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THE DIFFERENTIAL INVARIANTS
OF PARTICLE LAGRANGIANS UNDER EQUIVALENCE
BY CONTACT TRANSFORMATIONS

MICHAEL D. SUTTON

ABSTRACT. We use Elie Cartan’s method of equivalence

to derive the structure equations of the integral f L(z,y,...,

y™,dy'/dz,... ,dy™/dz)dz under the group of contact trans-
formations for the case m > 1. These equations define a com-
plete set of local differential invariants of the integral under
contact transformations. We obtain a differential quadratic
form and an associated system of frames which are intrin-
sic to dea: and interpret our results from the standpoint
of Finsler spaces. In the last section we explore some of the
consequences of the structure equations.

1. Introduction. This paper extends results obtained by Robert
Gardner and Robert Bryant in an unpublished work [3] on the problem
of finding local differential invariants of the integral

/L(J;,yl,... Y™ dytJdx, ... dy™ /dx) dz

under the group of contact transformations for the case m > 1 with the
assumption that L is a regular Lagrangian. This problem was solved by
Elie Cartan for the case m = 1 [4]; S.S. Chern [6] found the differential
invariants of the integral

/L(yl,... yy™ dytJde, ... dy™ /dx) dx

where L is positively homogeneous of degree one in the variables
1 m
p,...,p™.
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300 M.D. SUTTON

The tool we use is Elie Cartan’s method of equivalence as described
in [9] and [10]. In Section 3 we describe the intrinsic calculations
of Bryant and Gardner; these calculations are supplemented by the
author’s parametric calculations. In addition to the structure equations
which define the invariants, we obtain a complete parallelism which is
intrinsically associated to [ L da.

The differential invariants produced by the structure equations men-
tioned above are the primary topic of this paper. However, the equiva-
lence method produces some other interesting invariants. For example,
the Hilbert invariant differential form is produced naturally from the
computations (see Section 3). As another example we will see how
the equivalence method produces natural frame fields associated to
[ Ldz. These frame fields diagonalize a differential quadratic form,
which projects onto a Finsler metric having [ Ldz as its arc length
integral (see Section 4).

The structure equations which define the invariants are written out in
full in Section 5. We explore some of the implications of these equations,
e.g., if all the invariants are constant, then [ Ldz is the arc length
integral of a pseudo-Riemannian manifold of constant curvature.

The chief results of this paper are not new; in fact, they are all clas-
sical (see [15]). The tool that we use, Cartan’s method of equivalence,
was used by Chern [6], and everything in this paper (structure equa-
tions, Bianchi identities, etc.), is logically a special case of [6]. How-
ever, the results contained in this paper were obtained independently
by Bryant, Gardner, and the author. The value of the results pre-
sented here is twofold: We show the intrinsic calculations that lead to
the structure equations; these calculations are omitted from [6] where
only the parametric calculations are given. Without the intrinsic cal-
culations serving as a guide, the parametric calculations can leave a
reader somewhat mystified. Secondly, the formulation of the equiva-
lence problem that we give and the structure equations that we derive
are specifically adapted to a nonhomogeneous Lagrangian function L.

We should mention that the definition of equivalence that we give is
not the natural one from the standpoint of the calculus of variations,
i.e., we do not consider divergence-equivalent Lagrangians (it is a stan-
dard result [14] that two Lagrangians have the same Euler-Lagrange
equations if and only if they are divergence-equivalent). However, our
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definition of equivalence is the natural one from the standpoint of con-
trol theory. The reader who is interested in the problem of divergence-
equivalent Lagrangians should see the papers of Bryant [1] and Kamran
and Olver [12].

2. Preliminaries. We assume all functions, curves, manifolds,
maps, etc., are C°. Everything in this paper is local, e.g., a diffeomor-
phism is a map with a nowhere vanishing Jacobian determinant.

Given positive integers m and n, GL(n) denotes the general linear
group of nonsingular real n X n matrices and M(m,n) denotes the
vector space of all real m X n matrices.

Let (z,y,p) = (z,y',... ,y™,p", ... ,p™) denote the natural coordi-
nates on R?™ 1!, Given a connected open subset U of R?™ 11, let

(dy* — p*dz)|u
0y =
(dy™ — p™dx)|y

The system of equations,
9U = 07

defines a subbundle of the tangent bundle T'U called the contact system
of U. Given a closed interval [a,b] and a curve « : [a,b] — U, we call
a a l-graph if its field of tangent vectors belongs to the contact system
of U; equivalently,

a*HU =0

where * denotes the pullback operation by a mapping on a differential
form.

