ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 26, Number 4, Fall 1996

THE INVARIANCE PRINCIPLE
FOR ASSOCIATED RANDOM FIELDS

TAE-SUNG KIM

ABSTRACT. In this paper we prove the invariance principle
for associated random fields satisfying the 2 + § moment
condition. No stationarity is required. Our investigations
imply an extension to the nonstationary case of an invariance
principle of Burton and Kim. Analogous results are also
derived in the case of random measures.

1. Introduction. Let {X.l : j € Z%} be a random field on some
probability space (Q, F, P) with EX; =0, E'X;. < 0o. Forn € N, put

(1.1) Sp= > Xj,

1<j<nl
assume
(1.2) n ESE — no® € (0,00),
and define
[ntq] [nta)

(1.3) Wi(t) = (on®?) 1 > Y X,

=1 ja=1

where W, (t) = 0 for some ¢; = 0. Then W,, is a measurable map from
(2, F) into (Dg, B(Dy)), where Dy is the set of all functions on [0, 1]
which have left limits and are continuous from the right, and B(D,)
is the Borel o-field induced by the Skorohod topology. {X jil€E Z%}
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is said to fulfill the invariance principle if W,, converges weakly to the
d-parameter Wiener process W on Dy.

In this paper we investigate the invariance principle for random fields
satisfying a condition of strong positive dependence called association.
A finite collection {Xji,...,X,,} of random variables is associated if
for any two coordinatewise nondecreasing functions f; and f2 on R™
such that f; = f(Xi,...,Xm) has finite variance for i = 1,2, there
holds Cov ( i, fg) > 0. An infinite collection is associated if every finite
subcollection is associated (cf. Esary, Proschan and Walkup [7]). Many
recent papers have been concerned with limit theorems for associated
sequences (see, for example, Newman [9]).

Burton and Waymire [5] extended the notion of association to the ran-
dom measure and proved the central limit theorem for associated ran-
dom measures. Burton and Kim [4] obtained the following invariance
principle for stationary random fields satisfying finite d-susceptibility
criterion which is a result of Bickel and Wichura [1] allowing them to
conclude tightness.

Theorem A [4]. Let {Xj} be a stationary associated random field
with EXj =0, EX;- < 00. Assume that there is a positive constant C
so that, f_or alln € N,

(1.4 5{ M} <c.

Then {Xj : j € Z%Y} fulfills the invariance principle.

S
ond/2

Burton and Kim [4] applied Theorem A to the random measure as
follows.

Theorem B [4]. Let X be a stationary associated random measure.
If there is a constant C' < oo depending only on X so that for all A D 1
we have

E[|IX(A) - EX(A)P*] < ClAM/?

where |A| denotes the Lebesque measure of A. Then X satisfies the
tnvariance principle.
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Birkel [3] extended the invariance principle of Newman and Wright
[10] to the nonstationary case and obtained the following invariance
principle for one parameter associated process

Theorem C [3]. Let {X; : j € N} be a sequence of associated
random variables with EX; =0, EXJ2 < 0o. Assume that

(1.5) E(Wy,(s)Wy,(t)) — nmin{s,t} fors,t €[0,1]

{(W,(t) = W,(s))*:n e N, s,tec|0,1]}

(1.6) ) i )
s uniformly integrable.

Then {X;;j € N} fulfills the invariance principle.

Kim and Han [8] improved the invariance principle of Birkel [3] to a
two-parameter case by applying Theorem 10 of Newman and Wright
[10]. The problem of extension of this invariance principle to the d-
parameter case (d > 2) is still an open problem [10].

Our aim of this paper is to extend Theorems A and B to the nonsta-
tionary case by adding a condition on the covariance structure and to
provide a new invariance principle for an array of nonstationary associ-
ated multiparameter random variables by strengthening the hypothesis
of uniform integrability of Theorem C.

In Section 2 we introduce some preliminary results for the proof of
the invariance principle for nonstationary associated random fields. In
Section 3 we will obtain a general invariance principle for d-parameter
associated processes (Theorem 3.1) which requires no stationarity by
combining the ideas of Theorems A and C and apply this notion to the
associated random measure in Section 4.

