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CONDITIONAL FUNCTION SPACE INTEGRALS
WITH APPLICATIONS

SEUNG JUN CHANG AND DONG MYUNG CHUNG

ABSTRACT. In the theory of the conditional Wiener in-
tegral, the integrand is a functional of the standard Wiener
process. In this paper we first consider a conditional func-
tion space integral for functionals of more general stochastic
process and obtain an evaluation formula of the conditional
function space integral. We then use this formula to derive
the generalized Kac-Feynman integral equation and also to
obtain a Cameron-Martin type translation theorem for our
conditional function space integrals. These results subsume
similar known results obtained by Chung and Kang, Park and
Skoug, and Yeh for the standard Wiener process.

1. Introduction. Let (Cy[0,T],B(Co[0,T]),my) denote Wiener
space where Cy[0, T is the space of all continuous functions z on [0, T
with 2(0) = 0. Many physical problems can be formulated in terms of
the conditional Wiener integral E[F|X] of the functionals defined on
Cy[0,T] of the form

(1.1) F@y:mp{—l%wﬁwnw}

where X (z) = z(t) and 0(-,-) is a sufficiently smooth function on
[0,T] x R. It is indeed known from a theorem of Kac [8] that the
function U(+,-) defined on [0,7] x R by

\/% exp { - %}E[F(m(t) +&)|z(t) = € — &)

(1.2) U(t,€) =

is the solution of the partial differential equation
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satisfying the condition U(£,0) = 6(€ — &). In [6], Donsker and Lions
showed that the function

(1.4) U(t,€) = Bldre—¢ (2)F ()]

is the solution of the partial differential equation (1.3) where &;¢
(t > 0,¢ € R) is the Donsker’s delta function formally defined by

1 )
Oee(x) = o /Rem(m(t)*g) du, =z e Cl0,T).

In [15], in order to provide a rigorous treatment of the function (1.4)
involving the Donsker’s delta function, Yeh introduced the concept of
the conditional Wiener integral and derived a Fourier inversion formula
for conditional Wiener integrals :

BIFle(t) =& = esp{ - g_t}

1 . .
=— [ e"™E[™OF]du, EeR
2 R

(1.5)

which gives a formula to obtain the explicit evaluation of the solution
of the partial differential equation (1.3).

Using the inversion formula (1.5), Yeh [15] derived the Kac-Feynman
integral equation for a time independent continuous potential function
6(¢). In [4], Chung and Kang, using the Yeh’s inversion formula, ob-
tained similar results for a time dependent bounded potential function
(s, €).In [11], Park and Skoug obtained a simple formula for expressing
conditional Wiener integrals with a vector-valued conditioning function
in terms of ordinary Wiener integral, and then used the formula to de-
rive the Kac-Feynman integral equation for time independent potential
function 6(¢).

In this paper we extend the ideas of [4, 10, 11] from the Wiener
processes to more general stochastic processes. We note that the
Wiener process is free of drift and is stationary in time. However,
the stochastic process considered in this paper is a process subject to
drift and is nonstationary in time.

In Section 2, we consider the function space induced by a generalized
Brownian motion process and define the conditional function space
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integral of Y given X as the conditional expectation E[Y|X] given
as the function on the value space of X. In Section 3, we obtain an
evaluation formula of conditional function space integrals. In Section
4, we use the evaluation formula of conditional function space integrals
to derive the generalized Kac-Feynman integral equation. In Section
5, we also use the evaluation formula of conditional function space
integrals to derive a Cameron-Martin type translation theorem for our
conditional function space integrals.

2. Preliminaries. Let D = [0,T] and let (2, B, P) be a probability
measure space. A real valued stochastic process X on (2, B, P) and D
is called a generalized Brownian motion process if X (0,w)=0 almost
everywhere and for 0 < ty < t; < -+ < t, < T, the n-dimensional
random vector (X (t1,w), ..., X (t,,w)) is normally distributed with the
density function

n —1/2
(@21) K(t7) = ((%)“ T - b(tj_o))

j=1

1~ ((mj — a(ty) = (mj—1 — a(tj-1)))?
'exp{_ﬁ b(t;) — b(tj-1) }

where 7 = (N1,-..,M), no = 0 and a(t) is a real valued function
with a(0) = 0 and b(t) is a strictly increasing real valued function with
b(0) = 0.

We emphasize that no continuity or smoothness condition on a(t) and
b(t) are assumed unless otherwise stated.

As explained in [13, pp. 18-20], X induces a probability measure y on
the measurable space (R?, BP) where R? is the space of all real valued
functions z(t), t € D, and BP? is the smallest o-algebra of subsets of R?
with respect to which all the coordinate evaluation maps e;(z) = z(t)
defined on R” are measurable. The triple (R”, B, 1) is a probability
measure space. This measure space is called the function space induced
by the generalized Brownian motion process X determined by a(-) and
b(-).

Let X be an R"-valued measurable function and Y a complex-valued
p-integrable function on (R, BP, u). Let F(X) denote the o-algebra
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of subsets of R generated by X. Then by the definition of conditional
expectation, the conditional expectation of Y given F(X), written
E[Y|X], is any R"-valued F(X)-measurable function on R” such that

/Yd,u:/E[Y|X]du for E e F(X).

It is well known that there exists a Borel measurable and p x-integrable
function on (R™, B(R™), ux) such that E[Y|X] = ¢ o X, where ux
is the probability measure defined by pux(B) = u(X 1(B)) for B €
B(R™). The function ¢(5), E € R" is unique up to Borel null sets in

R"™. Following Yeh [15] the function (&), written E[Y|X = ¢|, is
called the conditional function space integral of Y given X.

The following proposition will be used in the sequel.

Proposition 2.1 [15]. Let X be an R™-valued measurable function
and Y a complex valued p-integrable functional on RP. Let f be a
complex valued measurable function on (R™, B(R™)). Then

@2 EeXV]= [ f@EVIX = fldux(D

in the sense that the existence of one side implies that of the other as
well as their equality of two.

3. Formula for Conditional Function Space Integrals. Let
(RP,BP, 1) be the function space induced by the generalized Brownian
motion process defined in Section 2. In this section we will obtain
an evaluation formula of conditional function space integrals over
(RP,BP ). Let W be a stochastic process on (R?,B”, u) and D
defined by W (t,z) = x(t), t € D, x € RP. Then W is a generalized
Brownian motion process whose sample space is RP. For a partition
T ={t1,...,tp} of [0,T] with 0 = ¢g < t1 < -+ < t, = T, define a
function X, : R? — R" by X, (z) = (x(t1),... ,z(t,)). For z € R,
define the function [X,(z)] = [z] : [0,7] — R by

b(t) — b(tj-1)

O e e P Y o

(z(t;) — z(tj-1))
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for each ¢t € [t;_1,t;], 7 = 1,...,n. Similarly, for €= (€1y...,6&n) €
R", define the functlon €] : o, T] — R by

(3.2) () = &1 + %

for each ¢t € [tj_1,t;], j=1,...,n,and & = 0.

(& —&i-1)

Lemma 3.1. Let {z(t),t € [0,T]} be a generalized Brownian motion
process. Then the processes {x(t) [z](t),t € [0,T]} and {[z](¢),
t €[0,T]} are independent.

Proof. Since the processes are Gaussian, it suffices to show that for
every t,s € [0,T7,

Ele(z — [2]) - es([2])] = Eles(z — [z])] Bles ([])]

where e; is the coordinate evaluation map. To show this, we may
assume that ¢ <s,¢;_1 <t <¢;and tj_1 <s< ¢, 4 < j. So we have

Elz(tj-1)(z(t) - ( 1))]
= B[((z(tj-1) —2(t) + (x(t) —(ti—1))
(35) +ax(tig)) (2(t) — z(ti1))]
= (a(t ) ( ))a‘(tjfl) + b(t) —b(ti1)

and similarly, we have

Ela(tj)(2(t:) — z(ti1))]
= (a(tl) - a(ti_l))a(tj_l) + b(tl) - b(ti_l).

Thus by simple calculations with (3.3) and (3.4), we have

(3.4)
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Theorem 3.2. Let F € L'(RP,BP, ). Then

— =

(3-5) . F(z)dp(z) = - B[F (x — [2] + [g])] d(r 0 X7)(8)-

Proof. Let Y and Z be BP-measurable functions from R into
RP defined by Y(z) = z — [z] and Z(z) = [z]. Let C; = Y(RP)
and Cy = Z(RP). As was shown in Lemma 3.1, since Y and Z are
independent, we have

(3.6)
[, F@dute) = [ F(o~ (] + [o]) duto)
RD

RD

z/ Fly+2)dpoY ™t xpoZ ) (y,2)
C1><Cz
[ [ P+ aduey @ duez7)(e)

Since Z(z) = [X,(x)], by the change of variables theorem and (3.1),
the last equality of (3.6) equals
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=

— [ BlF(— (] + Do X)),
This, together with (3.6) and (3.7), completes the proof. O

Theorem 3.3. Let F € LY(RP,BP, u). Then

= =

= T —|T o -1
5y | gy PV = [ B[P~ Lol + )] o X, )@

for every B € B(R"™).
Proof. Using Theorem 3.2, for every B € B(R™), we have
[ PO = [0 (0) - Flo) )
= [ (Un o X0) F)(@) duta)
RD
Z/HE[((IB 0 X;)F) (a—[a]+[&]) | d(u o X ) (€)
= [ El1a@) Flo — o] + @] dlue X E

where I4 is the indicator function of A, A € B(R"). Hence (3.8) holds.
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Theorem 3.4. Let F € L*(RP,BP, u). Then

(39)  E[F(z)|X,(2) = ] = E[F(z — [«] + [{])] for £€R"

Proof. By Proposition 2.1, we have for any B € B(R"),

| F@du@) = [ (150 Xo)F) (@) dulz)
X-YB) RD

p

Hence, using Theorem 3.3 and the definition of conditional expectation,
we obtain equation (3.9) as desired. o

The following examples illustrate the usefulness of Theorem 3.4 in
evaluating conditional function space integrals.

Example 1. For any z € R, let F(z) = fOT x(t) dt. Then by using
Theorem 3.4 and the Fubini theorem, we have

BIF@IX(0) =€1 =Y [ [at)-alt;-)

b =b(tj ) oy
" bt bt ) ) oa_l»]dt

ULt b(t)—b(t;—1
* ;/tjl [gjl " b((tj))b((tj—l)) (gj_gjl)] .

In particular, if {z(t),t € [0,T]} is the standard Wiener process, then
a(t) =0 and b(t) =t and hence we have

n

EIF ()| X () = €] = 2305~ tj1)(& + &)

i=1
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which is a result in [11].

Example 2. For any = € R, let F(z) = 0 z2(t) dt. Then by using

Theorem 3.4 and the Fubini theorem, we have

(3.10) E[I*ﬂ(ﬂc)er(m)=5]=/0 E[(x(t) - [2](t))*
+2(2(t) — [2](1))[E](0) + ([€](£))*] dt.

Proceeding as in Example 1, we obtain
E[/OT(a:(t))ZdﬂXT(x) - 5]
=§flﬁlkuw—aajoﬁ+wa>—mwl>
(alty) — a(tj—1)) + b(t) — b(t;_1)]
b

[(a(t;) — a(tj—1))* + b(t;) — b(tj—1)]
2@@ﬂw>—ww1>

e ) — )|
(1) ]

In particular, if {z(¢),t € [0,T]} is the standard Wiener process, then
a(t) =0 and b(t) = ¢ and hence we have
g 2 1., 1g
E /0 (@(t)"dt| X (z) =& | = 517 — 5 D (5 =)t + 2t5-1)
j=1

n

+ 5 Z tio1) (€3 + €16+ €21)
]:1
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which is a result in [11].

Example 3. For any z € RP let F(z) = exp{fOT z(t) dt}. Then by
using Theorem 3.4 and the Fubini theorem, we have

E[F(2)|X,(z) = €] = exp { / "W dt}

— m(l'(t]) - m(tj—1))) dt}:| )

In particular, if {z(¢),t € [0,T]} is the standard Wiener process, then
a(t) = 0 and b(t) =t and hence we have

E[exp { /OTw(t) dt} | X, (z) = 5}

T (t; —t;—1)® | (& —&-1)(t; —t—1)
=11 {eXp{ 94 2

Jj=1

+&i1(ts —tjl)}]-

4. The generalized Kac-Feynman integral equation. For
each t € [0,7] and ¢ € R, let Y; and X; be BP-measurable functions
on RP defined by

(4.1) Yt(:c):exp{/ote(s,x(s)-i-f)ds} and X, (z) = 2(t) + €

where 6(-, -) is a complex valued Borel measurable function on [0, 7| xR
for which Y; is p-integrable for each (¢,£) € [0,T] x R. Let us define a
function U on [0,7] x R x R by

(4.2) Ut:¢,m) = E[Yi| X, = n)(2mb(8)) /2 exp{ - w}
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In this section, we will show that by using the evaluation formula
developed in Section 3, the function U given by (4.2) satisfies the
generalized Kac-Feynman integral equation

U(t;€,m) = (2rb(t)) ™% exp { _ w}

2b(t
(4.3) / / 0(s,C)U (5, C) (2m (b(z) — b(s))) ™/
((¢ = als)) — (1 — a(t)))
p{ 2(0(t) — b(s)) }dCds'

Lemma 4.1. Let {z(t),t € [0,T]} be a generalized Brownian motion
process. Then for 0 < s < t, the random variable z(s) — (b(s)/b(t))z(t)
is normally distributed with mean a(s) — (b(s)/b(t))a(t) and variance

b(s) — b%(s)/b(t). Moreover, for 0 < u < s < t < T, the two Gaussian
random variables z(s) — (b(s)/b(t))z(t) and z(u) — (b(u)/b(s))m(s) are

independent.

Proof. For s,t € [0,T] with s < t, we have the facts that

E[z%(s)] = b(s) + a*(s) and E[z(s)z(t)] = b(s) + a(s)a(t).

Thus by using these, we see that the variance of z(t) — (b(s)/b(t))z(¢)
is b(s) — b*(s)/b(t). Hence we have

Moreover, for 0 < u < s < t, we can show that

EK@«(S) - %wg) (:v(u) - z((—:)m(s)ﬂ

= E|:m(s - Mg;(vt)]E[a:(u) - —w(s)}

which completes the proof of the lemma. o
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Theorem 4.2. Fort € [0,T], let X; and Y; be as in (4.1). Then the
function U(t; €,n) given by (4.2) satisfies the generalized Kac-Feynman
integral equation (4.3).

Proof. For (t,n) € [0,T] x R, let

49 ten =5]ew{ [osn) +ds} a0+ e =0

By differentiating the function exp{ [ 6(u,z(u) + ) du} with respect
to s and then integrating the derivative on [0, ¢], we obtain

(4.5) exp{/ot0(5,m(5)+§) ds}
_ 1+/0texp{/050(u,x(u)+£) du}@(s,m(s)+£)ds

Since the left hand side of (4.5) is u-integrable, it follows that the second
term of the right hand side of (4.5) is u-integrable. Hence by taking
conditional expectations, and by using Theorem 3.4 and the Fubini
theorem, we obtain

(4.6)

I(t;¢,n) = [l—l—/ﬁs,m

exp{/0 +§)du}ds|w +§—17
0

exp /09 +§)du}ds|w +£—77
—1+/ E[0(s, 2(s) — [£](s) + [n — ](s) + &)
exp { / 6 (u, 2(u) — [ (u) + 1 — €](u) + €) du}] ds

_1+/OtE[e(s,m<s>—%w<t>+l,j(—t)(n—s>+s)
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RaVA(CER e
(;{()%(tﬂb(())( f)}+£>du}]ds‘