Let V be a second connected open subset of R?™*! and let ¢ :
U — V be a diffeomorphism. We call ¢ a contact transformation if the

derivative of ¢ maps the contact system of U onto the contact system
of V. Thus, if we let

(dy' —p" dz)|y
eV = P
(dy™ — p™dz)|v
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then ¢ is a contact transformation if and only if there exists a function
A; : U — GL(2m + 1) such that

(2.1) b 0y = A0y

Let L(z,y,p) be a function on U that we assume to be positively
valued at each point of U. We regard the integral [ L dz associated to
L as a functional on 1-graphs:

b
a»—)/ded:ef/ o (Ldz)

where « : [a,b] — U is a 1-graph.
Let K be an everywhere positive function defined on V. The integral

J Ldz will be said to be equivalent to the integral [ K dx provided
there exists a contact transformation ¢ : U — V such that

(2.2) / Ldz = K dx
o ¢oa

for all 1-graphs « : [a,b] — U; the contact transformation ¢ will be
called an eguivalence. The requirement that equation (2.2) hold for all
1-graphs is equivalent to the existence of a function by : U — M(1,m)
such that

Let L
dy' o
nu = )
dy™|u

and let 7y be defined in a similar fashion. Finally, let wy = L dz and
wy = K dz. Then a diffeomorphism ¢ : U — V is an equivalence of the
integrals [ Ldz and [ K dz if and only if there exists, in addition to
the functions A; and b; already defined, functions B : U — M(m,m),
by : U — M(m,1), and Ay : U — GL(m) such that

Oy A; 0 0 O
(2.4) ¢* Wy = bl 1 0 Wy
nv B by A nu
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If we let G be the group of all matrices of the form

A 0 0
by 1 0
B bg A2

where A1, Ay € GL(m), B € M(m,m), b1 € M(1,m), and by €
M(m, 1), then equation (2.4) is an equivalence problem of Elie Cartan
with G as the prescribed linear group (see [10, p. 1]).

Finally, we observe that if

T =z(x,y,p), 7=1(xy,p), P = p(x,y,p),

are the equations of an equivalence ¢, then equations (2.1) and (2.3)
imply that the functions  and § do not involve p and thus define a
point transformation. Conversely, it is not difficult to see that any
point transformation

T = z(z,y), 7 =19(z,y),

extends uniquely to a contact transformation, i.e., to a transformation
satisfying equation (2.1); the contact transformations that are deter-
mined by point transformations are also called point transformations
(although some authors prefer to call them extended point transforma-
tions). As not every contact transformation is a point transformation
(equation (2.1) alone does not suffice to eliminate p from the equa-
tions for Z and §), we can more precisely define an equivalence between
the integrals [ Ldz and [ K dz as a point transformation ¢ satisfying
equation (2.3). However, having said all this, equation (2.4) will be our
operational definition of an equivalence.

3. Application of the method of equivalence. At this point we
apply the method of equivalence algorithm with which we assume the
reader is familiar; this algorithm is described in [9] and [10].

Evidently, the Lie algebra G of GG consists of all matrices of the form
*x 0 0

* 0 0
x %

*
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where the x’s denote arbitrary matrices of the appropriate dimensions.
We regard U x G — U (natural projection) as a local principal bundle
with G as the structure group. The action of G on U x G is the natural
left action.

The canonical R*™*!-valued 1-form on U x G may be represented as
a column vector:

0
w
n
where
61 nt
o= : |, o= [,
o™ nm
and 0',...,0™ w,n',... ,n™ are scalar 1-forms. By definition,
0 A 0 0 Oy
(3.1) wl=bb 1 0 wy
n B bg Ag nu
We may write
0 T 1 Qo 0
(3.2) dlw|=|% a3 aa |AN|w
U B B2 m 7
where m,a1,...,m are matrices (of the appropriate dimensions) of

1-forms. The form of the matrices belonging to G implies
(3.3) ay,az,a0,a4 =0 mod{f,w,n}.

Thus, ay,...,a4 are principal components. It is important to observe
that we can infer the definition of G from equation (3.3).

Let us consider the first of equations (3.2):
(3.4) dd=m N0+ a1 ANw+az An.

Equation (3.3) tells us that the terms a3 Aw and a An are quadratic in
0,w and n. The terms that have 0 as a factor can be absorbed into the
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1 A 6 term; this term will still have the form m; A @ where 7 has been
modified by the addition of f terms. Having made this absorption, and
because w A w = 0, we may assume

(3.5) a; = 0 mod {n} a; =0 mod{w,n}.
The definition of 8 and w implies
0,w=0 mod{dz,dy}.

Thus, the differential system 6 = w = 0 is completely integrable and
so equation (3.4) cannot have any terms quadratic in 1. Therefore we
may assume

(3.6) a; =0 mod{w}.

We conclude from equations (3.5) and (3.6) that equation (3.4) can be
written as

(3.7) dd=m N0+ Anhw

where A = (4%) : U x G — M(m,m).

If we subject the second of equations (3.2) to a similar treatment we
obtain the following structure equations:

0 m 0 0 0 AnANw
(3.8) dlw]=6 0 0 |JA|lw]+]| NAw
n B B2 m Ui 0

where b : U x G — M(1,m). These equations uniquely determine A
and b as we will show explicitly for the case of A; b is handled in a
similar manner.

Suppose
(3.9) dd=m N0+ Anphw
where A = (4}) and

(3.10) 71 =m mod{f,w,n}.
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At this point we write everything using indices where the range on all
indices is from 1 to m. Equation (3.10) is equivalent to

(3.11) (71)i = (m1)}, + @07 + chw + elyn?

where the a’s, ¢’s and e’s are functions (for the rest of this paper it will
be understood that in any indicial expression, an index which appears
an even number of times in a term after all symbols of inclusion have
been removed is summed; otherwise no summation is implied). We
substitute equation (3.11) into equation (3.9):

0" = ((m1)f + a4, 07 + chw + ebpn?) AOF + Ay Aw
i L i \pi
(3.12) = (M) A" + 5 (afy, — aiy)07 A 6"
+ciw N OF + eé-knj AARE Aj-nj Aw.
Comparing equation (3.12) with equation (3.7), which indicially is
df' = (m1)j, A OF + A’ Nw,

we conclude that aj-k = a}'cj, ci, =0, eé-k =0, and A = A. Note that
71 is not uniquely determined: we may add to the terms ()% terms
of the form a}, 07, where the a}, are symmetric in the indices j and k.

We now have a well-defined structure function
(A4,0) : U x G = M(m,m) x M(1,m).
Differentiating the structure equations (3.8) we obtain the equations

dA =m A — Amy

3.13 d{e .
(3.13) P O

Let I denote the m x m identity matrix and set (A,b) = (£I,0). Then
equations (3.13) become

71'1771'250

(3.14) Jpp

} mod {6, w, n}.
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To compute A parametrically, we consider the first of equations (3.1):
(3.15) 0= A10y.
Differentiating equation (3.15) gives

df = dA, N\ Oy + Ay dOy

(3.16) 1
=dA; N0y — ZAlT]U Nwy.

We invert equations (3.1) to express the righthand side of equation
(3.16) in terms of §, w, and n; and then, we perform the same
absorptions that led to equation (3.7). We may then read A from nAw
term. We note that when doing the calculation, any terms involving 6
may be ignored since equation (3.7) implies

dd = AnANw mod{f}.
The parametric equation for A is
(3.17) A= —%AlAgl.
It is worth noting that differentiation of equation (3.17) yields
dA = (dA; AT A — A(dAsATY)  mod{6,w,n}

since L is constant mod {f,w,n} (compare to the first of equations
(3.13)). It is clear now that the equation A = +I has solutions since it
is equivalent to A2 = F(1/L)A; and we can let A; be any nonsingular
m x m matrix. As a matter of convenience (to eliminate the — sign),
we set A = —I; then

1
A2 - EAI

A computation similar to the one used to compute A parametrically
yields

1 -
b= T(Ly —b1)A;"

where

Ly, = (Lp,...,Lym) € M(1,m)



308 M.D. SUTTON

is the matrix of partial derivatives of L(z,y,p) with respect to
pl,...,p™, respectively. The equation b = 0 has the unique solution

by = L.

We return to the intrinsic calculations. Let F;(U) denote the sub-
manifold of U x G defined by the equation

(A,b) = (~I,0).

To compute the new structure function we restrict the structure equa-
tions (3.8) to F1(U) obtaining

0 mm 0 0 0 —-nNAw
(3.18) dlw|=[8 0 0]A|w]|+ 0
U] B B2 m n 0

We have new principal components 7; — w5 and (31, which define a
Lie subalgebra G; of G with corresponding group G; C G.

If we differentiate the first of equations (3.18), we get
(e —m)AnAw=0 mod{f},

and thus,
mAn=m1An mod{f,w}.

Since quadratic terms which are congruent to zero modulo {,w} can
be absorbed into 8 A € 4+ 82 A w, the third of equations (3.18) can be
expressed as

dn=BNO0+ P2 ANw+m1 AN

where 8 and B3 have been modified appropriately. Differentiating the
second of the equations (3.18) gives

BiAnAw=0 mod{f}
and hence,

(3.19) BiAn=0 mod{f,w}.
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As (3 is a principal component (equations (3.14)), there exists p €
M(1,m) and C, H € M(m,m) (p, C and H are matrices of functions)
such that

(3.20) B =wp+"'0C +'nH.
Substituting equation (3.20) into the second of equations (3.18) gives
(3.21) dw = wpd +*0CH + 'nHE

(the implied products of differential forms are A products), and it is
evident that we may assume that C is a skew symmetric matrix. The
matrices p, C' and H are now uniquely determined by equation (3.21).
Note that equation (3.19) implies that H must be a symmetric matrix.
We now have new structure equations

0 ™ 0 0 0 —nNAw
322)dlw|=10 0 0|A|w]|+|wpd+0CO+'nHE |,
n B B2 n 0

where m = 71, and a new structure function (p, C, H).

Before investigating the fiber variation of the new structure function
we observe that the method of equivalence has given us an interesting
differential invariant, namely w. To see that w is invariant, let X be a
vertical vector field, then

X Jw=0 by equation (3.1),
and
X 1 dw=0 Dby equations (3.21) and (3.1);

thus,
Lxw=d(X Jw)+X 1dw=0

where Lx denotes Lie differentiation with respect to X and _| denotes
the interior product. Hence, w drops down to U and is preserved by
equivalences ¢ : U — V. If we compute w parametrically in terms of
the frame field *(8y,wy, nu), we get

w = Ldz + Ly (dy’ — p' dz),
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which the reader may recognize as Hilbert’s invariant differential form.

Differentiating equation (3.21), we obtain the equations

dp= —pr — B H
(323)  dO=~(‘rC+Cm)~ L(‘BH — HB) p  mod{f,w,n}.
dH = —('vH + Hr)

The third of equations (3.23) tells us that H is an invariant piece of the
structure function; in fact, the righthand side of this equation is the
differential, modulo base variables, of YA 'HA~! where A denotes a
variable element of GL(m). Thus, by Sylvester’s law of inertia, the orbit
of H under this action by GL(m) consists of all symmetric matrices
having the same signature as H. We can make all of equations (3.23)
independent by choosing H to be a nonsingular symmetric matrix and
letting C' =0 and p = 0. We set H = @ where @ is a diagonal matrix
with +1’s on the diagonal.

A parametric calculation in terms of the coframe *(8y,wy, nu) gives
H= tAfl(LLpp)Afl

where Ly, = (Lyipi) is an m x m matrix. We see that our hypothesis,
det H # 0, is equivalent to the regular problem in the calculus of
variations. If we assume that () has the same signature as Ly, then the
equation H = @ has solutions A; € GL(m). The parametric equation
for pis

1/4d
P:Z< (Lp)Ly>A1_1tb2H

dz
where
Ly =(Ly,...,Lym) € M(1,m),
d d d
L) = (4 (L)) € ML),
and
d 0
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is the “total derivative” operator. Hence, the normalizations H = @
and p = 0 yield

1/d N
thy = T (%(L,,) - Ly>A1 1o.

We will not write out the full equation for C', which is rather com-
plicated. Suffice it to say that the normalization (p,C, H) = (0,0, Q)
gives
YBATHQ — Q(BATY) ="ATY(Ly, — Lyy)AT!
1 1 1 \Lyp py )1

where
Lyp = (Lyipj) and pr = tLyp

are m X m matrices.
Let F»(U) be the submanifold of F;(U) defined by

(p’C’ H) = (anaQ)'

Restrict the structure equations (3.22) to F2(U). We then have new
principal components

B2 BQ-QB,  'mQ+Qm;

new Lie algebra Go C Gi; and new group G2 C G;. Let us consider
first the principal component 7@ + Q7. Indicially, we may write

(3.24) Qikﬂ'f + ijﬂ'f = gijek + M;w + Sijknk'
Note that

(3.25) Gk = G Mj=M],

and

(3.26) Sijk = Sjik-

We can modify 7 to eliminate the 6 terms in equation (3.24): Set

i 1 i j
fik = iQii(gkj +9;'€i —gh)
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(note that 4 is not summed) and

i 1 i pk
'_ﬂ-j_fkjea

=1
Ty

then fJ’fk = f,ij so that 7A@ =m A 0 and

(3.27) Qik,ﬁ'f + ij,ﬁ'f = MJZ:UJ + Sijknk.

Now let m = . We note that 7w also appears in the third structure
equation (3.22); however, we may absorb the § modification of 7 into

the 8 A 0 terms and this will leave the form of the third equation
unchanged.

Now consider the principal component (5. It is clear from the third
structure equation (3.22) that we may assume that 82 has no w term,
and the 6 term may be absorbed into the 8 A 6 term. Thus we may
assume that

(3.28) B2 = An

where A = (A;) is an m X m matrix. Differentiating the second
structure equation (3.22) we get

(QriBE NO' + QiP5 Aw + (Qirmh + Qjeml) An') A6 =0,
which implies
(3.29) QriBs Aw+ (Qukmh + Qemf) An* =0 mod{6}.
Substituting equations (3.27) and (3.28) into equation (3.29) gives
ME(M)=QA = B=QMn,
and
(3.30) Sijk = Sikj-

Comparing equations (3.30) and (3.26) we see that S;j; is symmetric
in all three indices.
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We now compute dM modulo the base variables. Differentiating the
third structure equation (3.22) and recalling that 8 = QM7 we obtain

(3.31) tAT—dr+BAw—TQMw+QMrw+QdMAw =0 mod{b,n}.
However, differentiation of the first structure equation (3.22) gives
(3.32) dr —m AT+ BAw=0 mod{d,n}.
Combining equations (3.31) and (3.32), we get
2ANw+QdM Aw+ QMr Aw —1QMw =0 mod{f,n},
and thus,
(3.33) dM = —Mn+ QmQM —2QB mod{f,w,n}.
We make the normalization
M =0,

which reduces equation (3.33) to

B =0 mod{f,w,n}.