2. Some results for the associated random fields. If ¢t =
(t1,t2,...,tq), let |t| stand for the product tite---tq, and [t|| =
max(|t1|, |t2|a tet |td‘)

Theorem 2.1. Let {Xj : j € Z%} be an associated random field with
EX; =0, EXJQ- < oo and define Wy (-) as in (1.3). Assume that

(2.1) E{W;(®)} — ult| for0<t<Ll
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Then the following conditions are equivalent:
(i) E{Wn(s)Wn(t)} = nls| for 0 <

< <1,
(i) E{Wn()Wn(8)} = nlt] for 0 <

<t
0<t<,
i) B{0VIn() ~ Wl (Walt) = Wa()} >0, for 0 < s <1 <

I/\’“

u

Proof. (i) = (ii). (ii) follows from (i) by taking s =t¢, ¢t = 1.

(if) = (iii). Since the random variables are nonnegatively correlated,
it follows from (2.1) and (ii) of Theorem 2.1 that

0 < E{(Wn(t) = Wa(s))(Wn(v) = Wa(u)}
< E{(Wa(t) — Wn(0))(Wn(1) — Wa(t))}
= E{W,(OWa (D} - B{W ()} — 0

(iii) = (i).

E{Wa(s)Wn(t)} = E{(Wn(s) = Wa(0))(Wn(t) — Wn(s)
+ Wa(s) — Wa(0)}
= E{(Wn(s) = Wa(0))(Wn(t) — Wa(s))
+ E(Wa(s) = Wa(0)*} — nls|

according to (2.1) and (iii) of Theorem 2.1. O

Theorem 2.2. Let {X : j € Z4} be an associated random field with
EX; =0, EX < oo and define Wi, (1) as in (1.3). If {Xj 1j €z}

fulﬁlls the mvamance principle, then

(2.2) EWn(s)Wn(t)) — nls| for0<s<t<L

Proof. Since the invariance principle is fulfilled, {W2(t) : n € N} is
uniformly integrable, and hence,

E{W ()} — nBE{W*)} =t for0<t<L,
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according to Theorem 5.4 of Billingsley [2]. By Theorem 2.1, it remains
to prove

(2-3) E{(Wa(t) = Wn(s))(Wa(v) = Wa(w))} — »0

for0<s<t<u<wv<l
To prove (2.3), let 0 <
is fulfill

§ <t <u <wv <1 be given. Since the
invariance principle lled, {W2(t) : n € N} is uniformly integrable.
Hence,
(2.4) {(Wn(t) = Wa(s))(Wa(v) = Wa(w)) : n € N}

is uniformly integrable. According to Theorem 5.4 of Billingsley [2]
and (2.4),

E{(Wa(t) = Wa(s))(Wa(v) = Wa(w))}
— nE{(W () = W(s))(W(v) - W(w))}-

But by the independence of increments of W

E{W () - W(s)(W(v) - W(uw)}
= BE{W ()

which proves (2.3). O

= W(s)E{W(v) - W(w)} =0

Theorem 2.2 shows that (2.2) is a weak form of stationarity and a
necessary condition for the invariance principle.

3. An invariance principle. A subset B of [0, 1]? is called a block
if it is of the form II¢(s;,t;], where the (s],t I's,5=1,...,d, are half
closed subintervals of [0, 1] For each i,1 < < d let

0<al? <bf? <al) <l <. <a®d <b) =1
be real numbers. Call a collection of blocks in [0,1]? “strongly sepa-

rated” if it is of the form {Hd(ak),b(i)] :1<k<n1<i<d}orifit
is a subfamily of such a family of blocks.
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Disjoint blocks B and F are neighboring if they abut (for example,
when d = 3 the blocks (s, t] x (a,b] X (¢,d] and (t,u] x (a,b] X (c,d] are
neighboring 0 < s < ¢t < u < 1). For each block B = (s,t] = I¢(s;, t:],
let
(3.1) Sn(B)= Y Xj, