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EMBEDDING DERIVATIVES OF M-HARMONIC
HARDY SPACES #?” INTO LEBESGUE SPACES, 0 <p <2

MIROLJUB JEVTIC

ABSTRACT. A characterization is given of those positive
measures 4 on B, the open unit ball in C", such that differ-
entiation of order k maps the M-harmonic Hardy space HP
boundedly into LP(u), 0 < p < 2.

1. Introduction. In [9], D. Luecking determined the conditions
on positive measure p on U, the upper half space in R"*!, so that a
partial derivative D f of f of order |3| = k belongs to L(u) whenever
f € HP, the harmonic Hardy space. In this paper we consider the
corresponding problem for the unit ball in C"™ with the k-fold gradient
0" f replacing DP f, and by modifying a technique of Luecking we show
that the result is very similar to the one for U.

Let B be the open ball in C™, n > 1, with normalized volume measure

m, and let S denote its boundary. If @ > 0 and £ € S, the Koranyi
approach regions are defined by

Do(§) ={z=meB: |l (n&| <al-r)}

(Note that the regions D, (&) are equivalent to the usual admissible
approach regions {z € B : |1 — (2,£)| < 27!18(1 — |2]*)}, B > 1. For
each E C S we define the a-tent over E to be E, = (UegrDal(£))C,
the complement being taken in B. If o = 1, we will write £ and D(¢)
instead of E; and D, &).

Following Coifman, Mayer and Stein [3], and Luecking [9], we define
tent spaces 17° for 0 < r, s < co. Thus, if v is a positive measure on
B, finite on compact sets, and if r < oo, let

Ao = ([ du)w
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and

1 r n v
cr,u<f>(s)=(§ggm /Q S 2 du(z>) ,

where @ = Q(n,0) ={¢ € S:|1 - ((,n)| < §} are nonisotrophic balls
in S and o, the rotation invariant probability measure on S.

If r = o0, let

Coo,u(f)(é.) = Aoo,l/(f)(g) =V — €sssup |f(2)|

z€D(§)

The tent space T:3(v) is defined to be the space of v-equivalence of
functions f such that

(i) A, (f) € L(0),if0<r <o00,0< s < 00,
(i) Cru(f) € L®(0),if 0 <7 <00, s=o00.
In case dv(z) = dr(z) = (1 — |2|?)™"1 dm(z), we omit the subscript
v.
We note that the use of approach regions of “aperture” 1 in the
definition of 7, is merely a convenience: approach regions of any other

aperture would yield the same class of functions with an equivalent
norm.

Let A be the invariant Laplacian on B. That is, (Af)(z) = A(f o
¢.)(0), f € C*(B), where A is the ordinary Laplacian and ¢, the
standard automorphism of B taking 0 to z (see [10]). A function f
defined on B is M-harmonic, f € M, if A(f) =0.

We shall call H?P = M NT2, 0 < p < 00, M-harmonic Hardy space.
For f € M, let 0f(2) = (0f/0z1,...,0f/02,,0f/0%1,...,0f/0%)
and for any positive integer k we write 9% f(2) = (8*0° f(2))|a|+|5/=k
and |0%f(2)2 = > Ja]+18]=k 10°0° f(2)|* where

Ale+IBlI £ (2)
I T i LA WO -

9°9° f(2)

a and 8 are multiindices.

Let p be a positive measure on B and consider the problem of
determining what conditions on g imply |[0Ff] € L%(u) whenever
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f € HP. A standard application of the closed graph theorem leads
to the following equivalent problem.

Characterize the p for which there exists a constant C' satisfying
. 1/q
(f1ets1ran) " < Clifie = ClAw(Dlznco

The purpose of this paper is to present a solution of this problem in
the case 0 < p = g < 2. Other previously known cases 2 < p = ¢ < c©
and 0 < p < g < oo will be discussed briefly in Section 4. It seems
that the solutions for the remaining two cases: 0 < ¢ < min{2,p},
2 < g < p, are also similar to the one for the upper half space U.

For € Bande, 0<e <1, E.(2) ={w € B: |p,(w)] < e} In
discussions where the actual value of ¢ is irrelevant, it may be omitted
from the subscripts.

Constants will be denoted by C which may indicate a different
constant from one occurrence to the next.

