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ABSTRACT. Previous work of J. Yu, A. Thiery and the
author determines the connected components of (reduced) al-
gebraic subgroups of products of various Drinfeld A-modules.
Here we extend that work to products of the associated higher
dimensional modules whose A-action is given by the corre-
sponding derivations.

The first step is to further investigate the F,-linear rela-
tions holding on a subgroup of products of Drinfeld modules
¢i. Then submodules of the products of higher dimensional
modules correspond to certain subspaces of derivations. One
natural way these subspaces arise is as pullbacks of relations
on submodules of products of Drinfeld modules.

Notation. F, is a finite field of ¢ = p® elements, C is a smooth
projective geometrically irreducible curve over F, co is a closed point
on C, k is the function field of C over Fy, A is the ring of functions in &k

regular on C'\{oo}, koo is the completion of k at oo, ke is the algebraic

closure of ks, T is the ring ko,{F} of “twisted polynomials” in the
g-power Frobenius element F'.

0. Introduction. For applications in transcendence, it has become
useful to understand the algebraic subgroups of products of interesting
commutative algebraic groups. In [10], algebraic subgroups of prod-
ucts of simple algebraic groups were shown to be subproducts whose
factors have coordinates satisfying linear relations over the respective
endomorphism rings.

In particular, it was shown in [10] and in [2] (see also [4]) that,
for Weierstrass elliptic functions g; corresponding to non-isogenous
elliptic curves &;, the functions p;(u;;2) are algebraically independent

Received by the editors on June 9, 1995, and in revised form on December 14,

1995.
Research supported in part by NSF.

Copyright ©1996 Rocky Mountain Mathematics Consortium

847



848 W.D. BROWNAWELL

exactly when all the numbers u;; are linearly independent over the
multiplication ring of each curve &;. In fact, the main independence
result for functions in [2] included various (;(u;jz) as well, where the
¢i(z) are Weierstrass quasi-periodic functions.

In [6], V.G. Drinfeld introduced the very fruitful notion of elliptic
modules, now usually called Drinfeld modules, which are rich analogues
over function fields over finite fields of elliptic curves. See [9] for a nice
exposition. In a remarkable series of papers [14-17], J. Yu has devel-
oped transcendence theory in the setting of Drinfeld modules. For an
overview of this and related work, see the surveys [18, 13]. In particu-
lar, Yu has begun (and A. Thiery has continued [12]) the investigation
of transcendence properties of quasi-periodic functions associated to
Drinfeld modules, which are components of the exponential function of
a related t-module. (See [1] for t-modules.)

In [12] and [3], we investigated the algebraic subgroups of products
of such modules which are closed under the A-action. In this note
we extend these considerations to related quasi-periodic modules. The
consequences for independence of values must await some quantitative
investigations, as in the usual situation over C. For increased acces-
sibility, we will sometimes indicate arguments which have been given
elsewhere before.

Background: Drinfeld modules and Drinfeld exponential
functions. Let F = F! be the gth power function (the sth iterate
of the Frobenius map X ~ XP). Let 7 = ko{F} denote the
twisted (noncommutative) polynomial ring of operators generated by

F over koo. This ring of twisted polynomials T =" a, F" is evidently
isomorphic to the ring of F,-linear polynomials P(X) = Sap X7,
whose multiplication is composition of polynomials. Still for clarity,
we maintain the distinction between the F-linear polynomials and the
operations (twisted polynomials) given by substituting into them. The
ring ko {F} of twisted polynomials has no zero divisors and in fact
is a right (and a left) division ring. In particular, every left ideal in
koo{F} is principal. If T € T, we define subdegrT = maxn such that
T € koo {F}F™, with the understanding that subdeg ;0 = oo.

One definition of a Drinfeld A-module, with the additional specifica-
tion of a rank r > 0 is an Fy-linear homomorphism ¢ : A — koo {F}



QUASI-PERIODIC MODULES 849

with the following property: for each a € A, a # 0,
(1) ¢(a) = aF° +a F' + -+ + ap,, F™

for ai,...,am in keo, m = rd(a), where d is the valuation associated
with the point co, and a,, # 0. When L is a subfield of k., and
¢(A) C L{F}, we say that ¢ is defined over L.

There is also a more analytic way of looking at Drinfeld modules,
which will be useful to us later on. An A-lattice A of rank r is a finitely
generated discrete A-module of k., of projective rank r. Given such a
A, Drinfeld defines the following “exponential” function:

ea(z) == (1 - 5)

wEA

where H' means that no term corresponding to 0 = w € A appears in
the product. This is an F,-linear power series, since its partial sums
are F,-linear. Drinfeld showed that ex(z) is an Fg-linear surjective

homomorphism onto k.. It is not difficult to show that, for each
a € A, there is a unique twisted polynomial ¢ (a) such that

(2) ealaz) = a(a)ea(z).

The map a +— ¢a(a) € koo {F} gives a Drinfeld module of rank r, and
Drinfeld showed [6] that all Drinfeld modules can be accounted for in
this way. For more details on the basic material of this section and
surveys of Drinfeld modules, see [9].

As suggested by P. Philippon, we consider the case of G, with
the ordinary A-action to be a trivial A-Drinfeld module with r = 0,
¢(a) = aF? for all a, and e4(z) = 2.