The parametric calculation shows that the equation M = 0 is equivalent
to

1 -
B = §QtA1 1((LLpp)w + Lpy — Lyp),
where (LL,,),, denotes the m x m matrix whose ith row and jth column
entry is

1d _ d
Z%((LLPP) l)kl <@ka — Lyk> (LLpipj )pz.

Let F3(U) be the submanifold of 7, (U) defined by the equation
M = 0.

We restrict the structure equations (3.22) to F35(U) and obtain the new
structure equations

0 © 0 0 0 N Aw
(3.34) dlw]=10 0 0)A|w]+]| Qo
n g 0« n 0
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with new principal components

Q4+ Qm = (Sijn®), B

new Lie algebra Gs C Go; and new group G C G2. Differentiating the
second structure equation (3.34), we get

0 = d*w
=" BAO+ 7 AN)QO — 'nQnb
(3.35) =—'0'8Q0 — 'n('rQ + Qm)f
(3.36) = —t9'3Q0
(3.37) = 19Q20.

In going from equation (3.35) to (3.36), we used the symmetry of S, in
the indices ¢ and k; also, in a number of instances we used the following
observation: Let A be a matrix of p-forms and I" be a matrix of g-forms
such that the product AT is defined. Then

F(AT) = (=1)P1'T 'A.
As (3 is a principal component, we may write

(QB)ij = Bijnb" + Sijw + Tijin".

The following identities are then implied by equation (3.37):

(3.38) Bijk — Bjik + Bjki — Bkji + Bkij — Bikj =0,
Sij = Sji,

and
Tijr = Tk

Note that § only appears in the S A 6 term of the third structure
equation (3.34). Thus the B;;, are not well defined; however, we may
make the B;j; unique by demanding that g satisfy the third structure
equation and the equation

"8Q+QB =0 mod{w,n}.
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The B;j;i, are now well defined and satisfy B;jr = —Bji, and this
identity reduces (3.38) to

B,’jk + Bjki + Bk,’j =0.
The matrix 7 has the unique decomposition

T=9%+p

where
(3.39) PWRQ-QY =0, ‘pQ+Qp=0,

i.e., QY and Qy are, respectively, the symmetric and skew symmetric
parts of the matrix Qm. Thus,

; 1
Q4+ QT =29Q = ¢;= §Qii5i]’k7lk

(in the latter equation the 7 is not summed, but the k is) and hence,
An =0 since S;;x is symmetric in j and k. Therefore, we may write
J

TAN=pAn.

We may now write the structure equations (3.34) in the form:

0 e 0 0 0 YA —nAw
(3.40) dlw|=[0 0 0|A]w]+ tnQo ,
n 0 0 ¢ n BAE

where it is understood that ¢ satisfies equation (3.39). Notice that
Y =0mod {n} = dfd =9 A0 mod{n};

this equation and equation (3.39) uniquely determine . The system of
1-forms 6, w, n, and ¢ define a complete parallelism on F3(U), which is
a (local) generalization of the Levi-Civita parallelism (we will see later
that the Levi-Civita case occurs when all the S;;, vanish identically).
This completes the intrinsic calculations of Gardner and Bryant. The
parametric calculations were the author’s.
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4. The fundamental form and the Finsler metric. In this
section we relate the results of our calculations to Finsler metrics. The
reader who wants more information on Finsler metrics and geometry
should consult [15]. The bibliography in [15] has an extensive list of
the classical and foundational treatises on Finsler geometry.

Let O(Q) be the group of all S € GL(m) such that ‘SQS = @, and
let o(Q) denote the Lie algebra of O(Q). It is clear from equation (3.39)
that ¢ € o(Q). Thus, G3 is the group of all matrices

S 0 0
0 1 0
0 0 S

where S € O(Q) (for the rest of this section S will denote an element
of O(Q)). Clearly, G5 is isomorphic to O(Q) and we will identify the
two groups.

On F3(U) we consider the differential quadratic form

('0Q0) + (w?) + (“nQn)

(where the parentheses denote the symmetric product of 1-forms),
which we will call the fundamental form of [Ldx. As 6, w and 7
are invariants of [ Ldz and @ is a constant matrix, the fundamental
form is an invariant of [ L dz. We can use the parametric calculations
of Section 3 to compute column vectors of 1-forms on U,

a="at,...,a™) and B=1Y,...,8™),
such that (a,w, B) is an “orthonormal frame” i.e.,
(‘aQa) + (w?) + (‘BQP)

equals the fundamental form (this will show that the fundamental
form drops to U). We do this as follows: Recall from the parametric

calculations that
H= tAl_l(LLpp)Al_lv

and we made the normalization H = Q. Thus, A; is restricted by the
equation

(4.1) 'A1QA; = LLy,.
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Let Ay = P = P(z,y,p) : U - GL(m) be a solution to equation (4.1).
Then the general solution to (4.1) is easily seen to be

Ai(z,y,p,S) = SP(z,y,p) : U x O(Q) — GL(m).
Recall § = A,0y. Thus,
6 =Sa where a % Pgy.
Evidently, (*0Q0) = (‘aQa); it follows that (*0Q0) drops to U.