Theorem 1. Let 0 < p < 2. For a positive measure i on B and a
positive integer k, a necessary and sufficient condition for

1/p
() ([108san) " <l
is that the function g(z) = p(E(2))/(1 — |z|)*P*™ belongs to T30y

2. Proof of sufficiency. The following three lemmas will be needed
in the proof of sufficiency of Theorem 1.

Lemma 2.1 [8]. Let k > [ be nonnegative integers, 0 < p < oo and
0 < € < 1. There exists a constant K = K(k,l,p,e,n) such that if
feM, then

|0Ff(w)P < K (1~ IW\)(""’)”/ 0" f(2)P dr (=),

E.(w)
for allw € B.
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Lemma 2.2. Let 1 < r < oo. The following inequality holds
whenever f € TX(v) and g € T (v), r 1+ 1 =1,

/ FEgEIA [ du(z) < © / A (F) (1) (9) () dor ().
B S

Proof. The idea of proof is taken from [4, pp. 148, 149]. In this
connection see also [3]. We define the truncated Koranyi approach
region D"(¢),0 < h <1, by

D'Me)={z€B:2eD(),1-h<|z] <1}

and set

i@ = (e a)”

Now let ) be any nonisotropic ball of radius ¢, and let ¢@) be the ball
of the same center as () of radius cd, where c is an absolute constant
such that D%(n) C (cQ), for every n € Q. By using Fubini’s theorem
and the definition of C, ,(g) we find that

1

T /Q (A o(gls)]” (1) dn(n)

<o ([, o i) ) asto

C /
2.1 S 2)|" dv(z s (2)do
(2.1 < 716 o 19 W | X (2) do )
¢ "1 = |2))" dv(z
< 710 o 90 L= 2" e

< C(n) 3,25 [Crr o (g)(m)]" -

Let M be a positive constant such that M™ > 2C(n). For every g
we define h(n) as

h(n) = il;g{Arf,y(glh)(n) <MC(9)(n)}
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From (2.1) we see that o({n € Q : h(n) < 6}) < 0(Q)/2. Hence,
o({n € Q : h(n) > &§}) > C&™. Using this, Fubini’s theorem and
Holder’s inequality we find that

/ [F () g — [2])" dv(z)
B

<o ([ 1NIs) dets)) doto

< Cil/SAr,u(f‘h(’f]))(n)Ar’,u(gM(n))(17) do-(n)

<MC™ [ A, (@)Cr (o)) dor).
This finishes the proof of the lemma. u]

Lemma 2.3. For f € M the following are equivalent (with an
aperture « fized):

(i) fe#nr,

(i) [, 10" F() (L= [2)' " dim(2) € L2(o),
(iii) For some k > 1, fDa(n) |0 £(2)]2(1 = |2])2 "L dm(z) € LP(0),
(iv) Same as (iii) but for every k > 1.

Proof. The equivalence (i) < (ii) can be found in [5]. By Lemma 2.1
we have

0 F(2)P(1 — [t

<C 0" f(w)[*(1 — [w]*)' 7" dm(w), &> 0.
E.(z)

Integrating over D, (n) and applying Fubini on the right gives
[ 10 - P ()
Da(n)

<C 01 F(2)12(1 = [21*)1 ™ dm(2),
Dg(n)
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where 3 > a.

We may choose ¢ > 0 so small that if z € D, (n) then E.(z) C Dg(n).
Thus (ii) = (iii). To get (iii) = (ii), the approach in [2] is easily
modified to show that

/D AP ) ()

<C 0% F(2)P(1 = [z Hdm(2), 8 >
Dg(n)

Hence, (ii) < (iii) < (iv).
Proof of sufficiency. Let f € HP. By Lemma 2.1, we have
P < [ 10w dr(w)
E(z)

where C' depends on the radius € of E(z) = E.(z) and on p. From this
we get
|10 dute)

<0 [0t e pa) T

< C/SAz/p((l — [2)*P10% £ (2)[P) (1) Ca ) 2-p) (9) (m) dor ()

< Cllgllrgs

2/(2-p)
p/2
([ asipmetPan) ot
S§ \JD(n)
< Cllgllzg,, , 1f1Br
by Lemma 2.2 and Lemma 2.3. o

3. Proof of necessity. Define an a — T}-atom, 1 < r < oo,
as a function a(z) on B, supported in @, for some ball @ in S, and
satisfying fé\ la(2)|"(1 —|z]) tdm(z) < a(Q)* ™. In case r = 0o, a(z)
must satisfy |a(z)| < o(Q)™*.
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An atomic decomposition of the space T is obtained in [1]. Anal-
ogously, we have the following atomic decomposition of spaces 77,
1<r <oo.