Isogenies, endomorphisms, and multiplications. If ¢ : A —
L{F} and ¢ : A — L{F} are Drinfeld modules defined over L, then
a morphism from ¢ to 1 defined over L is an element 7' of L{F} for
which

Té(a) = ¢(a)T, VaeA,

and we write that T € Hom (¢,%). If such T = uF*+ higher order
terms, u # 0, then, recalling equation (1), we see that the lowest order
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terms in the preceding displayed equation are ua? F* = quF*. Thus, on
taking a € A transcendental over F,, we see that ¢ = 0 and 1" = uF%+
higher terms, with u # 0. We also write VI' = u. A nonzero morphism
is called an isogeny.

In Theorem 2.2 of [3], the following result was shown:

Theorem 0.1. Let ¢ and ¢ be Drinfeld modules. Let P(X) = uX+
higher terms be an F-linear polynomial over koo with u # 0, and
let T € T be the corresponding twisted polynomial. The following
conditions are equivalent:

(1) T is an isogeny from ¢ to 1, i.e.,

(2) Pleg(2)) = ey (u2).
(3) uKer (P(ey(2))) = Kerey.

We call Ry := {VT : T € Hom (¢, ¢)} the ring of multiplications
of . Thus A C Ry and the nonzero elements of R, correspond to
the isogenies which are endomorphisms of ¢. It is also clear that ¢
extends uniquely to Ry via ¢(VI) = T'. Drinfeld also showed that
Ry = {c € ko : cKerey C Kereys}. Compare, e.g., Corollary 2.4 of
[3]. Thus, ¢ extends to an Ry4-Drinfeld module, also denoted ¢, and
#(Ry) C L'{F} with L' a finite extension of L. (In the case of a trivial
Drinfeld module, ko, may be considered the ring of endomorphisms.)

1. Algebraic A-submodules of products of Drinfeld modules.
The basic result of this section is the following:

Classification Theorem 1.1. Let Dy,...,Ds be the additive group
with A-action furnished by the mutually nonisogenous A-Drinfeld mod-
ules ¢1,... ,¢s. Fori = 1,...,s, let e; denote the exponential map
associated to ¢;, select f; € N, let e; denote the map kli — kfi ob-
tained by applying e; to each coordinate of z; € kfi, and let M; C koo
denote the field of quotients of Ry, .
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Then the connected, reduced algebraic subgroups H of
G=D"x...xDf

which are closed under the action of A are classified by the points
V=i,...,Vi) of

Grassy, (My) x - -+ x Grassy, (Mj).

More precisely, H and V' correspond to each other in the following way:

for all

z= (Zla cee 7Zs) € I;c{é—i_m—i_fsa

exp(z) € H(ks) < 2z; L V;, 1=1,...,s,

with respect to the ordinary inner product on each kfi, where exp(z) =

(e1(z1),... ,e4(zs)).
By Grassy, (M;) we designate the set of all M;-subspaces of K.

Proof. This follows from the investigations in [3] and [12], where the
connected component of the identity is determined set-theoretically,
which is equivalent to treating the reduced case, as we are doing here.

In particular, Theorem A of [3] shows that the reduced connected
component Hy of H is equal to the direct product

Ho(];}oo) = Hl(]_goo) X -+ X Hs(]_foo)

of the reduced connected components H; of the various H N le * (and
that the direction = holds). So we are reduced to the case that
G = le ¢, which is well-known when rank ¢; = 0. When rank ¢; > 0,
the theorem of the appendix of Chapter III of [12] shows both directions
=

(3) HZ(E‘OO) = {ei(zi) 1 Z; € E&,Zi 1 ‘/z};

for a uniquely determined V; € Grassy, (M;), and conversely, any choice
of V; € Grassy, (M;) determines a unique reduced connected A-closed
subgroup H; of DI via (3). o
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This result gives a good understanding of the connected, reduced A-
closed algebraic subgroups of ] D;j . The main goal of the present note
is to extend this result to products of quasi-periodic modules.

Remark. We take this opportunity to note the omission of the “return
isogeny” Rj; from ; to ¢; (cf. Corollary 2.3 of [3]) in the proof of
Theorem 3.2 of [3, p. 352]. The proof there will be complete if Rj; is
applied to both 7} and P/ on lines -3 and -1.

Before we turn to our main task, we need some background.

Biderivations. When rank ¢ > 1, one obtains related functions
which are said to be quasi-periodic (with respect to the A-lattice Agy).
To describe them, we consider ko, {F} as an A-bimodule, where right
multiplication is given by ¢(a) and left multiplication by a itself. Then
a ¢-biderivation § of A is an F-linear map 6 : A — koo {F}F such that

0(ab) = ad(b) + 6(a)p(b), Va,be A

There are three different fundamental types of ¢-biderviations.

Differentials of the first kind. One ¢-biderivation is obtained directly
from ¢ as
64(a) = ¢(a) — aF°, Vae A

Strictly inner biderivations. Let D,;(¢) denote the ko.-vector space
of exact or strictly inner ¢-biderivations 6;,T), which are those obtained
from the Drinfeld module ¢ and any twisted polynomial T € ko, {F}F
via

0" (a) 1= Tp(a) — aT,  Vae A.

Notice that, for nonzero such T,
degF(SéT) = degpT + degpdg(a) > degriy(a).

Set, Dzn(¢) = Em5¢ (&) Dsi((]ﬁ).

Strictly reduced biderivations. When r > 1, those biderivations §
for which degrd(a) < degpdy(a) are said to be strictly reduced. Let
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D, (¢) denote the_l_coo—vector space of strictly reduced biderivations
and set Dyed(¢) = ko0 ® Dsr(9).

