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ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS
BEYOND THE ANALYTIC BOUNDARY

K. PAN

ABSTRACT. Let p be a finite positive measure on the unit

circle and wm(2) = H;n:l(z —aj) for |aj| > 1,5 =1,... ,m.

Using a relation between the orthonormal polynomials with
respect to the measures du/(27) and |wm (e*9)[2 du/(2m), we
derive the asymptotic behavior for orthonormal polynomials
beyond the analytic boundary of the Szegd function. This is
a generalization of some known results (see, e.g., [4] and [8]).

1. Introduction. Let p be a finite positive measure on the unit
circle. Let u = pg + ps be its canonical decomposition into the
absolutely continuous and the singular parts (with respect to Lebesgue
measure on the unit circle). We denote by p/(6) the Radon-Nikodym
derivative of u, with respect to df. Then u' € L'[0,27), p/(6) > 0
almost everywhere, and we define its geometric mean G(u') by

G(u') == exp {% /OZW log 1/'(6) d9}-

If log i’ € L'[0,27) one can define the Szegé function for |z| < 1 by

1 2 ei9+z
D(:) = D) = exp { - [ 1own0) 55 .

It is known that (cf. [11, p. 276]) D € H?({z : |2] < 1}) and for almost
every 6 € [0, 2) ' '
li/m1 D(du,re) = D(dp, e?)

exists and |D(dpu, e??)|? = u'(6) for almost every 6 € [0,27). If log i ¢
L[0,27) we define D(du, 2z) = 0. Denote by P,, the set of polynomials
of degree at most n. The *-transform p*(z) of a polynomial of degree n

is defined as p*(z) = 2"p,(1/2). Let ¢, (2) = k2" + -+ € Py, Ky > 0,
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be the nth orthonormal polynomial corresponding to du/(27) on the
unit circle, i.e.,

1 27

— bn(2)27F du(8) = K Sk, k=0,1,...,n, z=2¢€",
2T 0

It is well known that, from [11, Theorem 12.3.16],

 0n(2) sy
(1) Jim === = D7(1/z),
holds locally uniformly for |z| > 1 if logu’ € L'[0,2r), here we say
D7!(z) = 1/D(z). Furthermore, in [8], Nevai and Totik proved that if
D7!(z) has an analytic continuation to |z| < p, p > 1, then (1) is also
true for |z| > 1/p. The purpose of this paper is to study the asymptotic
behavior of ¢, (z) outside of the analytic region of D71(2).

Instead of du/(27), we consider the new measure |w,,(e?)|* du/(27)
on the unit circle, where w,,(z) := [[;~,(z — ;). Suppose D '(z) is
analytic in |z| < p, p > 1, and p > maxi<i<m{|a;|}, then Dyt :=
D Y(|wp|*du, 2) = D71(2)/wm(z) will create some “bad” points at
Aty e Q. Let Yp(2) = np2™ + -+ € Py, np > 0, be the nth
orthonormal polynomial corresponding to |w,,(e*?)|? du/(2w) on the
unit circle, i.e.,

1 2w

| bn(2)e M (2) P du(6) = 1, G,
T Jo
k=0,1,...,n, z=¢€".

From the theorems in [8], we only know that lim, o 9¥,(2)/2" =
Dyu'(1/2) in |2| > 1/a, o = minj<;j<m{|ai|}. Our goal is to use a
representation of 1, (z) in terms of ¢, (z) (Theorem 1) in order to find
the asymptotic behavior of ¢,,(z) in |z| > 1/p (Theorem 7). The special
case du = df of this asymptotic result has been studied by Ismail and
Ruedemann [4].

The asymptotic behavior of ¢,,(z) in |z| < 1/p is discussed in Section
4. The representation of ¢,(z) is given in Section 2. Section 3 is
devoted to some lemmas needed for the proof in Section 4.

2. Comparison of ¢, (z) and ¢,(z). Our aim is to investigate the
relationship between the orthonormal polynomials ¢,(z) and ¥,(z).
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The situation is very similar to adding m mass points distribution to
the measure p and comparing the corresponding polynomials. Sur-
prisingly similar results are valid (cf. [5]). In this section we derive a
representation of ¥, (z) in terms of ¢,,(z). The determinant represen-
tation can be found in [1, 3, 4] and [10].