Since the variance of z(s) — (b(s)/b(¢))z(t) + (b(s)/b(t))(n — &) + & is
0% = b(s) — b?(s)/b(t), by applying Lemma 4.1 to the last equation in
(4.6), we have
(47)

I(t;€,m)

_1+// [exp{/ <u,x(u)%x(s)

+ %(C -6+ g) duH 8(s, ¢)(2mo?) /2

P {‘ (¢ (als) ~ (0(s) /b(t)) (1) + (b(5) /5(9)) (1 €) +€))° } dc ds

202

_1+//9 )(2mo?) 1/2E[exp{/0ux ))du}x(s)+£=C]

exp{ (C—(a(s)— (b(s)/b(t))a(t)+(b(s) /b(t)) (n— &) +£)) }d(ds.

But we have that

(4.8)
(27b(£)) /2 exp { % }(27rb(s))1/2 exp {% }
(omot) exp - (a(s)—(b(s)/b(t))a(;);(b(s)/b(t))(n—&)%)f}

= (2 (b(t) — b(s))) "2 exp { (G —;((;()2)— _(717)(;;1)(15))) }

Hence by (4.7) and (4.8) we obtain
Ut = @ro)exn { - T4 1)

= (27b(t)) "2 exp { - %}
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//0 )(2mb(t 1/2exp{_%}(2wa2)_1/2
eXp{ (= (als) = (b(s)/b(t) a(t) + <b<s>/b<t))(n_§)+f))a}

202
-E[exp { /Osﬁ(u,x(u))du} a(s) + € = g] d¢ ds
— (2nb(t) V2 exp{ _ ln—ald) Z & “(t))_ &’ }

2b(t
+ [ [ o5, 0056 0t2r00) - o)
[ (€= al) ~ = a)?)
p{ S —HT ) e
which completes the proof of the theorem. o

Proposition 4.3. For each (t,€) € [0,T] X R, let

Ft,g(a:)—exp{/otﬁ(t—s,a:(s)+£)ds}, zeRP

where 60(-,-) is a complex valued measurable function for which
supeer E[|Fi¢|?] is finite for each t € [0,T]. For ¢ € L*(R), let

G(t.6) = [ Fiel@w(e® +Odulo). (6 €0.TIx R

Then G(t,£) exists and is finite for any (t,€) € [0,T] x R, and
G(t,-) € L*(R) for each t € [0,T].

Proof. By Holder’s inequality and the change of variables theorem,
G(t,€)]? < B[|Fre(2)]?] - /RD 9 ((t) + &) du(z)

= Bl|Fgl =g = hac

1 2
[ el exp{ -

1
E[|Fy - /R ()2 dC < oo

27b(t)
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and

[ icworas [ (1R [ 1w+ o duo) ) de

< sup E||F
§p ‘t§| //\/WWJ |

.exp{ (€= 3152‘)_ £)* }dCd£

— sup E[|Fie[?]- / (€2 d¢ < oo.
EER R

Remark. (1) Proposition 4.3 shows that the correspondence 9(-) —
G(t,-) defines a bounded linear operator from L?(R) into L%(R).

(2) If 0(-,-) is bounded, or if —@(-,-) is real and nonpositive, then the
condition on F} ¢ in Proposition 4.3 is satisfied (see [4, 11, 15]).

Proposition 4.4. Let F;¢ and 1 be as in Proposition 4.3. Let

K(t,n,€) = E[F,¢|X; = n)(2rb(t)) /2 exp{ _ %}

Then

[ Fe@te) + € duto) = [ 0K (tin.€)d

and the integrals on both sides exist.