Then the “Hodge decomposition,” equation (2.14) in [7], is that D(¢),
the full k.-vector space of ¢-biderivations, decomposes as

D(¢) = Dsr(¢) D EOO(;QS S2) Dsi(¢)'

If ¢ is defined over k, one obtains [15] the analogous decomposition
for the modules D.(¢); of ¢-biderivations § defined over £, i.e., with
0(A) C k{F}F:

D(¢); = Dsr () @ kg @ Dyi(9),

where * stands for either si¢ or sr or for the lack of a subscript, and
moreover each

D.(¢) = Di(¢)r ®F koo-

Thus the de Rham cohomology satisfies
Hpp(9) := D(¢)/Dsi(¢) = Dsr(¢) ® koG = Drea(9))-
P. Deligne and G. Anderson (see also 7, Section 5]) noticed that
dimy_Hpr(¢) = rank ¢ = 7.

E.-U. Gekeler proves the de Rham isomorphism in [7]

Hpp(¢) = Hom 4(Ay, keo),

by constructing the quasi-periodic functions inducing given elements of

the module Hom 4 (A4, koo ), while Anderson had a “shtuka” proof (still
unpublished, but see [8] for related material).

Quasi-periodic functions and the quasi-periodic module.
Given a biderivation §, there is a unique (up to a nonzero scalar) entire
F,-linear solution (e.g., [7]) Y = Fj(z) of the functional equation

(4) Y(az) —aY (z) = d(a)eqs(2), Vac€ A,
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satisfying the “initial condition” Y (z) = 0 mod 2?. The function Fj is
said to be gquasi-periodic with respect to § and L, since

(4.1) Fs5(z + w) = F5(z) + F5(w), V2 € koo, w € A,

(4.2) Fs(z) is A-linear on A.
It follows directly from (4) that Fjs is ko-linear in the index &:

(4.3) Fesiey(2) = cFs(a) + dF,(2).

We can readily account for the quasi-periodic functions arising from
the “inner derivations,” i.e., those of the form (5§>T), with T € koo {F},
possibly with nonzero coefficient of F°. The related quasi-periodic
functions are easily verified to be of the form

(5) FB;T) (2) :==Tey(z) — uz,

where T' = uF°+ higher terms. In particular, Fj,(z) = e4(2) — 2.

Given T' € Hom (¢, %), it is easy to check that pre-multiplication by
T gives a koo-linear map T* : D(¢p) — D(¢):

(T*6)(a) = 6(a)T, VaeA,
which we call the pull-back of § by T. Thus, when 7" € End (), say
T = 7F°+ higher terms, and § € D(¢), then
55 N
T*6 =385 + Y cidi,
i=2

where S € L'{F}F, ¢; € L', and d3,... , 9, form a basis for Hy,.(¢)r’.
However, as noted in [3, pp. 361, 362], one sees directly from the
functional equation for Fs(z) that

(6) Fr5(z) = Fs5(72).

Thus, we obtain the fundamental relation:

(7) Fs(1z) = Seg(z) —oz+ ZciFi(z),
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where S = oFY+ higher terms and each F; is the quasi-periodic
function corresponding to d;. Combining this remark with Theorem 5.1’
in [3], we obtain the following more general form of the classification
theorem:

Theorem 1.2. Let ® denote a set of nonisogenous A-Drinfeld
modules. For each ¢ € @, let ry = rank 4Ry, U(p) C koo and
ug =rank g, (3, cpr(4) Bou). Then

trdegz_koo(2,.--,e9(uz),... ,Fs(uz),...) gco =1+ Zr¢u¢.
u€U(9)
dED(¢)

For later use, we now record that pull-backs respect the Hodge
decomposition.

Proposition 1.3. If T is an isogeny from ¢ to ¥, then T induces
isomorphisms

(1) Thr: Hpr(¥) = Hpp(é) and
(2) T:r : Dsr(d}) - Dsr(¢)

Proof. First we notice that T*(D;n () C Djn(¢): For S € koo{F}
and a € A,

763 (a) = (S¥(a) — a8)T = S((a)T) — aST
= ST(¢(a)) — aST = 67 (a).

Therefore, as Dy, (v) ~ D(v)/D;n(¥) (and similarly for ¢), T* induces
a homomorphism from D,,.(¢) to Ds.(¢). Moreover, when S has
no F° term, neither does ST. Therefore, T* similarly induces a
homomorphism from Hj ,(¢) to Hpr(¢), as Hi(¢) ~ D(v)/ Dy ().

It is now sufficient to verify injectivity of T7,; and T7,., since isogenous
Drinfeld modules have the same rank, which is equal to the dimension
of the de Rham cohomology by the above-cited results. For injectivity,
it is enough to verify that the only reduced (and then strictly reduced)
y-biderivation & with T*§ strictly inner (inner) is zero.
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As before, let §;, i = 2, ... ,r form a basis for Ds,(¢), and let §; = dy.
Write § = > a;0; with a; € ko. Then, when 77§ is strictly inner
(alternatively inner), for some S € TF (alternatively S € 7) and all
a € A,

* S
T*6(a) = 85 (a) = S¢(a) - aS.

We translate this into an identity on quasi-periodic functions. By the

koo-linearity (4.3) of the Fjs in 4,
Fs =50 = > aiks,.

Therefore we see by (5) and (6) that writing 7 = 7F°+ higher terms
gives

(8) Zaing (12) = Fr+s(2) = F(S;S) (2) = Sey(z) — oz,

where S = o F°+ higher terms (and o = 0 if 7*§ is strictly inner). By
Theorem 0.1 above, ey (72) = T'ey(2), which makes ey(72) and ey(z)
algebraically dependent. On the other hand, by Theorem 5.1 of [3], we
know that
2 ew(z)’F52(z)) s aFér(z)

are algebraically independent. Therefore, Fjs,(z2),...,Fs (z) do not
actually occur in (8) and by Theorem 0.1, ayT = S, ie., a; = 0,
1=2,...,r and ¢ is inner.

If ¢ is strictly reduced, then a3 = 0 and clearly § = 0. If T%¢ is
strictly inner, then ¢ = 0 and thus a;7 = 0. But, as 7' is an isogeny,
7 # 0; hence a; = 0 and thus again § = 0. This completes the proof.
]

Quasi-periodic A-modules. For fixed strictly reduced bideriva-
tions 42, . .. , 0, with linearly independent images in the de Rham coho-
mology H},z(9), let Fa(2),..., F.(z) be the associated quasi-periodic
functions. The quasi-periodic A-module @ is what we call G/, with
A-action given by left multiplication with matrices

a 0 6,(a) 0 0 6-(a)
®(a) = 0 | =arF+ o |,
a 62(0, 0 (52(0,)
0 ¢(a) 0 d4(a)
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where the entries not indicated by at least a dot are zero, and where we
have written a for aF° in the first matrix. If r = 0 or 1, then Q = D.
We call the mapping

Zpr Fr (Zl) + 2
Exp : : —

z9 FQ(Zl) + zZ2

21 e(z1)

the exponential map of the quasi-periodic A-module Q associated to ¢.
Then ®(a)Exp (z) = Exp (az), where az = (azy,--- ,az,)".

Morphisms of quasi-periodic modules. A morphism of Q to
another quasi-periodic A-module Qy, with A-action given by

a 0 0.(a)

U(q) = ’ 0
(a) a 0s(a)
0 (a)

is an Fg-linear map P on GJ, which is compatible with the two A-
module structures. In other words, P is given by a matrix of twisted
polynomials (¢;;) such that for each a € A, first of all,

Y(a)(t11 X + t12Y2 + -+ - + 81, Yr) = t11¢(a) X + t12(aY2 + 62(a) X) + - - -
+ t1r(aYr + 6, (a)X)

and for each a € A and each 1 =2,...,r,
a<ti1X + Zti]’Yj + 3i(a)> <Ztinj + t11X>
i>2 §>2
=Y ti;(aY; + 6;(a) X) + tud(a) X,
Jj=2

where we have maintained the previous nonstandard indexing.

Looking at the coefficients in the first of these expressions, we find
that ¢(a)t1; = t1;a, for all a and for all j > 2. Since degpt)(a) > 0, we
see that t1o = -+ =t1,, = 0 and

ting(a) = P(a)tsy,
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i.e., t1; is either zero or an isogeny from ¢ to .

Since we can choose a € A transcendental over F,, we see from the
second type of expression above that, when ¢ > 2, each

atij = tija,

and thus ¢;; € koo F°. From the coefficient of X we see that

ati1 + 0;(a)ty = Ztij5j(a) + ti1¢(a),

Jj=2

or

di(a)tn = 08 + 3 t;85(a).

=2

2. Algebraic A-submodules of products of quasi-periodic A-
modules. In this section we want to determine the connected, reduced
A-stable subgroups H of Gfo x Q{l x -+ x Qfs with given projection
7(H) in DI* x -+ x Df=.

In particular, for a fixed basis of V' in Grassf ko x Grassy M; x
-+ x Grassy, M, corresponding to 7(H), we establish a correspondence
between

(1) subgroups of products of quasi-periodic A-modules with projec-
tion w(H) and

(2) subspaces of the appropriate k-fold product of the de Rham
cohomology of the associated Drinfeld modules.

Characterization of algebraic A-submodules of products of
quasi-periodic modules.

Quasi-periodic notation. Let G = Q1 X --- X Q,, where the Q;
are the quasi-periodic modules attached to the Drinfeld A-modules ¢;,
and let D; denote G, with A-action given by ¢;, i = 1,...,s. Let
7:G— D =Dy x- - xDs denote the projection map. For each i, let
M; denote the field of quotients of the ring R; of multiplications of ¢;
and r; the A-rank of R;. For each i, let X; designate the coordinate
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corresponding to elements of D;, and Yo, ... Y, the coordinates cor-
responding to the linearly independent strictly reduced ¢;-biderivations
8i2y -+ 5 0ir,. For each subspace V' of D(¢1) X -+ X D(¢s), we can use
the Hodge decomposition to project onto the strictly reduced components
and obtain a short exact sequence

0 —Vin =V — 75 (V) —0.

For any A-closed reduced algebraic subgroup K of D, let

ok = {(55;:1), S ,5(;?)) : ZTiXi vanishes on K}

and

{ (61,...,0 Zé )X; vanishes on K, VaEA}

Since the vectors of derivations lying in dx arise from Fg-linear
relations on K, we say that dx comprises the K-based biderivations.
Since evaluating the biderivations of 6% gives relations on K, we say
that 6% comprises the K-consistent biderivations.

Quasi-periodic classification Theorem 2.1. Let H be a reduced,
connected algebraic subgroup of G which is invariant under the action
of A and which has codimension k + . Let the projection w(H) have
codimension k in D. Then there is a unique subspace W of D(¢1) X

- X D(¢s) consisting of s-tuples § = (01,...,0s) of biderivations

i (6 T;
0; = Z] 9 ”)5” + 5551, ), such that

(1) W cor
(2) in —Wﬁ( in(¢1) X"'XDin(¢s))—6 (H)»

(3) dim7s. (W) = p, and
(4) L

4) Ls(Y,X) = Z” ” Yi; + > T;X; vanishes on H, for all 6 € W.

