EMBEDDING DERIVATIVES OF \mathcal{M} -HARMONIC HARDY SPACES \mathcal{H}^P INTO LEBESGUE SPACES, 0

MIROLJUB JEVTIĆ

ABSTRACT. A characterization is given of those positive measures μ on B, the open unit ball in C^n , such that differentiation of order k maps the \mathcal{M} -harmonic Hardy space \mathcal{H}^p boundedly into $L^p(\mu)$, 0 .

1. Introduction. In [9], D. Lucking determined the conditions on positive measure μ on U, the upper half space in R^{n+1} , so that a partial derivative $D^{\beta}f$ of f of order $|\beta| = k$ belongs to $L^{q}(\mu)$ whenever $f \in H^{p}$, the harmonic Hardy space. In this paper we consider the corresponding problem for the unit ball in C^{n} with the k-fold gradient $\partial^{k}f$ replacing $D^{\beta}f$, and by modifying a technique of Lucking we show that the result is very similar to the one for U.

Let B be the open ball in C^n , $n \ge 1$, with normalized volume measure m, and let S denote its boundary. If $\alpha > 0$ and $\xi \in S$, the Koranyi approach regions are defined by

$$D_{\alpha}(\xi) = \{ z = r\eta \in B : |1 - \langle \eta, \xi \rangle| < \alpha(1 - r) \}.$$

(Note that the regions $D_{\alpha}(\xi)$ are equivalent to the usual admissible approach regions $\{z \in B : |1 - \langle z, \xi \rangle| < 2^{-1}\beta(1 - |z|^2)\}, \ \beta > 1$. For each $E \subset S$ we define the α -tent over E to be $\hat{E}_{\alpha} = (\bigcup_{\xi \notin E} D_{\alpha}(\xi))^C$, the complement being taken in B. If $\alpha = 1$, we will write \hat{E} and $D(\xi)$ instead of \hat{E}_1 and $D_1(\xi)$.

Following Coifman, Mayer and Stein [3], and Luecking [9], we define tent spaces T_r^s for 0 < r, $s \le \infty$. Thus, if ν is a positive measure on B, finite on compact sets, and if $r < \infty$, let

$$A_{r,\nu}(f)(\xi) = \left(\int_{D(\xi)} |f|^r d\nu\right)^{1/r}$$

Copyright ©1996 Rocky Mountain Mathematics Consortium

Received by the editors on September 29, 1993, and in revised form on April 1, 1994.

and

$$C_{r,\nu}(f)(\xi) = \left(\sup_{\xi \in Q} \frac{1}{\sigma(Q)} \int_{\hat{Q}} |f(z)|^r (1 - |z|)^n \, d\nu(z)\right)^{1/r},$$

where $Q = Q(\eta, \delta) = \{ \zeta \in S : |1 - \langle \zeta, \eta \rangle| < \delta \}$ are nonisotrophic balls in S and σ , the rotation invariant probability measure on S.

If $r = \infty$, let

$$C_{\infty,\nu}(f)(\xi) = A_{\infty,\nu}(f)(\xi) = \nu - \underset{z \in D(\xi)}{\text{ess sup}} |f(z)|.$$

The tent space $T_r^s(\nu)$ is defined to be the space of ν -equivalence of functions f such that

- (i) $A_{r,\nu}(f) \in L^s(\sigma)$, if $0 < r \le \infty$, $0 < s < \infty$,
- (ii) $C_{r\nu}(f) \in L^{\infty}(\sigma)$, if $0 < r < \infty$, $s = \infty$.

In case $d\nu(z) = d\tau(z) = (1 - |z|^2)^{-n-1} dm(z)$, we omit the subscript ν .

We note that the use of approach regions of "aperture" 1 in the definition of T_r^s is merely a convenience: approach regions of any other aperture would yield the same class of functions with an equivalent norm

Let $\tilde{\Delta}$ be the invariant Laplacian on B. That is, $(\tilde{\Delta}f)(z) = \Delta(f \circ \varphi_z)(0)$, $f \in C^2(B)$, where Δ is the ordinary Laplacian and φ_z the standard automorphism of B taking 0 to z (see [10]). A function f defined on B is \mathcal{M} -harmonic, $f \in \mathcal{M}$, if $\tilde{\Delta}(f) = 0$.