Proof. By Proposition 2.1, we have

/ Fre(@)p((t) + €) du(x)

:/RD exp{/ ot +g)ds}w(w(t)+£)du(w)
E[(¢ o X¢)Fy ¢]

/ Y(n)E[Fye | X¢ = n](2mb(t)) "2 - exp {_ %} dn
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/w K(t;n,¢€)

and by Proposition 4.3, the integrals on both sides exist. m]

Theorem 4.5. Let K(t;n,€) be as in Proposition 4.4, and let
¥ € L(R). Then the function

B(t,€) = /R K (t;m,€)(n) dn

satisfies the integral equation

#(t,6) = [ (emblo) Wexp{ M}w(n)dn

0
/ JCC ) 120(s, C) (s, C)

) -

t

(¢~ a(s)) — (€ —a(t)))?
e"p{ 2(b(t) — b(s)) }dgds'

Proof. By Proposition 4.4, ®(t, &) exists and is finite for all (¢,&) €
[0,7] x R. By applying Theorem 4.2 to K(t,n,£), we have

/Ktn£ /(27rb( )~ I/Q-GXP{—%}lﬁ(n)dn

///08’4 (s;m, ) ((2m(b(t) — b(s)))~1/2

(¢ —a(s))—(n a(t>>>2
‘”‘p{ 2(6(1) ()) }1"( ) de ds dn

27rb 2exp { } (n)dn

// (27 (b(t) — b(s 1/29( ¢)

— a(s)) — (€ - a(t)))?
e"p{ 2(b(t) — b(s)) }
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{ /R K(s;n,c)w(mdn} ac ds
= [ Crb eXp{— %}w(n) d

R
+ / /R ((2r(b(t) — b(5))~/26(5, ()8 (5, )

oy | (C—als)) ~ (€~ a(®))*
p{ £) — b(s))

which completes the proof of the theorem. O

} dc¢ ds,

Remark. Under the appropriate regularity conditions on 6(-,-), a(-)
and b(-), we will show in a subsequent paper that the generalized
Kac-Feynman integral equation is equivalent to a partial differential
equation which is the generalized form of the equation (1.3).

5. Translation of conditional function space integral. In this
section we will prove a translation theorem of conditional function space
integral (see, Theorem 5.5) and then use it to evaluate a conditional
function space integral.

The following theorem is due to Varberg [12, p. 805].

Theorem 5.1. Let X be a separable Gaussian process on (2, B, P)
and [0,T] with continuous covariance function r(t,s) and mean func-

tion a € L2[0,T]. Let zo(t) = fOT r(t,s) dp(s) where p is of bounded
variation on [0,T]. Then for all p-integrable function F,

E[F(z)] = E[F(z 4 x0)J (z0, 2)]

where J(xg,z) = exp{—(1/2) fOT[2ac(t) —2a(t) + zo(t)] dp(t)}.

Throughout this section we require that a(-) and b(-) be continuously
differentiable on [0,7] and that &'(¢) > 0 on (0,7) such that the
function f defined by f(t) = (¢'(t))~!, £(0) = f(T') = 0 is of bounded
variation on [0, T7.

We note that the generalized Brownian motion process X determined
by a(-) and b(-) is a Gaussian process with mean function a(t) and
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covariance function r(s,t) = min{b(s),b(¢t)}. By Theorem 14.2 [13,
p. 187], the probability measure p induced by X, taking a separable
version, is supported by Cy[0,7] (which is equivalent to the Banach
space of continuous functions z on [0,7] with 2(0) = 0 under the sup
norm). Hence (Cy[0,T], B(Co[0,T7]), ) is the function space induced
by X where B(Cy[0,T]) is the Borel o-algebra of Cy[0,T].

Lemma 5.2. Let zo(t) = fg h(s)ds for every t € [0,T], where h
is of bounded variation on [0,T]. If F is a p-integrable function on
(Co[0,T1], B(Co[0,T]), ), then

E[F(z)] = E[F (2o + z)J (20, )]

-exp{ - /OT :((?) do(t) + /OT :E?) da(t)}.

Proof. Let p: [0,T] — R be the function defined by

h(t) .
——= if0<t<T
p(t) =4 V()
0, otherwise.