Remark. Note that rank (c; (@ ))5” = dim 74, (W).

Remark. Conversely, let K denote any connected, reduced A-closed
algebraic subgroup of codimension  in D. Let V' C D(¢1) x---x D(¢s)
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be K-consistent, with V;, = dx. Then since Ls(®(a)(Y,X)) =
aLs(Y,X)—>" 6;(a)X;, the condition that Ls(Y,X)=0foralld € V,
defines an A-closed algebraic subgroup H in G of codimension equal to
K + rank (cgj)g,ij =k + dim 74, (V) such that 7(H) = K.

Therefore, we are led to consider the set S of pairs (K, W) where

(1) K is a reduced, connected A-closed algebraic subgroup of D; x
--- X Dy, and

(2) W is a K-consistent subspace of D(¢1) X -+ x D(¢s) with
Win, = k.

Corollary 2.2. There is a bijection between S and the set of reduced,
connected A-closed algebraic subgroups H of G via

H <+ (K,W)
if and only if
m(H)=K and H = Zeros of (Ls(Y,X))sew-

In particular, for given K the unique maximal A-closed connected,
reduced algebraic subgroup H of [] Q{i with 7(H) = K, corresponds
to W = 6[(.

Remark. T do not know whether there is a unique minimal A-closed
connected, reduced algebraic subgroup projecting onto K correspond-
ing to 6%. This occurs exactly when (6%);, = dx.

Proof of Theorem. We define W to be the set of § for which conditions
(1) and (4) of the theorem hold. By definition, then, whenever
6 € W;,, the corresponding Cz(j) = 0, so the Fg-linear polynomial
> T;X; vanishes on H for every a € A. Hence § € d,(m), ie.,
Win C 0r()- On the other hand, whenever (11,...,Ts) € T° such
that Y T;X; vanishes on 7(H) and thus on H, then since H is A-
stable, Y T;¢(a)X; also vanishes on H. Clearly a > T; X; also vanishes

on H and therefore so does the difference

3(a)X =36\ (a)X;.
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In this way we see that d,z) C Wi, and establish equality (2) of the
theorem.

The main part of the proof consists in showing that W is large enough.
For that, we construct elements of W associated with minimal relations.
We write

Y=(Yy;...;Y) = (Y2,..., Y15, Yao, .o, Vi),
X = (X1,... , Xs).

Among the algebraic relations
(9) S(Y,X)=5(Y1,...,Y,X)=0
holding for the coordinates of elements of H, select one which is minimal

in the following dual sense:

(1) it actually involves a nonempty minimal set of variables Y;; and
(with that set fixed) a minimal (possibly empty) set, of variables X;,
and, among all such relations,

(2) it is of minimal degree with respect to some lexicographic ordering
in which the X; come last.

Then
(10) S(Y+Y ,X+X')-S(Y,X)-S(Y',X')=0

for all (Y',X'),(Y,X) € H, although this expression has lower maxi-
mal term in the lexicographical ordering with respect to either primed
or unprimed variables than in the minimal relation (9). Consequently,
as in the inductive proof of Artin’s theorem on minimal algebraic re-
lations for additive functions [11, Theorem 12.1], S(Y, X) is an addi-
tive polynomial, i.e., the relation (10) holds identically in the variables
(Y’,X'), (Y, X). This means that (9) can be rewritten as

(11) Zinjnj +) TiX; =0
i=1 j=2 i=1

with twisted polynomials T};, T;. Since ko, is a perfect field,

min {subdeg;T;;, subdegzT;} =0,
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else we could simply cancel a left factor of F' out of this twisted relation,
as our underlying ideal defining H is prime.

Since H is closed under the action of A, it is also true that for every
a € A, the relation

(12) 373" T(a¥is) + 30 3" Tiglbis(0)Xig) + Y Ti(di(a)X) = 0

i=1 j=2 i=1 j=2
holds for all (X,Y) € H.

If maxdegpT;; = d > 1, then multiplying relation (11) by a?" gives
another relation

(13) SN a' Ty + Z o' TiX; = 0
i=1

i=1 j=2

holding on H. However, the difference between (12) and (13) is a
relation of the form of (11), but which is smaller with respect to
the lexicographical ordering on the monomials in the Y;;. Thus this
difference does not actually involve the Y;; at all, and we have the
following:

Intermediate conclusions. (1) adainij = T;;(aY;;) for all a € A, for
all T;;, and

37
(2) Lif(Z; Tijdis(@) + (Tigi(a) — a?' 1)} X, = 0 for all X € n(H).
Since a € A can be chosen transcendental over F, conclusion (1) is

equivalent to saying that

(1) T;; = mi; F, Tij € koo,
with the same d for all i, j.

We wish to show that d = 0. Suppose otherwise for the moment.
Since degyd;5(a) > 0, by the minimality of degree in our choice of S and
the remark following equation (11), we must have min subdeg,7T; = 0.
However, since we are assuming that d > 1, we may select a € A such
that a?" # a and set

;=T —(a— aqd)(fl){ ZTij5ij(a) + Tii(a) — adai}-
J
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Then subdeg Ff’i > 0, and since we have merely added a multiple of
the polynomial occurring in conclusion (2), it is still true that for all
(Y,X)€eH,

S

(14) Zi)nmj +) TiX; =0,
i=1

i=1 j=2

where the T;; remain the same, but each subdegfi > 0. Therefore,
since ko, is perfect, we can factor out a power of F' (on the left of
equation (14)) to give a similar relation with max deg,T;; =d—1 > 0.
This contradicts the minimality of equation (11). So, in fact, d =0, as

desired.