We shall call $\mathcal{H}^p = \mathcal{M} \cap T_{\infty}^p$, $0 , <math>\mathcal{M}$ -harmonic Hardy space. For $f \in \mathcal{M}$, let $\partial f(z) = (\partial f/\partial z_1, \dots, \partial f/\partial z_n, \partial f/\partial \overline{z_1}, \dots, \partial f/\partial \overline{z_n})$ and for any positive integer k we write $\partial^k f(z) = (\partial^\alpha \bar{\partial}^\beta f(z))_{|\alpha|+|\beta|=k}$ and $|\partial^k f(z)|^2 = \sum_{|\alpha|+|\beta|=k} |\partial^\alpha \bar{\partial}^\beta f(z)|^2$ where

$$\partial^{\alpha}\bar{\partial}^{\beta}f(z) = \frac{\partial^{|\alpha|+|\beta|}f(z)}{\partial z_{1}^{\alpha_{1}}, \dots, \partial z_{n}^{\alpha_{n}}, \partial \overline{z_{1}}^{\beta_{1}}, \dots, \partial \overline{z_{n}}^{\beta_{n}}},$$

 α and β are multiindices.

Let μ be a positive measure on B and consider the problem of determining what conditions on μ imply $|\partial^k f| \in L^q(\mu)$ whenever

 $f \in \mathcal{H}^p$. A standard application of the closed graph theorem leads to the following equivalent problem.

Characterize the μ for which there exists a constant C satisfying

$$\left(\int_{B} |\partial^{k} f|^{q} d\mu\right)^{1/q} \leq C||f||_{\mathcal{H}^{p}} = C||A_{\infty}(f)||_{L^{p}(\sigma)}.$$

The purpose of this paper is to present a solution of this problem in the case $0 . Other previously known cases <math>2 \le p = q < \infty$ and $0 will be discussed briefly in Section 4. It seems that the solutions for the remaining two cases: <math>0 < q < \min\{2, p\}$, $2 \le q < p$, are also similar to the one for the upper half space U.

For $z \in B$ and ε , $0 < \varepsilon < 1$, $E_{\varepsilon}(z) = \{w \in B : |\varphi_z(w)| < \varepsilon\}$. In discussions where the actual value of ε is irrelevant, it may be omitted from the subscripts.

Constants will be denoted by C which may indicate a different constant from one occurrence to the next.

Theorem 1. Let $0 . For a positive measure <math>\mu$ on B and a positive integer k, a necessary and sufficient condition for

$$\left(\int_{B} |\partial^{k} f|^{p} d\mu\right)^{1/p} \leq C||f||_{\mathcal{H}^{p}}$$

is that the function $g(z) = \mu(E(z))/(1-|z|)^{kp+n}$ belongs to $T_{2/(2-p)}^{\infty}$.

2. Proof of sufficiency. The following three lemmas will be needed in the proof of sufficiency of Theorem 1.

Lemma 2.1 [8]. Let $k \ge l$ be nonnegative integers, $0 and <math>0 < \varepsilon < 1$. There exists a constant $K = K(k, l, p, \varepsilon, n)$ such that if $f \in \mathcal{M}$, then

$$|\partial^k f(w)|^p \le K(1-|w|)^{(l-k)p} \int_{E_{\varepsilon}(w)} |\partial^l f(z)|^p d\tau(z),$$
for all $w \in B$.