Recalling from Section 3 the equations giving A, bs and B in terms
of L, its partial derivatives, and A, we easily see that

(4.2) Ay =5(P/L),

(4.3) by = <% (%(Lp) - Ly> P—1Q>ts,
and

(14) 5= 5(3Q P (LLw)a + Ty~ L) ).

Parametrically, we have (cf. equation (3.1))
n = By + bowy + Aanu;

it is clear from equations (4.2), (4.3) and (4.4) how we should define

B so that n = SB. Then (*nQn) = (*8QB); hence, (*nQn) drops to U.
Thus,

(faQa) + (w?) + (*BQB) = ("0Q0) + (w*) + ('nQn).

It is now clear that a diffeomorphism ¢ : U — V is an equivalence of
the integrals [ Ldz and [ K dz if and only if the Jacobian matrix of ¢
with respect to a choice of orthonormal frame on each of U and V has
the form:

S 0 0
1 0],
0 S
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where S = S(z,y,p) : U — O(Q). We have the following

Theorem 4.1. A diffeomorphism ¢ : U — V is an equivalence of the
integral [ Ldx and [ K dx if and only if it preserves the fundamental
form.

Recall that [ Ldz is being regarded as a functional on 1-graphs
a : [a,b] = U. Generally, one wants to consider only those 1-graphs «
such that a*(dz) # 0. In this case we may assume that a has the form

a(z) = (z,y(x), y'(x));

we then call a the 1-graph of the function y(z). Let Uy be the image
of U under the natural projection

(z,y,p) = (z,y) : R*"H — R™HL
Each (z,y,p) € U determines a vector,

_9
T Oz

; 0

X P By

(z,y)

(z,y)

tangent to Uy at (z,y). Define the length of X, || X]||, by

| X|| = L(z,y,p)-
If 5 )
Y =i + 4 507

Tl (z,y) Y l(zy)

where & # 0, then homogeneity requires that we define ||Y|| by
Y| = 2| L(z,y,9/%) = F(2,y,2,9);

if # = 0, then ||Y|| is undefined (the case & # 0 covers all vectors
which are tangent to curves y = y(x)). The function F' is positively
homogeneous of degree one and thus defines a Finsler metric on U;
having [ Ldz as its associated arc length integral; the corresponding
differential quadratic form is

(4.5) ds? = a(da®) + 2bj(dzdy’) + c;;(dy' dy?)
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where 5 o
10“F i i
0 =57z = (L=P'Ly)* + PP Ly,
1 92F? i i
bj = 5395—33/3 = Lij —-p Lpinj —p LLpipj,
and
1 0*F?

Ci]‘ = EW = Lpinj + LLpipj.

Proposition 4.2. ds* = (16Q0) + (w?).

Proof. Recall from the parametric calculations that § = Sa where
a = P(z,y,p)0y and A; = P(z,y,p) is a solution to equation (4.1).
Thus,

(tGQQ) = (tOéQOl) = (tQUtPQPHU) = (tQULLPPHU).

Recalling that 6, = dy’ — p'dz and w = Ldz + L,i(dy’ — p' dz) and
using the equations above for a,b; and c;;, a direct calculation shows
that ds? = (‘0 LL,,00) + (w?). o

5. Structure equations and Bianchi identities. A full set
of structure equations on F3(U) consists of equations (3.40) and the
equation for dy. To emphasize the invariants, S;jr, Tk, etc., we
will write the structure equations in indicial form. Recall that ¢ is
a matrix valued 1-form; therefore, let ¢ = (©}). Then equation (3.39)
is equivalent to

Qn’soz- + ijgog =0 where 1<4,57<m;
i.e., the tensor Q“-np;. is skew symmetric in ¢ and j (note that i is

not summed in Qiigoé-; see the parenthetical remark following equation
(3.11)). The structure equations are

. 1 o
(5.1) do" = i N0 + EQiiSijknk NOT —n" Aw,
(52) dw = ijT]j A Gj,
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dn" =5 A’ + §Qii(Bijk — Biy;)0% A 6
(5.3) + Qiisijw NG+ Q,’iTi]‘knk A Gj,

and

N

1 . 1 )
+ §era;-ik<p’s" A6k + 5erb;i¢; A w

1 1S T
(54) + §Qr7‘cjrk;(ps A 77k

1 . ) .
+ 5A;.,,ca’ AO* + BLo' Aw+ Cp8t An®

A 1 A
+ Djl'f]l ANw + §Eﬂk77l N nk,

where all indices range from 1 to m. The coefficient functions appearing
in (5.4) are defined by this equation, and to ensure their uniqueness,
we assume that they have the same symmetry in 7 and j as do the ¢,

e.g.,

is Jis _ (.
Qiia’jrk + ijairk: - 0’

: is is is fal
also, the functions g b3, and Ciyp, are skew symmetric in 7 and s,

and the functions A;lk and E;:l . are skew symmetric in [ and k.