Theorem 1. For n > m, we have

() wnlnom(z) = P00 (2) + D Ank K (2 ),

n k=1

and the ratio of the two leading coefficients satisfies

Kn

n—m Hn -
(3) 1 - = ZAn,k¢n(ak)a
em 3

1 27

k= o
™ 2w 0

A Win (2)¥n-m(2)l(2) dp, 2 =€,

(2) == [1; 21 (2 — i) /(ak — i), and

1s the kernel polynomial associated with the orthonormal polynomials

$n(2)-

Remark. One can obtain A, by letting z = ax, k=1,... ,min (2),
and solve for A, ;, in terms of ¢, (c;) and Kp_1 (s, @), 4,5 =1,...,m.

Proof of Theorem 1. 1t is clear that a Fourier expansion

(@) (P (2) = 0 (2) 4 3 a6 (2)

Kn
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always exists and that the Fourier coeflicients are given by

1 2w ;

a; = % wm(z)¢n—m( )¢]( )d,ua z=e€ 05
for j = 0,...,n — 1. We now express a; in terms of ¢;(ax), k =
1,...,m. When 5 =0,... ,m — 1, we have an expansion

¢i(2) = di(an)li(2),
k=1
and so
1 27
aj = o o Wi (2)Yn—m (2)¢;(2) dp
1 27 m
(5) =5/ Wi (2)¥n-m(2) Y bj(an)lk() dp
k=1
= ZAn,k¢J ak z=e"
=1
On the other hand, for j = 1, we also have
1 27
4= o= | wn(2)¥n-m(2)$;(2) du
2 m
_ $5(2) = D ney Do)k (2)
- / | wn m( )[ ’U)m(Z) d/"
(6) % wm( "pn m Z¢] ak lk: )d
k=1
1 2T m
=5 | wn(2)¥n-m(2) > dilan)li(z) du
0 k=1

the third equality being true because

{o,0- ki 63(0)(2) () € P
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and then use the orthonormality of ¥, _,,(z) with respect to |w, (z)|* du.
Thus, by (4), (5) and (6), we see that

Win ()W (2) = G (2)

+§ (2 Anssifon)ost2)

Mn—m G
= n An an ) .
. ) (@Jr; kKno1(z, o)

In order to prove (3), from (4) we have

1 2

77’;;;‘ =5 i wm(z)¢n7m(z)¢n—(z)d#
1 2 2 bn(z) — 2211 Pn (k) 1k (2)
= o [ @ bam(a)| e
+ % i Wi (2)Vn—m(2) Zmdl‘
0 k=1
1 2 2 m—n
- /0 (W (2) P40 (2) 2™ dpt
>/ ﬁwm(z)qpn_m(z)zmd#

k=1

m
K [ .
= z + § An,k¢n(ak)7 z = 6197
—m 32

the third equality being valid because
{¢n(z) - asn(ak)zk(z)} S (2) = K2
k=1

and then use the orthonormality of 1, ,,(z) with respect to |w, (2)|? du.
O

3. Estimation for A, ;. In order to estimate 1, (z), we would like
to obtain an asymptotic expression for A, ;. We say p € N if
¢n(0)

lim ——= =0.
n—oo Ky,
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It is well known that the condition g’ > 0 almost everywhere on the
unit circle implies g € N (cf. [6] or [9]). From now on, we will always
assume that a’s are all distinct. Let

Since the set {(1 — a;z) '}72; is linearly independent, we have the
unique expansion

(7) Bla)= 3 U

We now discuss the asymptotic behavior for coefficients A, .

Theorem 2. If u € N, then

_B(©)
|B(0)]

lim Anykq&n(ak) == bk, k= 1, e ,m,
n—ro0

where by, k =1,... ,m are defined in (7).

Before we give the proof of the theorem, we need the following
lemmas.

Lemma 3. If y € N, then

m anl(zag) 1

lim —n—t -
nroo ¢n(§)¢n(z) §Z -1

holds locally uniformly for |z| > 1 and |£| > 1.

Proof. By the Christoffel-Darboux formula (cf. [2, p. 3]), we have

Kn—l(zag) = 1_ EZ
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It is proven in [7] that u € N implies

. Ph(2)
Adm n(2)

=0,

locally uniformly for |z| > 1. The lemma then follows from the
Christoffel-Darboux formula. O

Lemma 4. For points ai,...,q, outside the unit circle, the
following matriz
1 m
o (i)
1 =06/ 5

1s nonsingular. Furthermore,
C,'1=—-B(0)(b1,... ,bm)",

where 1 =1, = (1,...,1)T, and the by, ’s are defined in (7).
Proof. See [5]. O
Lemma 5. For all n > m, we have Ny —m/tn < 1.