Lemma 2.2. Let $1 < r < \infty$. The following inequality holds whenever $f \in T^1_r(\nu)$ and $g \in T^\infty_{r'}(\nu)$, $r^{-1} + r'^{-1} = 1$,

$$\int_{B} |f(z)g(z)| (1-|z|)^{n} d\nu(z) \leq C \int_{S} A_{r,\nu}(f)(\eta) C_{r',\nu}(g)(\eta) d\sigma(\eta).$$

Proof. The idea of proof is taken from [4, pp. 148, 149]. In this connection see also [3]. We define the truncated Koranyi approach region $D^h(\xi)$, $0 < h \le 1$, by

$$D^h(\xi) = \{ z \in B : z \in D(\xi), 1 - h < |z| < 1 \}$$

and set

$$A_{r,\nu}(f|_h)(\xi) = \left(\int_{D^h(\xi)} |f(z)|^r d\nu(z)\right)^{1/r}.$$

Now let Q be any nonisotropic ball of radius δ , and let cQ be the ball of the same center as Q of radius $c\delta$, where c is an absolute constant such that $D^{\delta}(\eta) \subset (\widehat{cQ})$, for every $\eta \in Q$. By using Fubini's theorem and the definition of $C_{r',\nu}(g)$ we find that

$$(2.1) \frac{1}{\sigma(Q)} \int_{Q} [A_{r',\nu}(g|_{\delta})]^{r'}(\eta) d\eta(\eta)$$

$$\leq \frac{C}{\sigma(cQ)} \int_{Q} \left(\int_{D^{\delta}(\eta)} |g(z)|^{r'} d\nu(z) \right) d\sigma(\eta)$$

$$\leq \frac{C}{\sigma(cQ)} \int_{\widehat{cQ}} |g(z)|^{r'} d\nu(z) |\int_{Q} \chi_{D^{\delta}(\eta)}(z) d\sigma(\eta)$$

$$\leq \frac{C}{\sigma(cQ)} \int_{\widehat{cQ}} |g(z)|^{r'} (1 - |z|)^{n} d\nu(z)$$

$$\leq C(n) \inf_{\eta \in Q} [C_{r',\nu}(g)(\eta)]^{r'}.$$

Let M be a positive constant such that $M^{r'} > 2C(n)$. For every g we define $h(\eta)$ as

$$h(\eta) = \sup_{h>0} \{ A_{r',\nu}(g|_h)(\eta) \le MC_{r',\nu}(g)(\eta) \}.$$

From (2.1) we see that $\sigma(\{\eta \in Q : h(\eta) < \delta\}) \leq \sigma(Q)/2$. Hence, $\sigma(\{\eta \in Q : h(\eta) \geq \delta\}) \geq C\delta^n$. Using this, Fubini's theorem and Hölder's inequality we find that

$$\int_{B} |f(z)| |g(z)| (1 - |z|)^{n} d\nu(z)
\leq C^{-1} \int_{S} \left(\int_{D^{h(\eta)}(\eta)} |f(z)| |g(z)| d\nu(z) \right) d\sigma(\eta)
\leq C^{-1} \int_{S} A_{r,\nu}(f|_{h(\eta)})(\eta) A_{r',\nu}(g|_{h(\eta)})(\eta) d\sigma(\eta)
\leq MC^{-1} \int_{S} A_{r,\nu}(f)(\eta) C_{r',\nu}(g)(\eta) d\sigma(\eta).$$

This finishes the proof of the lemma.

Lemma 2.3. For $f \in \mathcal{M}$ the following are equivalent (with an aperture α fixed):

- (i) $f \in \mathcal{H}^p$,
- (ii) $\int_{D_{\alpha}(\eta)} |\partial^1 f(z)|^2 (1-|z|)^{1-n} dm(z) \in L^p(\sigma)$,
- (iii) For some $k\geq 1$, $\int_{D_{\alpha}(\eta)}|\partial^k f(z)|^2(1-|z|)^{2k-n-1}\,dm(z)\in L^p(\sigma)$,
- (iv) Same as (iii) but for every $k \geq 1$.

Proof. The equivalence (i) \Leftrightarrow (ii) can be found in [5]. By Lemma 2.1 we have

$$\begin{split} |\partial^k f(z)|^2 (1-|z|)^{2k-n-1} \\ & \leq C \int_{E_{\varepsilon}(z)} |\partial^1 f(w)|^2 (1-|w|^2)^{1-n} \, dm(w), \quad \varepsilon > 0. \end{split}$$

Integrating over $D_{\alpha}(\eta)$ and applying Fubini on the right gives

$$\int_{D_{\alpha}(\eta)} |\partial^{k} f(z)|^{2} (1 - |z|^{2})^{2k - n - 1} dm(z)$$

$$\leq C \int_{D_{\beta}(\eta)} |\partial^{1} f(z)|^{2} (1 - |z|^{2})^{1 - n} dm(z),$$

where $\beta > \alpha$.