Given a real valued function, f, on F3(U) we define the covariant
derivatives, fgi, fu, fni, and f; of f by

) .1
(5.5) df = fgib" + fow + ' + 5Qur [0}

(all indices are summed) where it is assumed that the f? are skew
symmetric in r and s.

If we differentiate (5.1) we obtain the following Bianchi identities:

(56) a;’ik o aitsrj = 0)
(5.7) bls =0,
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(5.8) .
2Qr7‘stQiiCﬁﬂk = (Qrissjk + erSsk:i + Qrkssij)
— (QsiSrjk + QsjSrii + QsrSrij)
1
+ EQTTQSS(Sijk)Za
(5.9)
) B 1
QiiBj; — QiiBj; = §Qkk(5ijk5kz — SukSkj) + Biij — Biji,
(5.10)
i i 1
QiiCljp — QuiCly, = 5((Sijk)91 — (Si)es)
1
+ §er(sierrjk - Sierrlk)7
. 1
(5.11) Qi D}y = §(Sijk)w — Tijk,
and
.1
Qi B = 5 ((Sijt)ne = (Sij)y)
1
(512) + ZQTT(SirlSTk:j - Sirk:Srlj)

+ QiQji — QuQjk-

Lemma 5.1. Let n be a positive integer. Suppose (bijr) and (cijk),
where 1 < 4, j,k < n, are tensors such that (b;ji) is skew symmetric in
J and k, and (c;ji) is symmetric in i and j. Then there exists a unique
tensor, (aijr), such that

Qijk T Qjik = Cijk,
Qijk — Qikj = bijk,

foralll <i,j,k <n.

Proof. It is an easy exercise in index juggling to show that the solution
is

1 1
Qi = g(bijk — brij + bjri) + §(Cijk + Crij — Cjki)-
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Corollary 5.2. If (aijk) is a tensor which is symmetric in one pair
of indices and skew symmetric in another pair, then (a;jr) = 0.

Equations (5.6) and (5.8) tell us that Qi;a’, and Qyicjyy, are sym-
metric in j and k. Thus,

s __ is
Qjrk = Cjrk =

by Corollary 5.2. Equation (5.8) becomes

1
§QT"I‘QSS(Sijk); = (Qsisrjk: + Qstrk:i + stSrij)
— (QriSsjk + QrjSski + QriSsij)-

(5.13)

If we apply Lemma 5.1 to equations (5.9) and (5.10), then we easily
see that B, and CJ’-lk can be solved for in terms of Sijx, Tijk, Sij, Bijk,
and their covariant derivatives.

In Section 3 we differentiated equation (5.2) and obtained the corre-
sponding Bianchi identities; we repeat them here for convenience:

(514) Sij - Sji,

(5.15) Tiji = Tjir,

and

(5.16) Bijr + Bjg; + Byi; = 0.

Also, by definition,
(5.17) Bijr = —Bijik.

Recall that S;j; is symmetric in all three indices. Thus, equations
(5.15) and (5.11) imply that QiiD;-k is symmetric in ¢ and j, but we
know that this tensor is skew symmetric in ¢ and j as well. Therefore,
by Corollary 5.2,

D;k - 0,
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and

1
=(Sijk)w-

(5.18) Tije = 5

Structure equations (5.4) become

7 % 1 7 %
dpj = i Ny + 5 A8 NO" + Bji6' Aw
(5.4) )
+ C;lkel A nk + §E;lknl N nk.

Differentiating equation (5.3) gives
QiiAé'lk = (Bitk — Birt)pi + QjrSa — Qj1Sik
(519) + (Tijk)el - (Ejl)ek + er(Tvierrkj - T’ikrTrjl)
1
+ ier(Srjl(Birk - Bikr) - Srjk:(Birl - Bilr))a

. 1
(5.20) QiiBy; = Bikj — Bijk + (Sij)npr + QQIISilSlkj — (Tijr)w,

(5.21)
. B 1
QiiCrij — QiiCly = (Titj)mr — (Tiak)ys + §er(5rleirj - SrjiTirk),

and

(522) QT"I’QSS(Sij)Z = (QirSjs + erSis) - (QisSjr + stSir)-

Theorem 5.1. The functions S;ji, S;j and B;ji, are a complete set
of invariants.

Proof. Tt is clear from equations (5.18), (5.19), (5.20) and (5.12) that
Tijk, Abgs Bjy, and Efy can be expressed in terms of Sijk, Sij, Bijk
and their covariant derivatives with respect to 6, w, and 7. Either
equation (5.21) or (5.10) and Lemma 5.1 imply that the C]’:lk can also
be expressed in terms of Sjjx, Sij, Bijk, and their covariant derivatives
with respect to €, w and 7. a
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Recall that U; is the image of U under the natural projection:
(z,y,p) = (z,9).