Then p(-) is a function of bounded variation on [0, 7] such that

wo(®) = [ rt.5)do(s)
where r(¢,s) = min{b(t), b(s)}. Using Theorem 5.1, we have
E[F(z)] = E[F (2 + z0)J (20, )]

where

(5.1)  J(woz) = exp{ - % /0 22(t) — 2a(t) + 2o (1)] dp(t)}.
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Since 2z(t) — 2a(t) + zo(t) € Cy[0,T7], the integral in (5.1) is equal to

" h(t) N 10))
/0 b0y A20(0) = 20(0) + a0(0)] =2 /0 i
(

T h(t) T h2(t)
9 /0 e da(t)+ /0 i

Using this, we have

J(zo,z) = exp{ — %/OT };,2((:)) dt}
[ o [ )

which completes the proof of the lemma. ]

Lemma 5.3. Let h,(-) be real valued and of bounded variation on
[0,T], n = 1,2,..., and let h,(-) converge in the space L*[0,T] as
n — 0o. Then for any real number \, exp{\ fOT hy,(t) dz(t)} converges
in the space L?(Cy[0,T]) as n — oo.

Proof. Let h(-) be of bounded variation on [0,7] and = € Cy[0, T7.

Then it is easily shown that fOT h(t) dz(t) is a Gaussian random variable
with mean and variance given by, respectively,

m(h) = /0 h(t)da(t) and v(h) = / B2(¢) db(2).

0

Thus by the change of variables theorem, we have

exp A Th(t)da:(t) dn(z) = exp { am(h) + o).
Col[0,T] 0 2

Using this, we have

2

/C’O[O,T] {QXP{)‘/OT hi(t) dw(t)} — exp {A/OT h;(t) d:v(t)H dp(z)
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_ /C e {2>\ /0 Chi(t) dm(t)} du(z)

2 ew (L " [halt) + )] ()} duta)
+ /C P {m /0 0 da:(t)} du(z)

— exp {2)\m(hi) + %(QA)%(hi)}
~2exp {)\m(hi +hy)+ /\;v(hi + hj)}

+ exp {2,\m(hj) + %(2,\)%(@-)}.

Since each exponent in the last equation approaches the same limit as
¢ and j approach oo, the proof of the lemma is complete. a

We now prove a translation theorem for our function space integrals.

Theorem 5.4. Let xo(t) = fot h(s)ds for every t € [0,T] with
h € L2[0,T]. Then for any p-integrable function F, we have

(5.2) E[F(z)] = E[F(z 4 x0)J (0, v)]

where

-exp{ _ /0 :((?) da(t) + /0 : ZE?) da(t)}.

Proof. To prove the theorem, it suffices to show the equality (5.2)
for a bounded and continuous function F' in the uniform topology. Let
zn(t) = fot hn(s)ds where {h,} is a sequence of functions of bounded
variation on [0, 7] such that h,, converges to h in the space L?[0,7] as
n — co. Then by Lemma 5.2, we have

(5.4) E[F(z)] = E[F(z + ) (n, 7)]
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.exp{ _ /0 ) ’;7(%) da(t) + /0 ! 27(%) da(t)}.

Since z,, converges xo uniformly and F' is continuous in the uniform
topology, F(z + x,) converges to F(x + (). Since F is bounded, by
using the dominated convergence theorem and Lemma 5.3, we can show
that the right member of (5.4) converges to the right member of (5.2)
as n — oo, which completes the proof of the theorem.

The following result generalizes a theorem given in [11, p. 391].

Theorem 5.5. Let zo(t) = fot h(s)ds for every t € [0,T] with
h € L?[0,T]. Then for any p-integrable function F,

E[F(z)|X.(z) = ¢
= E[F(.Z‘o +x J(.Z‘o,x)|$(t]’) = £j - xo(tj), j=12... ,n]
& (zo(t;) — wo(tj—1))?