We may choose $\varepsilon > 0$ so small that if $z \in D_{\alpha}(\eta)$ then $E_{\varepsilon}(z) \subset D_{\beta}(\eta)$. Thus (ii) \Rightarrow (iii). To get (iii) \Rightarrow (ii), the approach in [2] is easily modified to show that

$$\int_{D_{\alpha}(\eta)} |\partial^{1} f(z)|^{2} (1 - |z|^{2})^{1-n} dm(z)$$

$$\leq C \int_{D_{\beta}(\eta)} |\partial^{k} f(z)|^{2} (1 - |z|)^{2k-n-1} dm(z), \beta > \alpha.$$

Hence, (ii) \Leftrightarrow (iii) \Leftrightarrow (iv).

Proof of sufficiency. Let $f \in \mathcal{H}^p$. By Lemma 2.1, we have

$$|\partial^k f(z)|^p \le C \int_{E(z)} |\partial^k f(w)|^p d\tau(w),$$

where C depends on the radius ε of $E(z) = E_{\varepsilon}(z)$ and on p. From this we get

$$\int_{B} |\partial^{k} f(z)|^{p} d\mu(z)
\leq C \int_{B} (1 - |z|)^{kp} |\partial^{k} f(z)|^{p} g(z) \frac{dm(z)}{1 - |z|}
\leq C \int_{S} A_{2/p} ((1 - |z|)^{kp} |\partial^{k} f(z)|^{p}) (\eta) C_{2/(2-p)}(g) (\eta) d\sigma(\eta)
\leq C ||g||_{T_{2/(2-p)}^{\infty}}
\times \int_{S} \left(\int_{D(\eta)} (1 - |z|)^{2k-n-1} |\partial^{k} f(z)|^{2} dm(z) \right)^{p/2} d\sigma(\eta)
\leq C ||g||_{T_{2/(2-p)}^{\infty}} ||f||_{\mathcal{H}^{p}}^{p},$$

by Lemma 2.2 and Lemma 2.3.

3. Proof of necessity. Define an $\alpha - T_r^1$ -atom, $1 < r < \infty$, as a function a(z) on B, supported in \widehat{Q}_{α} for some ball Q in S, and satisfying $\int_{\widehat{Q}_a} |a(z)|^r (1-|z|)^{-1} dm(z) \leq \sigma(Q)^{1-r}$. In case $r = \infty$, a(z) must satisfy $|a(z)| \leq \sigma(Q)^{-1}$.

An atomic decomposition of the space T_{∞}^1 is obtained in [1]. Analogously, we have the following atomic decomposition of spaces T_r^1 , $1 < r < \infty$.

Lemma 3.1. For each $\alpha>0$ there is a constant $C=C(\alpha)$ such that, for every $f:B\to C$ such that $\int_S (\int_{D_\alpha(\xi)} |f(z)|^r d\tau(z))^{1/r} d\sigma(\xi)<\infty$, there are nonnegative α -atoms a_k and nonnegative numbers λ_k such that $|f(z)|\leq \sum_{k\geq 1}\lambda_k a_k(z)$ and $\sum_{k\geq 1}\lambda_k\leq C\int_S (\int_{D_\alpha(\xi)}\times |f(z)|^r d\tau(z))^{1/r} d\sigma(\xi)$.

Lemma 3.2. If 0 < s < 1 and $\lambda > 1$, then there is a constant $C = C(s, \lambda, n, \alpha)$ such that for any positive finite measure ν on B,

(3.1)
$$\int_{S} \left(\int_{B} \left(\frac{1 - |z|}{|1 - \langle z, \xi \rangle|} \right)^{\lambda n} d\nu(z) \right)^{s} d\sigma(\xi)$$

$$\leq C \int_{S} (\nu(D_{\alpha}(\xi)))^{s} d\sigma(\xi).$$

Proof. It suffices to show (3.1) for $d\nu(z) = f(z) d\tau(z)$, where $f(z) \ge 0$. Let $g(z)^r = f(z)$, where rs = 1. We need to show that