Proof. From the extremal property of the monic polynomial x ¢, (z)
(cf. [11, p. 289]),

Lo min LT e
— = mim — z z
K2 peP._12m Jy P a
12 () [
<or [ 1P )
ﬂ- 0 nn—m
-

We are now ready to prove Theorem 2.

Proof of Theorem 2. We first show the existence of lim,, o0 9n—m/kn
and calculate the value of this limit. By Lemma 5, every subsequence
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of {Nn—m/kn}2,, contains a convergent subsequence. Let > 0 be a
limit point of this sequence, and A C {m,m +1,...} satisfy

(8) A 1y /Ky =T
neA

From Theorem 1, we know that

o) Un(nn(2)

NMn—m ——— (1= a@;2)K,_1(2, ;) 1
=t Y Ly safay U B L
kn j=1 ¢n(aj)¢n(z) Qjz
Setting z = a1, ..., am, by Lemma 3, we can obtain
Inmy—C,[X(1+0(1)], n— oo
K/n

where C,, is defined as in Lemma 4, X := (21,%2,...,%,)7, and
z; = Ay ipn(i), i =1,... ,m. From Lemma 4, we have

X(1+0(1)) = = C ot = B0 (b, bin)T,

Kn, Kn,
and so, by use of (8),
Aim z; = lim A, j¢n(a;) = —rB(0)b;,
(10) neA neA
7=1...,m.

Now let n — oo and n € A in (3) yield

m

r— = —rBO)Y_b; = —rBO)B(0) - /B0

Hence, r = |B(0)| L. Since r is an arbitrary limit point of {9, _m/kn},

we see that the lim,, oo 7 _m/K» must exist and be equal to |B(0)| 1.

Finally from (10) we see that

: —— _ B(0) _
nli)nolo An,k¢n(ak) - |B(0)|bk7 k= ]-7 cee MM
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This completes the proof of the theorem. a
The following result is a special case of theorems in [7].

Corollary 6. If u € N, then

1/”n—m(z) _ (0) 1
BO)| T}, (1 — a;2)

j=1

lim

n—oo ¢n(z)
holds locally uniformly in |z| > 1.

Proof. The proof follows from (9) in the proof of Theorem 2, Theorem
2, Lemma 3 and the expansion of B(z) in (7). O

4. Asymptotic behavior outside the analytic region. We now
have all results needed for proving the asymptotic behavior of ¢, (z) in

121 > 1/p.
Theorem 7. Suppose D~1(z) has an analytic continuation to the
disk |z| < p, and p > maxi<i<m{|oi|}. Then
0
Vnem (2)wm (2) = L[ (2)="
(1/ 2)

|B(0)]
(1 Q; n
—Z 1 ) D(é) )ay Folaz)

holds locally uniformly for 1/p < |z| < p, where o, := max{|z|,1/a}
and o= minlgigm{|ai|}.

Proof of Theorem 7. From Theorem 1, we obtain that

(11) W (2)Ynm(2) = ’7’;’" 6u(2) + Y Ap K (z,an).

k=1

Next we want to estimate the righthand side of (11). First from the
theorems in [8], we have

~—

(12) lim 2002

n—oo 2N

=D 1(1/7)
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locally uniformly for |z| > 1/p. Thus, for 1/p < |z|, we see that

(13) ¢n(2) = 2"D(1/2) + o([2]").

On the other hand, from (1), we have

(14) ¢$n(2) = D7 (2) +0(1)

for |z| < p, and so

(15) ¢r(ar) = D' (ax) +o(1)

for k=1,...,m. Also from Theorem 2 and (13), we have

B(O) ka(l/dk) < 1 >

16 An,k = — —n +o

1o BOI 4 oul"

for k =1,2,...,m. According to the proof of Theorem 2, we see that
Nn—m 1

17 = ——+o(l).

) 5 B0

From Christoffel-Darboux formula, (11), (13), (14), (15), (16) and (17)
we have, for |z| > 1/p,

Wi (2)n—m(2) = =G, (2)

Kn

+ 30 4, Pe0)95(2) — Iu(en)on(z)

1—az

_ [Tlnm B i An,km]%(z)

1—agz
k=1 k

+ [ Auatiled]

P 1—apz
i bk 2"
,;1 1- C_Vlczj| D(1/%)
bD(1/a)
(1 - arz)apD(ox)D(z)

I

oS

e

|-
+
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the last equality being valid because of the expansion of B(z) in (7).
Together with D(a;) = D~1(1/a; ), j = 1,...,m, we complete the
proof of the theorem. i
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