Now, since d = 0, T;; = 7;;F° and conclusion (2) can be restated for
T;
85 = (5 7igdis +05"))s), as

(15)  ds(a)- X =) { ( Z Tij5ij(a)) + 5;?)(“)})(1' =0,

forall X = (X;) e 7(H) and all a € 4, i.e.,
s € 67,

In addition, according to (11),
(16) Los(Y,X) =Y 7;Yij+ > T.X;
ij i

vanishes on H. Therefore, we see from (15) and (16) that the minimal
relation S on the coordinates of H gives rise to a one-dimensional
subspace of D(¢1) X --- x D(¢s) satisfying properties (1) and (4) for
ds.

It remains now to show that the dimension of the subspace of W
generated by all such ds has strictly reduced projection of dimension
at least (and therefore exactly) p. For that, select a maximal set
B of coordinates Y;; which are algebraically independent modulo the
ideal of H. By definition, u 4+ Card (B) = >_,(r; — 1), and for each
Y = Y;; in the complement B’ of B, there is a minimal algebraic

relation on the variables of B U {Y;;} U {X,}¢=1,. s involving Y;;, but
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none actually involving a nonempty proper subset of B U {Y;;} and,
possibly, some of the X;. When we write down the matrix of 7
occurring in the equations (15) for these relations indexed by Y;; € B’,
we find a diagonal matrix with nonzero entries. Hence these relations
define a variety of codimension equal to the cardinality of B'(= p) in
the variety defined by the equations of 7(H). In other words, these
equations, together with those of w(H), define a variety containing H
of codimension k + p, of which H is therefore the reduced, connected
component of the identity.

Uniqueness of W follows, because if W' were another such sub-
space, then, by the definition of W, W/ C W, and therefore also
msr(W') C 7er(W). However, since dimm,.(W’') = dimm,,. (W),
7sr(W') = ms(W). Consequently, since by (2) W/, = dx = Wiy,
the five lemma shows that W’ = W, as desired. a

3. Analytic characterization of algebraic A-submodules. The
above identification of the A-closed submodules of products of quasi-
periodic A-modules, while complete, is not as satisfactory as the clas-
sification theorem for A-submodules of products of Drinfeld modules,
because the latter establishes a sort of analytic Lie correspondence for
products of Drinfeld modules. Investigating such a relationship for
quasi-periodic modules will be our goal in the next section. Since the
somewhat stronger hypothesis that no distinct but isogenous factors
occur in the product appears in the former case and since we build on
that result, we will have to invoke it here as well.

The case of a power. We first consider the special case that
H < G = DI, since all the main features appear here without so
many subscripts. We denote by Wygy the subspace of Theorem 2.1
corresponding to H.

Lemma 3.1. Let k = codimpsn(H). Then dimms, (Wg) < k(r—1).

Proof. Let us reindex if necessary so that X, 1,...,Xs are alge-
braically independent modulo the prime ideal I of polynomials van-
ishing on m(H), whereas each of Xj,...,X, is algebraic modulo
(I, Xw+t1,...,Xs). Now if dimm,,(Wg) > k(r — 1), then projection
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of Wy on the x(r — 1)-dimensional space formed by the first x factors
in D,,(¢)? has a nontrivial kernel. Therefore, there must be a 6’ € Wg,
8" ¢ (Wg)in of the form

T T
8 = (85,0 bi, .. 0p).

But, according to Corollary 2.2 of Theorem 2.1, the Ls with § €
Or(m) + kood' define a proper algebraic A-closed subgroup of G, for
which the projection onto the final f — k components of Q7 is an A-
closed algebraic subgroup of dimension less than (f — )r, but with
surjective projection to D41 X - - - X Dy. (For each choice of coordinates
Xi+1,-.., Xy, the relations on m(H) allow only finitely many choices
of coordinates Xi,..., X, such that (Xi,...,Xs) € n(H). Thus if,
say,

’ - (T%) d w(H)
8 = <Zcij5j+5¢ > eWcCsé
j=2 =1

with, say, each ¢;; = 0, ¢ < K, but ce11,2 # 0, then for each choice of
Xj,j>rkand Yeq13,... ,Yeq1,r,and Yy, 5 > K, 1 =2,...,r, there are
only finitely many Y11 2 such that (Yj;, X;) lies in the projection of H
into the last f — x components Qf * C Qf. Therefore this projection
of H is not surjective.)

However, according to Corollary 2.2 above, such a subgroup cannot
exist. Therefore, the upper bound on the dimension of A-closed
algebraic subgroups of Q1 x - - x Qy with given projection 7(H) must
hold as claimed. o

Our next main task will be to construct families of A-closed con-
nected, reduced subgroups H with given projection K < Df. We
start by finding a minimal A-closed algebraic subgroup Hg of G with
m(Hg) = K. It corresponds to the unique pair (K, W) € S with W
maximal.

Since ¢(R) is commutative, the map
d(R)! x D(¢) — D(¢),

defined by
(m, 9) — ((m9), ..., (m}9)),
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where m}9(a) := d(a)m, for all a € A, is ¢(R)-bilinear and balanced.
Thus, there is a natural induced homomorphism
w: ¢(R) ®y(r) D(¢) — D(9)!
(m;) ® 0 +— (m; * 0).

Let m % 0 denote the image of m ® 0 under this map.

Lemma 3.2. Let Vk € Grassy(M) correspond to K, and set
Vk(R) := Vg N RS.

(1) ¢(Vk) * D(¢) C 6.