(3.2)
$$\int_{S} \left(\int_{B} \left(\frac{1 - |z|}{|1 - \langle z, \xi \rangle|} \right)^{\lambda n} g(z)^{r} d\tau(z) \right)^{1/r} d\sigma(\xi) \leq C ||g||_{T_{r}^{1}},$$

with the T_r^1 norm based on $D_{\beta}(\xi)$, $\beta > \alpha$, (see [9]). Because of Lemma 3.1, it suffices to find an upper bound for the left side of (3.2) when g(z) = a(z), a $\beta - T_r^1$ -atom.

Without loss of generality, we may suppose that the atom a(z) is supported in \hat{Q}_{β} , with $Q = Q(e_1, \delta)$ and that $\int_{\hat{Q}_{\beta}} |a(z)|^r (1 - |z|)^{-1} dm(z) \leq 1$. In this case we divide the outer integral in (3.2) into two parts: the integral I_1 over $|1 - \xi_1| > 2\delta$ and the integral I_0 over $|1 - \xi_1| \leq 2\delta$.

Since

$$\frac{(1-|z|)^{\lambda n-n}}{|1-\langle z,\xi\rangle|^{\lambda n}} \le \frac{C}{|1-\xi_1|^n}$$

when $|1 - \xi_1| > 2\delta$ and $z \in \hat{Q}_{\beta}$, we see that

$$I_{1} \leq C \int_{|1-\xi_{1}|>2\delta} \frac{d\sigma(\xi)}{|1-\xi_{1}|^{n/r}} \left(\int_{\hat{Q}_{\beta}} \frac{|a(z)|^{r}}{1-|z|} dm(z) \right)^{1/r} \leq C$$
(see [10, p. 17]).

By Holder's inequality followed by Fubini's theorem,

$$I_{0} \leq C \left(\int_{\hat{Q}_{\beta}} \int_{|1-\xi_{1}| \leq 2\delta} \frac{(1-|z|)^{\lambda n-n}}{|1-\langle z,\xi\rangle|^{\lambda n}} |a(z)|^{r} \times (1-|z|)^{-1} d\sigma(\xi) dm(z) \right)^{1/r} |\sigma(Q)|^{1-1/r}.$$

Since $\lambda > 1$ we have

$$\int_{|1-\xi_1|<2\delta} \frac{d\sigma(\xi)}{|1-\langle z,\xi\rangle|^{\lambda n}} \le \frac{C}{(1-|z|)^{\lambda n-n}} \qquad \text{(see [10, p. 17])}.$$

Thus,

$$I_0 \leq C \int_{\hat{Q}_{eta}} |a(z)|^r (1-|z|)^{-1} \, dm(z) \leq C.$$

If $\{z_k\}$ is a sequence in B, we say that it is separated if there is an $\varepsilon \in (0,1)$ such that the balls $E_{\varepsilon}(z_k)$ are disjoint. When $\nu = \sum_k \delta_{z_k}$ (where δ_z denotes a unit mass at z) we will write $T_r^s\{z_k\}$ instead of $T_r^s(\nu)$. \square

Lemma 3.3. Let 0 , <math>t > 0 and $\lambda = n + 1 + t$. Then $S_{\lambda}(b_k)(z) = \sum_{k \geq 1} b_k ((1 - |z_k|)/(1 - \langle z, z_k \rangle))^{\lambda}$ is a bounded map from $T_2^p\{z_k\}$ into H^p whenever the sequence $\{z_k\}$ is separated.

Recall that H^p is a subspace of \mathcal{H}^p consisting of holomorphic functions.

