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KRONROD EXTENSION OF
GENERALIZED GAUSS-RADAU
AND GAUSS-LOBATTO FORMULAE

SHIKANG LI

ABSTRACT. Kronrod extensions of Gauss-Radau and Gauss-
Lobatto formulae having end points of multiplicity 2 are stud-
ied. For the four Chebyshev measures, expansions of the re-
spective Stieltjes polynomials in terms of appropriate Cheby-
shev polynomials are given whenever possible; otherwise, an
efficient computational algorithm is given. Explicit formulas
are derived for the weights associated with the end points.

1. Introduction. In 1964, Kronrod [9, 10] initiated the idea of
extending Gaussian quadrature formulae. He proposed to add n + 1
nodes to an n-point Gauss-Legendre formula and to choose the new
nodes and all weights of the extended formula so that it has maximum
degree of exactness. It turns out that the additional nodes are the
zeros of a polynomial of degree n + 1 (known as Stieltjes polynomial)
that is orthogonal to all lower-degree polynomials with respect to the
Legendre polynomial of degree n as the weight function. Work in this
direction has intensified in the last ten years. The reader is referred
to surveys by Gautschi [3] and Monegato [12] for a detailed discussion
of recent developments in this area. Here we apply Kronrod’s idea
to generalized Gauss-Radau and Gauss-Lobatto formulae with double
end points, recently discussed by C. Bernardi and Y. Maday [1], and
Gautschi and Li [6, 7].

We assume that the weight function w associated with the integration
is one of the four Chebyshev weights:
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The Kronrod extension (see [3, 9, 10]) for the generalized Gauss-Radau
quadrature rule has the form

/_ FOu)dt = 00f(-1) + o4 (<) + Y0 f ()
(1.1) - =l
3 onf() + RER(f),

where 7, = ") are the zeros of (5 (1 + t)2w(t)), the nth-degree

(monic) orthogonal polynomial relative to the weight wf(t) = (1 +
t)*w(t), and 7 = 7} .,00,00,0, and o} are chosen so that formula
(1.1) has maximum degree of exactness > 3n + 3. It turns out that
7, must be the zeros of the (monic) polynomial 7}, ,; of degree n + 1,
known as Stieltjes polynomial (cf. [12]), orthogonal to all polynomials

of lower degree with respect to the weight function
wEE(t) = 7, (t; w(t))w(¢).

Similarly, there exists an optimal extension of the Gauss-Lobatto for-
mula with double end points associated with the weight function w. It
has the form

[ £Ow) dt = 00f(-1) + 04 (~1) + s f(1) + T 1)
(12)

n+1

+) ouf(m)+ > onf(ry) + REE(f),
v=1 p=1

where 7, = 7\"") are the zeros of (-5 (1= t*)?w(t)), and 7 = 7}, are
the zeros of 7, ;. In this case, (1.2) has degree of exactness > 3n + 5

and 7, | is orthogonal to all polynomials of degree < n in the sense

/_ P (Gt Ot dt =0, allpe P,

where w’(t) = (1—¢t2)?w(t). It is well known that 77 ; uniquely exists
for both (1.1) and (1.2). In practice, one wants all the zeros of 77 ; to
be real and inside [—1, 1]. These questions, and questions of interlacing
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of the nodes 7, 7; and positivity of the weights, have been studied by
Gautschi and Notaris [5]. Here, our main interest is in deriving explicit
formulae for the polynomials 7; , ;, whenever possible, or else, obtaining
constructive procedures for generating them. In Section 2 we study the
expansions of the Stieltjes polynomials 7 ,; in terms of appropriate
Chebyshev polynomials. Inclusion and interlacing properties of the
zeros of m, and 7, , are also summarized in Section 2. Finally,
in Section 3 various representations of the weights in the extension
formulae (1.1) and (1.2) are obtained.

2. Stieltjes polynomials. Let wZ®(t) = (1 + t)?w;(t) be the
weight functions for the Gauss-Radau formulae with double end point
at —1 and Chebyshev weight w;. Similarly, we let w’(t) = (1 —
t?)2w;(t) denote the weight functions associated with Gauss-Lobatto
formulae. The nodal polynomials 7%(t) (= m,(t;wk)) and 7l:i(t)
(= mn(t;wl)) associated with the interior nodes in the generalized
Gauss-Radau and Gauss-Lobatto formulae can be expressed in terms
of the Chebyshev polynomials. These formulas are straightforward
consequences of corresponding ones given in [4]. We will not present
them here.