(2) (1™ 'Din(9)7) N (6(Vi(R)) ® D(¢)) = {c € ¢(Vk(R)) @ D(¢):
there exists a p € R, p # 0, with ¢(p)e € ¢(Vk(R)) @ Dy, (9)}.

Proof. (1) For >-mj, ® 0y, € ¢(Vk(R)) @ D(¢), any a € A, and any
ke K,

(th ) ah(a>> (1) = 3 05 (a)mn ()] = 0,
h h

since each my, € ¢(Vk(R)), and thus myp (k) = 0. This establishes (1).

(2) (Containment D). If ¢(p)e € ¢(Vk(R)) ® D;in(¢), then by
the proof of Proposition 1.3, ¢(p) * u(e) = wu(d(p)e) € Din(¢)!. By
Proposition 1.3 applied componentwise, we see that @(p) * u(e) €
Din(9)! = u(e) € Din(9)7, as desired.

(Containment C). Now fix an M-basis B = {by,...,b,} C R/
of Vi which has a diagonal initial block, say. Note that for any
m = (mq,...,mys) € ¢(Vk(R)), there are elements p, p1,...,px € R,
p # 0, such that

¢(p)m = Z o(p;)o(bj)-

Now say that the image of ¢ := > mj ® 0y, is inner, i.e., that each
component of Y my, * 9y is inner, say
3 On(a)(mp) = (6 (a), ... .65 (a)),  Vae A

Then, since ¢(p) commutes with each ¢(a), a € A, we have

a7 (X mion)@sle) = (), 85" (@),
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But, when we express each m; via ¢(p)my = Y ¢(pnj)P(b;), the
lefthand side of (17) can be rewritten as

> (X an(@)6(ons) ) 9(by).
j h
Now, by assumption, for j = 1,... , s, b; has a nonzero entry A\; among

the first x entries only in the jth position. In particular, then, for
j=1,...,k, our hypothesis implies that the map

a— Zah(a)¢(0hj)¢()\j)

is an inner biderivation. By the automorphism of H7},, induced by
#(A;)*, (Proposition 1.3) this implies that for j =1,... ,x,

> d(pnj) * O € Din(9).

Then, however,

d(p)e = (p) (D mn) © 0

h

=3 6(pnj)6(b;) ® On

h J
0=">"6(b;) & (D 6pns) * ) € 6(Vic(R)) ® Din(6),
j h

as desired to establish equality (2). o

Proposition 3.3. Let K be a connected A-closed reduced algebraic
subgroup K of DI of codimension k with corresponding subspace Vi C
M. Let B ¢ Rf be an M-basis for Vi with a diagonal k x k block.
For each b; € B, let 8; = ¢i(b;). Then

Wi =Y Bi* Du(9) + 0k

is a mazimal subspace of D(¢)? satisfying properties (1) and (2) of the
quasi-periodic classification Theorem 2.1. It corresponds to a minimal
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A-closed reduced algebraic subgroup H of G with m(H) = K and
codimH = kr.

Proof. We first show that Wi satisfies the following two properties
of Theorem 2.1.

Property 1. Now 6x C 6% by definition. We show that each
B * Dg.(¢) C 6%: Note that for B = (B1,...,8f) € ¢(Vk(R))
the additive polynomial B8X := > 3;X; vanishes on K. Hence, for
0 € D(¢),a€ A,

0(a) ) BiXi =P *0(a)X =d(a)- BX =0

on K. Thus, Wx C Y. B:;D(¢) + dx C 6%, as desired.

Property 2. By definition, (Wk)in D dx. Now let § € (Wk)in, say
0 =00+ 01, 60 €0k, 01 € (D, B *i Dsr(9))in

Let us assume for simplicity of notation that the diagonal block of the
hypothesis occurs in the first columns: 8; = (8;;) with 8;;, 1 <, j < &,

nonzero exactly when ¢ = j. Then if ), ¢;8;0; = (5(;31)) € D(qﬁ)fn,
we find that ¢;85,0; = (6;5")), i =1,...,k However, we know by
Proposition 1.3 that each 3}; induces an automorphism of H},r(¢). So
in each case, ¢;0; € D;,(4). But, by hypothesis, each 9; € D, (¢),and
thus Ciai =0.

Consequently, (Wk)in C dx. Together with the opposite inclusion
noted at the beginning of this case, we find (Wk);, = 0k, as desired.

Wk mazimal. To show that Wyg is maximal, we show that it
corresponds to a minimal H. The key to this is to note that the
argument of case (2) above shows that the map sending the k-tuple
(01,...,04) of strictly reduced biderivations to the first x strictly
reduced components of bjd; + --- + b%0, is injective. Thus the
dimension of the image moddx is «(r — 1), and the codimension of
the corresponding subgroup in G is at least k(r — 1) + k = &r.

On the other hand, let W’ denote the vector space of biderivations
corresponding via Theorem 2.1 to a minimal A-closed subgroup H
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contained in the one corresponding to Wg. Then 7y, (Wg) C mer(W')
and so dimmg, (Wg) < k(r — 1) according to Lemma 3.1. Combining
this with the opposite inequality shows that dimm,. (W) = k(r — 1) as
claimed. Thus, the A-closed algebraic subgroup defined by the various
Ls, for § € Wi has

codim = Kr.