Proof. For t > 0 and k > n + 1 we define linear operator \mathcal{R}_t^k on H^{∞} (the space of bounded analytic functions on B) by

$$\mathcal{R}_t^k f(z) = \gamma_t \int_B \frac{(1 - |w|^2)^t f(w) \, dm(w)}{(1 - \langle z, w \rangle)^{n+1+k+t}},$$

where $\gamma_t = \Gamma(n+t+1)/(\Gamma(n+1)\Gamma(t+1))$. Let $K(z,w) = 1/(1-\langle z,w\rangle)^{n+1}$ and set $K_w = K(\cdot,w)$. Then $\mathcal{R}^k_t(K^{1+t/(n+1)}_{z_k}) = K^{1+(k+t)/(n+1)}_{z_k}$. Using this and Holder's inequality, we find that

$$|\mathcal{R}_t^k S_{\lambda}(b_k)(z)|^2 \leq \sum_{j\geq 1} |b_j|^2 \frac{(1-|z_j|)^{\lambda}}{|1-\langle z,z_j\rangle|^{\lambda+k}} \sum_{j\geq 1} \frac{(1-|z_j|)^{\lambda}}{|1-\langle z,z_j\rangle|^{\lambda+k}}.$$

Fix $\varepsilon \in (0,1)$ so that $E_{\varepsilon}(z_j)$ are disjoint. Then

$$\sum_{j\geq 1} \frac{(1-|z_j|)^{\lambda}}{|1-\langle z, z_j\rangle|^{\lambda+k}} \leq C \int_B \frac{(1-|w|)^t dm(w)}{|1-\langle w, z\rangle|^{\lambda+k}}$$
$$\leq \frac{C}{(1-|z|)^k} \quad (\text{see } [\mathbf{10}]).$$

Thus,

$$|\mathcal{R}_t^k S_{\lambda}(b_k)(z)|^2 \le C(1-|z|)^{-k} \sum_{j\geq 1} |b_j|^2 \frac{(1-|z_j|)^{\lambda}}{|1-\langle z, z_j \rangle|^{\lambda+k}}.$$

To get the H^p norm of $\mathcal{R}_t^k S_{\lambda}(b_k)(z)$, we integrate this over $D_{\alpha}(\eta)$ with respect to $(1-|z|)^{2k-n-1} dm(z)$ to obtain

$$\int_{D_{\alpha}(\eta)} |\mathcal{R}_{t}^{k}(S_{\lambda}(b_{k}))(z)|^{2} (1 - |z|)^{2k - n - 1} dm(z)
\leq C \sum_{j \geq 1} |b_{j}|^{2} (1 - |z_{j}|)^{\lambda} \int_{D_{\alpha}(\eta)} \frac{(1 - |z|)^{k - n - 1} dm(z)}{|1 - \langle z, z_{j} \rangle|^{\lambda + k}}
\leq C \sum_{j \geq 1} |b_{j}|^{2} (1 - |z_{j}|)^{\lambda} \int_{D_{\alpha}(\eta)} \frac{dm(z)}{|1 - \langle z, z_{j} \rangle|^{2n + 2 + t}}.$$

An integration in polar coordinates shows that

$$\int_{D_{\alpha}(\eta)} \frac{dm(z)}{|1 - \langle z, z_j \rangle|^{2n+2+t}} \leq \frac{C}{|1 - \langle z_j, \eta \rangle|^{n+1+t}}.$$

Hence,

$$\int_{D_{\alpha}(\eta)} |\mathcal{R}_{t}^{k}(S_{\lambda}(b_{k}))(z)|^{2} (1 - |z|)^{2k - n - 1} dm(z)$$

$$\leq C \sum_{j \geq 1} |b_{j}|^{2} \left(\frac{1 - |z_{j}|}{|1 - \langle z_{j}, \eta \rangle|} \right)^{\lambda}.$$

Raising to the p/2 power, integrating in η and applying Theorem 3.1 and Corollary 3.7 in [2] and Lemma 2.2, yields

$$||S_{\lambda}(b_k)||_{H^p} \le C||\{b_k\}||_{T_2^p\{z_k\}}.$$

Remark. In [2] a characterization of H^p is given in terms of the radial derivative operators \mathcal{R}^k , but it is easily seen that the same characterization continues to hold for the operators \mathcal{R}^k_t .

Lemma 3.4. For $1 < r < \infty$ the dual of $T^1_r(\nu)$ is $T^\infty_{r'}(\nu)$, $r^{-1} + r'^{-1} = 1$. The pairing is $\langle f, g \rangle = \int_B f(z)g(z)(1 - |z|)^n \, d\nu(z)$.