1l ‘”‘p{ T 206(t5) = b(t; 1)

(o(t;) — @o(t;-1))((& — &-1) — (a(t)) —a(tj-1))) }
b(t;) — b(tj-1)

where J(xg,z) is as in (5.3).
Proof. By using Theorem 3.4 and Theorem 5.4, we see that
(5.6) E[F(2)|X(z) = £ = B[F(z - [2] + [€])]

and that
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Next we rewrite J(zg,z) in the form

(w0, ) = exp { /OT Z((?) da(t) — %/OT ’;f((tt)) dt}
Ny
e f - [ 10 aeion)

e d [ D aidi) — fwolen
U o

But by a simple calculation, we have

T h(t) = @olty) —wolti—), .\
59 | 53 ) = 3 =50 1 elt) ol

and similarly, we have

610) [ 5 dlé® - lanl(0)

(5.8)

— Z wzgj; _Z(Ot(jtjl)l) ((fj —&-1) — (wolty) — 'I'O(tjfl))).

By using the fact that {x(t;) — z(t;—1),7 = 1,... ,n} is independent
and then applying the change of variable theorem, we have
(5.11)

sfon{ - [ )

_ 12[ . [exp { ~ ng;; = Zé)t(jtjl)l) (z(t;) — m(tjl))}]

T ox (zo(t;) —wo(tj—1))* —2(alt;) —a(t; 1)) (xo(t;) —zo(t; 1))
-1 p{ 2(b(t;) - bltj-1)) }

Since {x(t) — [z](t),t € [0,T]} and {[z|(¢),t € [0,T]} are independent
processes by Lemma 3.1, we see that

Flatan—fal~faol+) exp { - [ 3 dlel)-1al(0+ ) -leol )}
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and exp{— fOT(h(t)/b'(t))d([x] (t))} are independent. Therefore, using
(5.8), (5.10) and (5.11), we have

E[F(z + zo — [2] = [z0] + [€]) T (20, 7)]

—

_B [F(x + o — [2] — o] + [£])

{28 sty 0+ 0 - ) ]

70)
1 [T r2(e) T h(t)
o= [ et [ v eo)
- (zo(t;) —2o(tj-1))*—2(a(t;) —a(tj—1)) (zo(t;) —2o(t;-1))
1} o { 2(b(t;) — b(t;-1)) }

I exp{””‘)(tﬂj) —20llim1) (e g 1)~ (aolty) - wo<tj1>>)}.

Therefore, using (5.6) and (5.7), we obtain

E[F ()| X,(z) = €]

)
2(b(t;) = b(tj-1))

(t
(zo(t;) — wo(t;—1))((§; — &—1) — (a(ty) —a(t;j—1))) }
b(t;) — bltj-1) ’

which completes the proof of the theorem. a

Corollary 5.6 [11, 16]. In Theorem 5.5, if a(t) = 0 and b(t) = t,



60 S.J. CHANG AND D.M. CHUNG

then we have
E[F(z)| X, (z) = ¢]
= E[F(xo + z)J (20, z)|2(t;) = & — zo(t;), j=1,2,...,n]
11 eXp{_ (ols) —olts-))" | (oolty) —ooltz=1)s - @_1)}

2(t —tj-1) tj—tj1

We next use Theorem 5.5 to evaluate a conditional function space
integral.

Corollary 5.7. Let h and xy be as in Theorem 5.5. In Theorem 5.5,
if a(t) =0, then for any o € R we have

E[exp{a/OTZ((g dt} |z(t;) =&, 7=1,2,... n}

a(@o(tj) —wo(tj—1))(§—&-1) }
(b(t;) — b(tj-1)) '

Proof. Using Theorem 5.5 with F =1 on Cy[0,T], we have

1= E[J(wo,m)|x(tj) = £j — xo(tj), n = 1,2,. .. ,n]

- (wo(t;) = wo(t;=1))* | (wolt;) — @olt;—1))(& — &-1)
Hp{ 2b(t) bt 1) | (blE) — bl 1)) }
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Replacing &; by &; + zo(t;) for j =1,2,... ,n, we obtain

E[exp{—/OTZ((?)dm(t)}m(tj)—gj, j—1,2,...,n}
_exp{% / ' f;f((:))dt}
e S Erowy

_ (olty) —zo(t; 1)) (6 =& 1)}
(b(t;) — b(tj-1))

Thus the desired result follows by replacing h(s) by —ah(s).
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