2.1. The Stieltjes polynomials. To avoid a proliferation of su-
perscripts and subscripts needed to identify the polynomials 7, , ;, we
suppress some of them whenever they are clear from the context. Ex-
plicit formulas for 7, , ; are not available in all cases under investigation.
The results for w = wf, i = 1,2,3,4, and w = wF, wk are given in
Theorems 2.1-2.6.

Theorem 2.1. The Stieltjes polynomial relative to the weight func-

tion wf is given by
(2.1)
n—1 k
1 n+1 2n+1
roa(t) = =S Ty (t) +4 —D)FFH ) T,k (t
i = g o0 4555 S0 (55 ) Toeatt
2(n+1) (2n+1\"
_1n+1 T
DT S <2n+3> 0}’

where Ty, is the first-kind Chebyshev polynomial of degree k.
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Alternatively,

1

2n +1
T = 5 { Vo ()

2n+3
k—1
2n +1
- Vn— t 9
2n+322< 2n+3> ’“()}

where V,(t) = cos((n+ 1/2)0)/cos((1/2)0), t = cos@ and V,, is the
third-kind Chebyshev polynomial of degree n.

Va(t)
(2.2)

Proof. We first note that the Stieltjes polynomial 7%, ; must satisfy
the orthogonality relation

(2.3) /_1 T (OpOTE ) wi(t) dt =0,

allp e P,.
Now we expand 7}, ; in terms of T, i.e.,

n

(2.4) 2"y 1 (8) = Toia (£) + Y e Tnr(2).

Next we let p = T), k < n, in (2.3), and apply the formula

1 n+1 2n+ 3
= A i171 . 1o n 4 n Y]
2"+1(1+t)2{ 2 o }

(this is a straightforward consequence of corresponding one given in
[4]) and (2.4) to write (2.3) in the form

1 n
n—+1

Tn TTnfr T; n 4—r0 Tn

/_1( +1+ZC >k< +2 + o 1 1t

r=0
(2.5) 2n + 3
2n+1
k=0,1,2,...,n

Tn> w1 (t) dt = 0,
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Using Ty T} = (Tk11 + Tjx—;))/2 and the orthogonality of the 7)., we can
reduce (2.5) to the following system of linear equations in the ¢, valid
for n > 2,

4(n+1)+ (2n+3)co =0,

dn+1)+4(n+1)co + (2n+3)c1 =0,

(2.6) (2n+ Deg 2+ 4(n+ Deg_1+ (2n+ 3)ex, =0,
k=23,...,n—1,

(2n+ 1)cp—2 +4(n+ 1)cp—1 + 2(2n + 3)c, = 0.

It can be checked directly, or derived from the theory of difference
equations, that the solution of (2.6) is

k
ck:(—l)k+14(n+l) 2n +1
n+3 \2n+3/ "’

k=0,1,2,...,n—1,

and

2(n+1) (2n+1\"
n = _1 n+1
¢ (=1) 2n+3 <2n+3>

This proves (2.1) for n > 2. For n = 1, (2.5) becomes the system
8+ 5co =0, 4+ 4cy+ 5¢; =0,

which has the solution ¢y = —8/5 and ¢; = 12/25 in agreement with
(2.1). For (2.2), one writes

2% 1 (t) = Viya (t) + E d V(1)
and uses the formula
1 2n+3
Rl = —

Then letting p = V}, in (2.3) and applying the same procedure as before
yields formula (2.2). O
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In a similar, though more complicated, manner one can prove the
following five theorems.

Theorem 2.2. The Stieltjes polynomial associated with the weight
function wi has the following expansion

1
(2.7) Tha(t) = 2n+1< et (t +ch kUn—k( )

where
Cn_k = ag cos kB + a1 sin k6,

the coefficients ay and a1 being given by

4(n+1)
ay = — ¢
2n+5
2
a; =

V3(2n +5)

y <\/(2n +3)(2n + 5)(4n® + 14n® — 2n - 21)
(n+3)(2n +5)

—4d(n+1)vV(n+ 1(n+ 3))

and the angle 0 satisfying the relation

00892_2\/((n+1)(n+3) , 0<f<m.

