiently small. It follows
from Lemma 1 that

/ T el e) di = 0

which results in a contradiction. The proof of Lemma 2 is complete.
]

For convenience, we first introduce some notations. Let w(t) = ¢(¢).
Assuming wi (t), wa(t), ... ,wk—1(t) are bounded on R and, assuming
equation (9); has a bounded solution, we define wy(t) to be the unique
solution, bounded on R and satisfying ¢*(0)w(0) = 0, of equation (9)

k
O b= A0+ 3 (5 ) A6 0wk (0)

where Agm)(t,O) denotes (0™ /0e™)A(t,0). Obviously, wi(t) is the
unique solution, bounded on R and satisfying ¢ * (0)w;(0) = 0, of
the equation

(10) i = A(t,0)z + AL (¢,0)p(t);
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and wo(t) is the unique solution, bounded on R and satisfying
©*(0)w2(0) = 0, of equation

(11) &= A(t,0)z + 240 (¢, 0)w; (t) + AP (t,0)p(t).
The main result of this paper is as follows:

Theorem 1. Suppose the linear equation (3) admits an exponential
dichotomy on both Rt and R~ with constants K and o and unique
(up to a scalar multiple) solution ¢(t) bounded on R, and the sum of

dimensions of stable and unstable subspaces is n; Agl)(t, g) is uniformly
bounded in (t,e) € R x (—lo,lp), ¢ = 0,1,2,... ,N. Let ¥(t) be the
unique (up to a scalar multiple) bounded solution on R of the equation
adjoint to equation (3). If

(12), Z/ 570 ) A O =,

1=1,2,...,N—1 and

(13) Z/ 5O ) AP 0w (0 20
then for € # 0 sufficiently small equation (2)
&= A(t,e)x

admits an exponential dichotomy on R, where N > 1 is an integer.

Remark. If (12); holds, it follows from Lemma 1 that, for all
k < N —1, equation (9) has a unique bounded solution wy(t) satisfying
©*(0)wg(0) = 0. For example, when N = 3, equation (12); becomes

(14) | v 0adw0pa=o

(15) /_ N ¥ (1) [2AW (¢, 0)wy (t) + AP (t,0)p(t)] dt = 0.
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From (14) and Lemma 1, we see equation (9);, that is, equation (10),
admits a unique bounded solution wj (¢) satisfying ¢*(0)w;(0) = 0. It
follows from (15) and Lemma 1 that equation (9)2, that is, equation
(11), has a unique bounded solution ws(t) satisfying ¢*(0)w2(0) = 0.

Proof of Theorem 1. For h > 0 an integer and any continuous
bounded function f(t), we consider the equation

(16) &= A(t,e)x + "N f(2).

Let © = y + ap(t) where a is a new parameter. Then equation (16)
reads

g = A(t,e)y + alA(t,e) — A(t,0)]p(t) + " £ ().
We write the above equation as

(17) g = A(t, 0)y + [A(t,) — A(t, 0)][y + ap(t)] + ™" f(2).

Using Liapunov-Schmidt method, we see that the we only need to solve
the following two equations
ag) I AGOY AR - A®Olly +ae(t) + TR E(t)

- e_(y()v a, E) ) ¢(t)7

19) B)a0) = [ " (6HA(s2) Al Ou(o) + (o)

+eNthf(s)}ds = 0.

By the same proof as one of the propositions in Battelli [1, p. 282],
we can prove there exist £g > 0 and Ay > 0 such that when |e| <
€o equation (18) has a unique bounded solution y(t,«,¢) satisfying
v * (0)y(0,a,e) =0 and

|y(t7 «, 5)| S A0-
Substituting y = y(t, @, €) into (19), we obtain an equation
(20)

" (s){[A(s, ) — A(s,0)][y(s, @, €) + ap(s)]

+eNThf(s)}ds = 0.
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We let € = 0 in equation (18); equation (18) becomes

which has a unique bounded solution y(¢) = 0 satisfying ¢*(0)y(0) = 0.
Thus, by uniqueness, y(t,a,0) = 0. Now we will solve equation (20).

We first prove, by using induction, ygk)(t,a,O) = a-wg(t), k =
1,2,...,N — 1. Now y(t, o, €) satisfies

it €)= A 0)y(t,0,2) + [A4(t,) — Al O)l[y(t, )+ - (1)
@) O~ [ ElAee) - Al o)

[y(s, a,€) + a(s)] + eV f(s)} ds - ().

Differentiating both sides of the above equation with respect to £ and
setting e = 0 and noting that y(¢, @, 0) = 0, we have

g (t, @, 0) = At 0y (£, 0, 0) + a - AL (£, 0)p(t)
- 0‘/7 ™ (5) AN (s, 0)0(s) ds - (t).

From condition (12); with ¢ = 1, we know

/ 5 (5)AD (s, 0)p(s) ds = 0,

— 00

hence
(23) g8 (t, @, 0) = A(t,0)yM (¢, @, 0) + A (t,0)(t).