Lemma 3.1. For each a > 0 there is a constant C = C(a) such
that, for every f : B — C such that [¢( [}, © |f ()" dr(2))Y" do(€) <
00, there are nonnegative a-atoms ap and nonnegative numbers g

such that |f(2)] < 045 Akak(z) and D20 A < Cfs(fDa(g)x
[f(2)|" dr ()" do(€).

Lemma 3.2. If0 < s <1 and A > 1, then there is a constant
C = C(s, A\, n,qa) such that for any positive finite measure v on B,

(3.1) /S</B<11TZ’Z|£>|>AndV(z)>SdU(§)

<c /S (v(Da(€)))* do ().

Proof. It suffices to show (3.1) for dv(z) = f(z) dr(z), where f(z) > 0.
Let g(2)" = f(z), where rs = 1. We need to show that

s [([ (%)Mg@)wz))lﬁda(s)sc|g||T;,

with the T} norm based on Dg(€), 8 > a, (see [9]). Because of Lemma
3.1, it suffices to find an upper bound for the left side of (3.2) when
g(z) = a(z), a B — T'-atom.

Without loss of generality, we may suppose that the atom a(z)
is supported in Qp, with @ = Q(e1,d) and that fQB la(z)["(1 —
|z])"dm(z) < 1. In this case we divide the outer integral in (3.2)
into two parts: the integral I; over |1 — &;| > 20 and the integral Iy
over |1 — & < 24.

Since

Q- ©
1= (P ~ =&l
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when |1 —&;| > 2§ and z € Qﬁv we see that

L<C L(Q(/ a(z)|” dm(z))l/r <c

-gip>28 11— &|"" \Jg, 1 — 2]
(see [10, p. 17]).

By Holder’s inequality followed by Fubini’s theorem,

(1= [
Iy<C / / .
0 ( Qs Jn-gii<2s 11— (2 §>|/\n| ()]

1/r
x (1-— ‘z|)—1 do(€) dm(z)> ‘O'(Q)‘l_l/r_
Since A > 1 we have

do(§) C
/;fﬂsw1—<%£H”’§(l—|4V"’l (see [10, p. 17]).

Thus,
h<o/ (1= |2) T dm(z) < C.

If {2} is a sequence in B, we say that it is separated if there is an
e € (0,1) such that the balls E.(2x) are disjoint. When v = Y, d,,
(where §, denotes a unit mass at z) we will write 7:*{z;} instead of
T (v). O

Lemma 3.3. Let 0 < p <2, t>0and A =n+1+t. Then
Sa(b)(2) = > psq b (L — J2) /(1 — (z,2)))" is a bounded map from
TP{z21} into HP whenever the sequence {z} is separated.

Recall that HP is a subspace of HP consisting of holomorphic func-
tions.

Proof. For t > 0 and k > n + 1 we define linear operator RF on H>
(the space of bounded analytic functions on B) by

1 — |w?)tf(w) dm(w
REfG) = [ SR,
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where 7 = I'(n 4+t + 1)/(D(n + 1)I'(¢ + 1)). Let K(z,w) =
1/(1 — (z,w))"*! and set K, = K(-,w). Then RE(KL/"TY) =

K Zl,j' (k+)/(nt1) Using this and Holder’s inequality, we find that

)2 2 ‘za _|ZJ
[RESx(bx) ()] <Z|b| (z,2;) |)\+k2|1_zz YR

j>1 j>1

Fix ¢ € (0,1) so that E.(z;) are disjoint. Then

P 1 =l C/ (1 — Jw])" dm(w)
|1— z, zj)| AR [1— (w,z)| Mk

j>1
< ——m—— see (10}).
(1_ EIE (see [10])
Thus,
k 2 —k 2 |2 |)’\
IR Sx(br)(2)|" < C(1 - |2]) ;\b il W

To get the HP norm of R¥ S (bx)(2), we integrate this over D, (n) with
respect to (1 — |z])?* "~ dm(z) to obtain

/D ( )IRf(Sx(bk))(Z)V(l —[z))*F T dm(z)
— |zt dm(z
COX Iy [ OBV i)

1= (2, 25)|M*

j>1 Dq(n)
dm(z)
<CZ|b 2(1 = |21) / 11— (z, 2;)[2nt2tt
j>1 (m) ()

An integration in polar coordinates shows that

/ dm(z) B C
D) 11— (2, 25) P20 = 1 = (25, p)[nHitt”

Hence,

/D ( )IRf(SA(bk))(Z)IQ(l — |27 dm(z)
A

§>1 ZJ’n
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Raising to the p/2 power, integrating in 1 and applying Theorem 3.1
and Corollary 3.7 in [2] and Lemma 2.2, yields

[Sx(b)|[ e < Cl{br}H|12 (2,3

Remark. In [2] a characterization of HP is given in terms of the
radial derivative operators RF, but it is easily seen that the same
characterization continues to hold for the operators RY.