By the argument used to show unicity in the quasi-periodic classifica-
tion theorem, Wx = W' and Wy corresponds to H. 0

Since W is a maximal subspace of D(¢)/ corresponding to a reduced
A-closed algebraic subgroup projecting onto K, all the remaining
A-closed algebraic subgroups containing H and projecting onto K
correspond to subspaces of W

Proposition 3.4. Fiz a basis by,... ,b, C Vk(R) determining the
reduced A-closed algebraic subgroup K of DI of codimension k and such
that the initial kK X Kk submatriz of entries of the b; is diagonal. Then
there are bijections between the three sets

(1) the koo-subspaces A of D, (4)",
(2) the koo-subspaces W of Wi containing dx, and

(3) the connected reduced A-closed algebraic subgroups H' of G
containing H = zeros (Lw, ) with m(H') = K. The correspondence
is the following:

(01,...,00) EA+— 0 = Zqﬁ(bi)*& € W <— Ls vanishes on H.

i=1

Proof. The equivalence 2 < 3 follows from the quasi-periodic
classification Theorem 2.1 and the fact that Wg corresponds to the
minimal reduced A-closed algebraic subgroup H projecting onto K.

The equivalence 1 < 2 follows from the fact established in Property 2
and the proof of maximality of Wk in Proposition 3.3 that

(O1,--.,00) — > p(by)*0;
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induces an isomorphism Dy, (4)* — Wk /. a

General case. The general case of power products corresponding to
nonisogenous A-Drinfeld modules necessitates also a minor adjustment
of notation, to group together copies of the same Q;.

Common hypothesis. From now on,
G = Q{l X oo X Q£3,

where the underlying A-Drinfeld modules D; are nonisogenous for dis-
tinct indices i. The notation H, R;, M;,r; otherwise retains its mean-
ing, while

X: (X]_l,... 7X1f1;"' ;Xsla--- 7Xsfs)7
Y: (Ylla--- ;Ylfl;--- ;Ysly--- 7Yst)7
] =

Yij:(Y;jZ""7Y;jTi)7 izl,...,S, ]-7'--)fi7

and 7; : G — DFi denotes the projection. Let r; = codim ,; mi(H).
Then generalizing Proposition 3.3, we find the following result:

Proposition 3.5. Fori=1,...,s, let K; be an A-closed reduced
algebraic subgroup of DIt of codimension k; with corresponding Vi, €
Mifi. Let B; C Rfi be an M;-basis for Vi, with a diagonal k; X K;
block. For each b;j € By, let B;; := ¢i(b;;). Then, considering each
D(¢;)¥¢ as a subspace of IID(¢;)7s,

(18) wi =] (Zﬁ;;-Dsr(asi) +6x,)

(2

is a mazimal subspace of IID(¢;)'¢ satisfying properties (1) and (2) of
the quasi-periodic classification theorem. Then Wy corresponds to a
minimal A-closed reduced algebraic subgroup H of G with m(H) = K =
IIK;. In particular, codimH =Y k;r;.

Proof. By Theorem 1.1, the definition of d and the assumption that
the ¢; are nonisogenous, we se that dx = [[dk, and Wg = [[ Wk,.
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Therefore, the verification of properties (1) and (2) reduce to the
verification for the block of variables corresponding to each Q{ * which
was done in Proposition 3.3. As the product in (18) is direct, it is
maximal by Proposition 3.3 and Theorem 1.1. o

As before, this allows us to classify all the reduced A-closed subgroups
of G projecting onto a fixed K.

Theorem 3.6. Fiz a basis b;y,... b, C Vk,(R;) determining the
reduced A-closed algebraic subgroup K; of sz and such that the matriz
of entries of the b;; contains a k; X Kk; diagonal submatriz. Then there
1s bijection between

(1) the products TIA; of keo-subspaces A; of Dgp(¢;)%,i=1,... s,

(2) the koo-subspaces W of Wi containing Ildg,, and

(3) the connected reduced A-closed algebraic subgroups H' = H| X

X H. of G withw(H') = K containing the minimal A-closed subgroup
corresponding to Wi .

The correspondence is the following:
(51'17 e ,51',%.) S AZ,V’L «—— 4
= Z ¢i(b;j)*0;; € W <— L; vanishes on H.

ij

Proof. As remarked in the proof of Proposition 3.5, the members
of the three sets are all parallel direct products. Therefore it suffices
to establish the correspondences in each factor, which was done in
Proposition 3.4. O

Coda 3.7. Using the notation of Proposition 3.5, let K; = {X, :
b;;X; =0}, i =1,...,s. There is a bijection between products ILS; of
l_coo-subspaces Si of B; ® Ds.(¢;) and the connected, reduced A-closed
algebraic subgroups H of G = Q{l x +++ x Qf¢ containing ILH;, where
H; denotes the zeros of Ls,d € 0k, with

m(H) = P K.
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Proof. According to Proposition 3.3 and the proof of Lemma 3.2, the
image of
in 75, (W) has dimension equal to (r — 1)k, the dimension of 7, (W)
itself.

According to the “initially diagonal” choice of our bj, the first x
projections of #(R)b; ® Ds,(¢) are

Dsr(¢) j:jl
0 VRN

Thus dimy_ (b} Dsr(¢)) > (r — 1). Since we have already established
the opposite inequality and that 7y, : b} Dy (¢) — (Wk)s, is injective,
we see that

(0 Durl8) = {

Dsr(¢) = (WK)S?" ® ZbJ

Now the result follows from Theorem 3.6. O

Using Theorem 3.6, this result extends immediately to arbitrary
products of quasi-periodic A-modules: Q = G¢ x Q; x --- x Q,, where
A acts by multiplication on the first e factors and by the extended
Drinfeld actions ®; on the quasi-periodic modules Q; associated with
the Drinfeld modules ¢;, i =1,...,s.
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