Proof. From Lemma 2.2 we see that $T_{r'}^{\infty}(\nu)$ is contained in the dual of $T_r^1(\nu)$. Conversely, let L be a continuous linear functional on $T_r^1(\nu)$. Let

$$\begin{split} L^{\infty}L^{r'}(d\nu\;d\sigma) \\ &= \bigg\{ f(z,\xi): B\times S \to C, \sup_{\xi\in S} \bigg(\int_{B} |f(z,\xi)|^{r'}\,d\nu(z) \bigg)^{1/r'} < \infty \bigg\}. \end{split}$$

Clearly, $T_{r'}^{\infty}(\nu)$ embeds in $L^{\infty}L^{r'}(d\nu d\sigma)$ by $f(z) \to f(z)\chi_{D(\xi)}(z)$. Since $(L^1L^r)^* = L^{\infty}L^{r'}$ by the Hahn-Banach theorem, there is a function $g(z,\xi) \in L^{\infty}L^{r'}(d\nu d\sigma)$ such that

$$L(f) = \int_{S} \int_{D(\xi)} g(z, \xi) f(z) d\nu(z) d\sigma(\xi),$$

with $||L|| = ||g||_{\infty,r'}$. By Fubini's theorem,

$$L(f) = \int_B f(r\eta) \int_{\{\xi: |1-\langle \xi, \eta \rangle| < 1-r\}} g(r\eta, \xi) \, d\sigma(\xi) \, d\nu(r\eta).$$

It now suffices to show that

$$P^{0}g(\rho\eta) = (1-\rho)^{-n} \int_{\{\xi: 1-\langle \xi, \eta \rangle | < 1-\rho\}} g(\rho\eta, \xi) \, d\sigma(\xi)$$

defines a bounded linear operator from $L^{\infty}L^{r'}(d\nu d\sigma)$ to $T_{r'}^{\infty}(\nu)$.

Let Q be a nonisotropic ball in S, and consider

$$\begin{split} \frac{1}{\sigma(Q)} \int_{\hat{Q}} |P^0 g(z)|^{r'} (1 - |z|)^n \, d\nu(z) \\ & \leq \frac{1}{\sigma(Q)} \int_{\hat{Q}} \int_{\{\xi: 1 - \langle \xi, \eta \rangle | < 1 - \rho\}} |g(\rho \eta, \xi)|^{r'} \, d\sigma(\xi) \, d\nu(\rho \eta) \\ & = \frac{1}{\sigma(Q)} \int_{S} \int_{\hat{Q} \cap D(\xi)} |g(z, \xi)|^{r'} \, d\nu(z) \, d\sigma(\xi) \\ & \leq \frac{1}{\sigma(Q)} \int_{Q} \int_{B} |g(z, \xi)|^{r'} \, d\nu(z) \, d\sigma(\xi) \\ & \leq ||g||_{r', \infty}^{r'}. \end{split}$$

Thus $||C_{r',\nu}(P^0g)||_{\infty} \le ||g||_{r',\infty}$.

Proof of necessity. Let μ be a positive measure on B satisfying $(\int_{B} |\partial^{k} f(z)|^{p} d\mu(z))^{1/p} \leq C||f||_{\mathcal{H}^{p}}, f \in \mathcal{H}^{p}$. Then we also have $\int_{B} |\mathcal{R}_{t}^{k} f(z)|^{p} d\mu(z) \leq C||f||_{H^{p}}^{p}$, for every $f \in H^{p}$. Let f be set equal to $f(z) = S_{\lambda}(b_{k})(z) = \sum_{k} b_{k}((1-|z_{k}|)/(1-\langle z, z_{k}\rangle))^{\lambda}, \lambda = n+1+t, t>0$, for some $\{b_{k}\} \in T_{2}^{p}\{z_{k}\}$ and some separated sequence $\{z_{k}\}$. Then by Lemma 3.3, we get

$$\int_{B} \left| \sum_{k \geq 1} b_{k} \frac{(1 - |z_{k}|)^{\lambda}}{(1 - \langle z, z_{k} \rangle)^{\lambda + k}} \right|^{p} d\mu(z) \leq C ||\{b_{k}\}||_{T_{2}^{p}\{z_{k}\}}^{p}.$$