It follows from the uniqueness of solutions satisfying ¢*(0)y(0) = 0
that yél)(t,a,O) = o wiy(t). Thus, for k =1, y(k)(t,a,O) = awg(t) is
true. We suppose for all k < N — 2, yg )(t,a,O) = awg(t). Now we
want to prove yéNfl)(t, a,0) = awy_1(t). Differentiating both sides of
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equation (22) N — 1 times with respect to € and setting ¢ = 0, we have

g (t, @, 0) = A(t, 0)yN Y

N — e
+Z< m >A£”>(t,0)y£N V(t,@,0)

-2
N-1
( )Aé’”’(s,O)yéN‘m‘”(s,a,O)

m

+aA9'”@JDﬂﬁ}d&¢@)

Since yék)(t, a,0) = aw(t) for all k£ < N — 2, we have

gt 0,0) = At 0)y" (1,0, 0)

N-1
N -2
A (8,0) - w1 (t
rad (V7)Ao wn

-1

—a[:¢%@§j(Nglyﬁm@m>

=1

“WN—m-1(8)ds - ¥(t).

From condition (12)ny_1, we see

00 N-1on g
* ) AU (5,0) - wy—m_1(s)ds = 0.
Lo X (V)60 w s
Thus,
gD (80, 0) = At 0y D (t, 0, 0)
N-1
N -1
AP (0w —1—m(t).
ra 3 (M)A o
By uniqueness, we have yngl)(t,oz,O) = awn_1(t). Therefore

yék) (t,,0) = awg(t), k =1,2,... ,N — 1, by induction. We have

0(a,0) =0,
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and for all t < N — 1,

99 (a,0) = Z Rl (m) A (1,0)y8™ (1, ,0)
/ ¥ (£) A9 (¢, 0)aup(t) di

_amz_:l( >/ Y*(£) A (8, 0)w;_p (t) di

ta / 0" (£)AD (¢, 0)uwo (£) dt

—a Z ( > / B (£ AT (8, 0)w; m(t) dt
=0 (from condition (12);).
Now we define a function 6(«, ) by
0(04,6):{01(%1;6()1\;) Y
w0 ' (a,0), €= 0;
then 6(a, ) is continuous and differentiable in ¢ and «.

1 -
megN)(Ol, 0)

_%{I“( )/ B* (£) AT (£, 0)y N ™ (¢, @, 0) dt
o [T A w0
_ %{N (Z) / A (0 (1)

m=1

+/_O:o P* () AN (¢, 0)wo (t) dt}

-2 i_ (Z > 1 Z B (AT (£, 0)wn —m(t) d,

f(,0) =
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hence (0,0) = 0 and

1 XL /N
0,(0,0) = — U (£) A (¢, 0)wy_m () di
w> () un
#0 (from condition (13)).

It follows from the implicit function theorem that there is a continuous
function a(e) such that «(0) = 0 and for  sufficiently small

f(a(e),e) = 0.
Thus, for ¢ # 0 sufficiently small,
f(a(e),e) = 0.

Hence, for £ # 0 sufficiently small, equation (17) has a bounded solution
y =y(t, a(e),e) and the equation

&= A(t,e)z + f(t)

has a bounded solution (y(t, a(e), ) + a(e)p(t))/eN . Tt follows from
Lemma 2 that for € # 0 sufficiently small, equation (2) possesses an
exponential dichotomy on R. The proof of Theorem 1 is complete.
O

Obviously, Theorem 1 is a generalization of Palmer’s result in [8]. In
fact, taking N = 3 in Theorem 1, we have the following result.

Theorem 2. Suppose all conditions of Theorem A are satisfied.
In addition, we assume A...(t,e) is uniformly bounded in (t,e) €
R x (=lo,lo). If

(24) / ()AL, 0)p(t) dt £ 0,

then equation (2) has for € # 0 sufficiently small an exponential
dichotomy on R. If (24) does not hold the inhomogeneous equation

(25) & = A(t,0)z + A (t,0)p(t)
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has a unique bounded solution wy(t) on R satisfying ¢*(0)w;(0) = 0
and if

o) | g (O Aue(,0)0(t) + 240(t, 0)wn (1)} dt # 0,

then equation (2) has for ¢ # 0 sufficiently small an exponential
dichotomy on R. If (24) and (26) don’t hold, the equation

& = A(t,0)z + 2A.(t, 0)wy (t) + Ace(,0)p(t)

has o unique bounded solution wa(t) satisfying ¢*(0)w2(0) = 0, and if
/ ¢*(t){3As(ta 0)’[1}2 (t) + 3Ass(t7 0)’[1}1 (t) + Asss (ta U)W(t)} dt # Oa

then equation (2) admits for ¢ # 0 sufficiently small an exponential
dichotomy on R.
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