Theorem 5.2. If (Sijx)w = 0, then (n,¢) is a connection in
]:3(U) — Ul.

Proof. Recall that
0,w=0 mod{dz,dy}.

Thus, equations (5.1), (5.2), (5.3) and (5.4) are the structure equations
of a connection with the n* and (,0;- as the connection 1-forms and with
z and y = (y',...,y™) as base variables if T;j;, = 0 and C}, = 0.
Equation (5.18) implies T, = 0. It follows from equation (5.21) that
QiiC]’:lk is symmetric in j and k, but QiiCJ’:lk is also skew symmetric in
7 and j. Therefore, C;lk = 0 by Corollary 5.2. a

Recall that ds? = (*0Q0) + (w?) is a Finsler metric on Uj.

Theorem 5.3. If S;jx, =0, then the Finsler metric ds*> = (*0Q0) +
(w?) is pseudo-Riemannian.

Proof. Recall the coefficients a, b; and ¢;; of ds? (cf. equation (4.5)).
The metric ds? is pseudo-Riemannian provided

(9a _ (91)] _ (9cij

o = ok = oph "
(k=1,...,m), or equivalently,
(5.23) Ly, (ds®) = 0.
The vector fields 9/0p, ... ,0/0p™ solve the system of equations
(5.24) w=0 =gl =0.

Thus, if we define vector fields X7, ... , X, by equations (5.24) together
with the equations
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then equations (5.23) are equivalent to
‘C’Xk (dsz) =0.
A direct calculation using equations (5.1) and (5.2) shows that

Lx, (ds*) = Sijx(0°67).

Theorem 5.4. Suppose that m > 2. Then
dSijr =0 mod{f,w,n}

implies S;j, = 0.

Proof. By hypothesis (S;jx); = 0. Identity (5.13) can be written:

(525) QriSsjk + erSski + QrkSsij = QsiSrjk + Qstrk:i + stSrij-

Let i = j = k =r # s. Then (5.25) reduces to 3Q;;Ss;; = 0. Thus,
Sij; =0if i # j. Let i = j = r # k = s. The symmetry of S;j; in all
three indices implies that (5.25) reduces to QkrSii; = 0; hence, S;;; = 0.
If m =2, then S;j, =0 for all ¢,j and k. If m > 2, thenleti =7 =r
and 7,k and s be distinct. Then (5.25) reduces to 2Q;;Ssix = 0. Thus,
Sijr = 0 for all ¢,7 and k. o

Theorem 5.5. Suppose m > 2 and Siji, By and S;; are constants.
Then (U, ds?) is a pseudo-Riemannian manifold of constant curvature,
K, where K = QHSH.

Proof. It follows from the preceding theorem that S;;, = 0; thus
ds? is pseudo-Riemannian. From the proof of Theorem 5.2, we know
Tijx = 0 and Cy;, = 0. Identity (5.20) reduces to

QiiB}.; = Birj — Bijk.-

Thus, the tensor QiiB; i 1s skew symmetric in j and k and has the same
cyclic symmetry in ¢, j and k that B;ji has (see equation (5.16)); we



326 M.D. SUTTON

also know that Qi,-B;:k is skew symmetric in ¢ and j. It is easy to see
that any three index tensor will all these symmetries has to vanish. So
Bl = 0 and Bjjj, is symmetric in j and k. Recall (equation (5.17))
that B is skew symmetric in ¢ and j. Therefore by Corollary 5.2,
B;jr = 0.

Identity (5.22) becomes
(526) Qirsjs + ersis = QisSjr + stsir-

Let i = j = r # s. Then (5.26) reduces to 2Q);;S;s = 0; thus, S;; = 0 if
) 7é ] Let r =1 # ] = s. Then (526) becomes: QiiSjj = ijSiia and
therefore, Q“SM = ijSjj for all 7 and j Let K = Q115’11. Then
Sij = Qin.
Identity (5.19) becomes
Qi A%, = QjrSi — Qi1Sik = (Qk Qi — Q1Quk) K.
Identity (5.12) becomes QiiE;:lk = QitQji — QuQjr. Thus,

i i
G = —Ej K.

The structure equations now take the form:
o = @i NO7 — ' Aw,
dw = ijnj AN 9j,
dn’ = o5 AP + Kw A b,
dgoj- =t A <p§ + ijKOi NG — ijni A,

We may write these equations in the following matrix form:
0 (¢ —n 0
1(8)= (o o) (8),
gl ¢ nY_ (e —n\,( e -
Q@ 0 mQ 0 Q@ 0

n K#t9Q —Kuwb
—K'Quw 0 )
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In matrix form, the metric is

et (3 9)()

The transpose of the matrix,

is

(5 D) )8 D) (e 7)o

As a final observation, we note that Riemann’s normal form for the
metric of a constant curvature manifold [19, p. 69] determines a normal
form for each integral [ L dz whose invariants satisfy the hypothesis of
Theorem 5.5.
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