2n + 3)(2n + 5)

Theorem 2.3. For the weight function wi, the Stieltjes polynomial
admits the form

1
(2.8) Tha(t) = 2n+1< et (t +ch kVi—k( >

where
Cn_k = ag cos kB + aq sin k6,



KRONROD EXTENSION 1461

the coefficients ag and a; being given by

B 2n+ 1
a0 = n+2
B 1 <2(n +1)3/2(4n? + 4n — 17)
“ B+ 2) (n+2)/2(2n 1 5)
@n+n¢@n+m@n+n)

and the angle 0 being determined by the relation

60502_1\/(2n+5)(2n+1)

2\ (n+)(m+2)

Theorem 2.4. For the weight function wi, the Stieltjes polynomial
can be expanded either as

n n—k+1
1 n—+1
ﬂ-:l—',-l(t) on { n+1 Z < n+ 2) Tk(t)
=1
n+1

(2.9)

1 +1

-y - T,

t3 ( n+ 2) 0}’
or as
1 n—+1
T(t) = 5oy {Un+1(t) — 5 Un(®)

(2.10)

n k—1
2n+3 n+1
- — Un—i(t) p.
(n+2)2 k=1< n+2> kl )}

Theorem 2.5. For the weight function w = wk, the Stieltjes

polynomial is given by

1 n+1
* —_
(2.11) Wnﬂ(t)_w{ ral szl <n+3> n-2k+1()

3 (2 >( Y To(t)}
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when n is odd, and by

212 () = 5 { T+ > (= 1)an_2k+l<t)}

when n s even.

Theorem 2.6. For the weight function w = wX, the Stieltjes
polynomial can be expressed as

[n/2]
1
T = g {Oa 0+ 3 cocaealin-aenn (0}

(2.13) pa

1+ (—1)!

LIEEDT e,
4

where

k
2n + 6
n— = 1 —— v
Cn—2k+1 ao( + (n+5)(n+2)>

k
2n +6 n+2\"
o (1_ (n+5)(n+2)> <n+4>’

ny/(2n +6)(n +5) — 4y/n + 2

O T 2@n 16+ /@t )5t 2)
o — 4vn +2+ny/(2n+6)(n + 5)

2v/n+2(y/(2n+6)(n +5)(n +2) — 2n — 6)

In the theorems stated above, two expansions for 7, , are given
where possible. Since Ty, Ui and Vi are easy to generate, expansions
of 7, in terms of these polynomials allow for efficient ways of finding
the zeros of Stieltjes polynomials by Newton’s method. In particular,
it is easy to evaluate 7, ,(t) and (7, ;) (t) for any ¢ in [-1,1].
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Unfortunately, these formulas are not suitable for establishing the
interlacing property for the zeros of m, and 7, ;.

There is essentially one more case to be considered, namely w = w¥;

the case w = wk can be settled by noting

T (Gwy) = (1) s (—twy).

Again, we expand 7} (t) = 7}, (t; w}) as

1 n
m(t) = 5o <Un+1 +) CkUnk>
k=0

and use the techniques employed before. The result is no longer an
explicit expression for the coefficients ¢, but the following recursive
procedure:

Initialization
1 n+1 n?—5
C_1 = cp = —— —
1 9 0 n+37 1 (n+3)2
For k=2,3,...,ndo
n+1/n+2 n
CL = —Cp— Ch—2 — Ch—
k "3 n+4k3 k—2 k—1

2.2. Inclusion and interlacing. We are now interested in the
location of the zeros of m,; and their relation to the zeros of m,.
Specifically, if all the zeros of 7, are inside the interval [—1, 1], for
any n, then we say that inclusion holds. The interlacing property can
be stated as

<< < - <71 <1y <7,y foreachn,

where the zeros 7, and 7 are assumed to be arranged in increasing
order. The two questions of inclusion and interlacing are discussed by
Gautschi and Notaris [5] for Gauss-Kronrod quadratures relative to the
Jacobi weight functions. In Table 2.1 we list all the known results for
the eight special Jacobi weight functions studied in Section 2.
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TABLE 2.1. Inclusion and interlacing properties.

Weight Inclusion Interlacing
w{2 true for even n true
wh true true
wh true for even n true
wh true (x) true (x)
wk true (x) true (x)
wl true (x) true
w true true
wf true true

In the above table, (*) indicates that the result has been proved
theoretically. Otherwise, it is verified numerically only for n < 40.
The case where w = wl is a special case of Gegenbauer weight
w(t) = (1 — t?)*"1/2 with y = 2. For Gegenbauer weight functions,
it is well known from a result by Szego [14] that interlacing holds if
0 < pu < 2. Monegato [12] proved that inclusion and interlacing hold for
the weight function wf. The inclusion property for the weight function
w is shown by Rabinowitz [13]. The inclusion property of the zeros of
7,41 in the case of the weight functions wl, wF and wk can be shown

by using Theorems 2.4-2.6.