Lemma 3.4. For 1 < r < oo the dual of T}(v) is TX(v),
r~1 +7'=1 = 1. The pairing is (f,g) = fB f(2)g(z)(1 = |2))" dv(z).

Proof. From Lemma 2.2 we see that 7)%°(v) is contained in the dual
of T} (v). Conversely, let L be a continuous linear functional on T} (v).
Let

L®L" (dv do)

_ {f(z,g) B xS Oy </B 1F(2,€)" du(z)>w < oo}.

Clearly, T%°(v) embeds in L*¥L" (dvdo) by f(z) — f(2)Xpe)(2)-
Since (L'L")* = L*®°L" by the Hahn-Banach theorem, there is a
function g(z,¢) € L*L" (dv do) such that

L(f) = /S /D IO () do(6)

with ||L|| = ||g]|cc,~». By Fubini’s theorem,

v = [ son) | 9(rn, ) do(€) du(rm).
B {&]1—(&my|<1-7}
It now suffices to show that

P°g(pn) = (1 - p)‘"/ 9(pn, &) do(€)
{1 (E.m)|<1—p}
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defines a bounded linear operator from L®L" (dv do) to T (v).

Let @ be a nonisotropic ball in S, and consider

@) 1o 0= = vt
L / /{ o epr 91O do(©) dv(on)
_ / /Q e [9EE W(E) o)
/ / l9(2,6)" dv(2) dor(€)

r’,oo'

N

Thus ||Cr,, (P°9)llee < [lgllr,0-

Proof of mecessity. Let p be a positive measure on B satisfying
([5 0% f(2)Pdu(2))Y? < C||fllsw, f € HP. Then we also have
[ IREf(2)|P du(z) < C|| ][5, for every f € HP. Let f be set equal to
F(2) = Sa(be)(2) = Zbe((L = |2x]) /(1= (2, 2)))N A=n+1+t, >0,
for some {b} € T5{21} and some separated sequence {z;}. Then by
Lemma 3.3, we get

J

Now if each by is replaced by byry(t) for fixed ¢t € [0,1), (where r(t)
are Rademacher functions), the righthand side is unchanged. We can
then integrate the resulting equation in ¢t and use the lower bound in
Khinchine’s inequality to obtain

J(z

E>1

p
2k
ZbTZk'ng dp(z) < ClbeHI7e .,y

k>1

(1 — |2k

T ( m

2\ p/2
) o) < CliBBy -

From this, we get

D102 (L = 12 ) TP (B () < Cl{OEHIGp 1.0y

Jjz1
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Putting |b;|P = ¢;, we get

) .
>t kp+n<1—|zj|> < ClHeiHly , (s,

j>1

for any positive {c;} € T, /p{z]} This inequality continues to hold
for nonpositive {c]} so we conclude that {u(E(z;))/(1 — |z;|)***"} €
( 2/,,{2]}) 2/ (2-p) {ZJ} by Lemma 3.4. o

From this follows a discrete version of Theorem 1, which in turn
implies the continuous version stated in Theorem 1 (see [9]).

4. Other cases. The solutions for the cases 0 < p < ¢ <
and 2 < p = ¢ < oo were presented in [6] and [7]. For the reader’s
convenience, we state them.

Theorem 2. Let 0 < p< g< oo or2<p=gq< 0. For a positive
measure p on B and a positive integer k, a necessary and sufficient
condition for (1.1) is that there exists a constant K for which

WE(2)) < K1~ [2))*m9/?, 2 € B.

Theorem 1, Theorem 2 and the corresponding results for the upper
half-space U lead to the following

Conjecture. For a positive measure p on B and a positive integer
k, a necessary and sufficient condition for (1.1) is that the function

9(2) = w(E(2))/(1 = |2])*4* satisfies

(i) g Tf//g qq),zf0<q<p,q<2

(ii) g€ T&/(’"q ,if2<q<p.
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