Now if each b_k is replaced by $b_k r_k(t)$ for fixed $t \in [0,1)$, (where $r_k(t)$ are Rademacher functions), the righthand side is unchanged. We can then integrate the resulting equation in t and use the lower bound in Khinchine's inequality to obtain

$$\int_{B} \left(\sum_{k>1} \left| b_{k} \frac{(1-|z_{k}|)^{\lambda}}{(1-\langle z, z_{k} \rangle)^{\lambda+k}} \right|^{2} \right)^{p/2} d\mu(z) \leq C ||\{b_{k}\}||_{T_{2}^{p}\{z_{k}\}}^{p}.$$

From this, we get

$$\sum_{j\geq 1} |b_j|^p (1-|z_j|)^{-kp} \mu(E(z_j)) \leq C||\{b_k\}||_{T_2^p\{z_k\}}^p.$$

Putting $|b_j|^p = c_j$, we get

$$\sum_{j>1} c_j \frac{\mu(E(z_j))}{(1-|z_j|)^{kp+n}} (1-|z_j|)^n \le C||\{c_j\}||_{T^1_{2/p}\{z_j\}},$$

for any positive $\{c_j\} \in T^1_{2/p}\{z_j\}$. This inequality continues to hold for nonpositive $\{c_j\}$, so we conclude that $\{\mu(E(z_j))/(1-|z_j|)^{kp+n}\} \in (T^1_{2/p}\{z_j\})^* = T^\infty_{2/(2-p)}\{z_j\}$, by Lemma 3.4. \square

From this follows a discrete version of Theorem 1, which in turn implies the continuous version stated in Theorem 1 (see [9]).

4. Other cases. The solutions for the cases $0 and <math>2 \le p = q < \infty$ were presented in [6] and [7]. For the reader's convenience, we state them.

Theorem 2. Let $0 or <math>2 \le p = q < \infty$. For a positive measure μ on B and a positive integer k, a necessary and sufficient condition for (1.1) is that there exists a constant K for which

$$\mu(E(z)) \le K(1-|z|)^{kq+nq/p}, \quad z \in B.$$

Theorem 1, Theorem 2 and the corresponding results for the upper half-space U lead to the following

Conjecture. For a positive measure μ on B and a positive integer k, a necessary and sufficient condition for (1.1) is that the function $g(z) = \mu(E(z))/(1-|z|)^{kq+n}$ satisfies

- $\text{(i)} \ \ g \in T^{p/(p-q)}_{2/(2-q)}, \ \text{if} \ 0 < q < p, \ q < 2,$
- (ii) $g \in T^{p/(p-q)}_{\infty}$, if $2 \le q < p$.

REFERENCES

1. P. Ahern, Exceptional sets for holomorphic Sobolev functions, Michigan Math. J. 35 (1988), 29-41.

- **2.** P. Ahern and J. Bruna, Maximal and area integral characterization of Hardy-Sobolev spaces in the unit ball of C^n , Rev. Math. Iberoamericana 4 (1988), 123–153.
- 3. R.R. Coifman, Y. Meyer and E.M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304-335.
- 4. C. Fefferman and E. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- **5.** D. Geller, Some results on H^p theory for the Heisenberg group, Duke Math. J. **47** (1980), 365–390.
- **6.** M. Jevtić, Embedding derivatives of M-harmonic Hardy spaces into Lebesgue spaces, Publ. Inst. Math.
- 7. ———, Embedding derivatives of M-harmonic tent spaces into Lebesgue spaces, Math. Balcanika, to appear.
- 8. M. Jevtić and M. Pavlović, On M-harmonic Bloch space, PAMS 123 (1995), 1385–1393
- ${\bf 9.~D.}$ Luccking, Embedding~derivatives~of~Hardy~spaces~into~Lebesgue~spaces, preprint.
- 10. W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer Verlag, New York, 1980.

Matematički fakultet, Studentski trg 16, 11 000 Beograd, Yugoslavia