3. Formulas for the quadrature weights. It can be shown by
applying the theory of interpolation that the weights in (1.1) admit the
following representations:

= [ L i),
L (DT (1)
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o 1 (1 + )27, ()71 (£) . . )
o 11 1+ 7)) 27 (r)mh (1) (t — 1) (t) dt, 1,2,...,n,
ot = 1 (]_ + t)27rn(t)7'l';:+1(t) y

" / (7P mn () () () = ) 2

p=12... ,n+1.
Similar, though more complicated, formulae can be obtained for the
weights in (1.2), but we omit them here.

By using techniques similar to those used by Monegato [11] in the
proof of his Theorems 1 and 2, the formulas in (3.1) can be simplified
to

(3.2)
o (=1) /7 (=1) + (7 1) (=1) /7, 1
7o — lt — TV A=)+ () DT (1)
”n(_l)ﬂ'n+1 _1)
' R | 7 |12 &
0T M i (C1)
| 7 (12 5
L =B " : =1,2,...,n,
S T Py e Pt ) M "
2
o= 7 p=1,2 ... ,n+1,

oAt )P () ()
where k', kK and AE are the weights in the Gauss-Radau quadrature
rule with double endpoints (see [6]) and || 7, ||? r= f_ll 72 (t)wlt(t) dt.

w

The weights A\ are given by

7 12
3.3 AR — w =1,2.....n.
B3 A= rmammy VT b

For the weights in the Kronrod extension of the Gauss-Lobatto rule
with double end points (cf. (1.2)), we are able to develop the following
relations that may be useful in computation:

(3.4)
o e LD/ ED) = (1) (D ()
A (=) 4 (—1) ¢
2
0'(’) _ H{‘ + H Tn HwL

T (~ D)y 1 (-1)]
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- L () + ) Wi
T T (i1 (1) e

0” = /JlL — M
et ! 47Tn(1)77;;+1(1)7

BN
L, =AE w =1,2
IR ey ey ey ey e M
2
of = 7 Tz p=1,2... ,n+1

Ho (= ()P () () ()

Here, s, w¥, pl, pt and AL are the weights in Gauss-Lobatto
quadrature with double end points. The weights x{, xf, uf and
pF relative to the four Chebyshev weight functions were studied in
Gautschi and Li [6]. It is not difficult to see that

7 1152

L _
B3 M= )

v

v=12,... ,n.

The positivity of the weights o, has been studied by Gautschi and
Notaris (see [5]). If the interlacing property holds for the zeros of m,
and 7,1, then the weights o}, are positive (Monegato [11]). In this
section our main interest is to obtain explicit formulae for the weights
in the boundary terms of (1.1) and (1.2) and to exam their signs, in
the case of the four Chebyshev weight functions. Some alternative
procedures for the computation of the internal nodes are proposed in
[2, 8]. In the following we state the respective results and sketch
their proofs. Only three weight functions will be considered; for the
remaining five (except wf which follows from the result for wf) we were
unable to obtain results because of the complexity of the computations.

Theorem 3.1. For w(t) = wiy(t), the weights o¢ and o in the
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quadrature formula (1.1) are given by

3
o0 = An+1)? (2n+1)\"
(2n+1)@2n +3)° [1 " (2n +3)2 <2n+3> ]
2n+1\"
2(n+1)(2n2+4n+1)<2n+3>
(3.6) n
(2n+3)? — 8(n + 1)? (%)
i 2
(n+1)
) 2n +1\" !
n(n+2)+(n+l) <1_2<2n+3> >
5 LAt 1) (2n+1>" ’
(2n+3)2 \2n+3
(3.7)
;L 3m((2n + 3)"+2 — 8(n + 1)2(2n + 1)7)
oy =

2(n+1)2n+1)(2n+3)((2n + 3)**+2 —4(n + 1)2(2n + 1)7)°

Moreover, they are both positive.

To prove this theorem, it suffices to observe that

1
Im = [ w0+ 20— 2

1 2n+43
:——ﬂ"
22n+19n +1

(3.8)
Tn(—1) = 2n1+1 2(=1)"(n —; 1)(2n + 3),
) = g (s (55)),
! 1 (=1ntt

vy 2n(n+ 1)(n + 2)(2n + 3),

1N = > 7
"( ) on+1 15
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(ri) (1) = 50 17 (203 - 2n + 1) (D)),

HR_3_7T 6n%+12n+5
O 5 (n+1)2n+1)(2n+3)’
3T

A= (n+1)(2n+1)2n+3)

The second, fourth and last two relations in (3.8) have been shown in
[6]. The third and fifth formula follows from Theorem 2.1 by elementary
but tedious calculations. The positivity of o¢ and o, follows in a
straightforward manner from (3.6) and (3.7).

Theorem 3.2. For w(t) = wy(t), the weights o¢ and o in the
quadrature formula (1.1) are given by

(3.9)
oo 3 2(3n% +9n +5)
T m+1)(n+2)(2n+3) 5
B 1
9 1_2n2+5n+3 n+1\"
2(n + 2)2 n+2
_2n2+5n+3 n+1\"
n(n + 3) (n+2)2 n+2
—_— 1 2
5 +(n+1)(n+2) _2n2+5n+3 n+1\" ’
2(n + 2)2 n+2
and
(3.10)
, 3T 1 1
Op = - n
1 2 3 2
(n+1)(n+2) (n+ 2(2n+3) | 2P H5n+3 (ntl
2(n+2)2 \n+2

Moreover, both o¢ and o, are positive.
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The proof of this theorem utilizes the following equalities:

Tn(=1) = 2n1+1 (—1)" (n+ 2):())2n + 3),
1 na1 n(n+2)(n+3)(2n + 3)

/ —
71-'n(i]') - on+1 (71) 15 )

1 2n2+5n+3 (n+12\"
w;+1(1):—(1)"+1<n+2 v Ton <n ) >

2n 2(n+2) \n+2
1
(mrs1) (1) = 5o (=D)"(n + D(n +2)°
(3.11) P53 (nt1%\"
(n+ 2)2 n+ 2 ’
s 1 n+2
|| Tn wa = 92n+2 n——i—lﬂ-,
R_ 67 (3n? + 9n + 5)
5(n+1)(n+2)(2n+3)’
3
- U

(n+1)(n+2)(2n+3)

The first two and the last two are given in [6]; the fifth can be computed
directly, while the remaining two follow from Theorem 2.4. Again, the
positivity follows readily from (3.9) and (3.10).

Theorem 3.3. For the first-kind Chebyshev weight function, we have
the following explicit formulas for the weights oy, 0(, 0ny1 and o,
in the Lobatto-type formula (1.2):

If n is even, then

On+1 = 00
3m(1 — 2¢,)[6n% + 24n + 20 — (11n® + 44n + 40)c,]
40(n+1)(n+2)(n+3)(1 —c,)? ’

(3.12)

’ o
On+1 = 0o

3m(l — 2¢,) )
8(n+1)(n+2)(n+3)(1—cy)’
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if n is odd, then
3
40(n+ 1)(n +2)[n+3 — (n+ 2)d,)?

On41 — 00 =

dn
{6n2+24n+20 -5 (23n°+128n+219n+120)

(3.13) " I
2 (11n® 4 61n2 + 1 — >
+2 (11n® 4 61n” + 103n + 55) (n 137 n}
o =ol = 3m(1—(2(n +2)/(n+3))dn)
nt 07 8(n+1)(n+2)(n+3—(n+2)d,)’
where

(na1\OPR e
“n = n+3 ’ " \n+3 '

Moreover, the weights g, 0(, ont1 and o, are all positive.

To prove Theorem 3.3, one needs to show, and then use, the following
results:

1 2(n+2)(n+3
ma(1) = g (-1 22O
, 1 ni12n(n+2)(n+3)(n+4)
m(-1) = g (-1 " ,
2 1 n+3
(3.14) | T ||w1L S 1™
L 3m(3n®+12n +10)
"0 T 10+ D) (n+ 2)(n +3)°
3m
Ry =

T An+D(n+2)(n+3)’

(3-15)  mppi(=1)

(n/2)+1
1 1
T (n+3) (1— <Zi3> >, n even,

(n+1)/2
1 1
ST <n+3(n+2)<n13> >, n odd;
n n
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(3.16) (m11)'(—1)

n/2
1
SYES (n+1) [(n+3)? — (2n2+8n+7) ( I3> , n even,
B 1\ (n+1)/2
= e (n+1) (n+3) [n+3—2(n+2) (Z—ig) , nodd.

Again, the equations in (3.14) are from [6]. The formulas (3.15)
and (3.16) follow from Theorem 2.5. The positivity result follows from
(3.12) by an easy calculation, and from (3.13) by a more complicated,
though elementary, calculation.
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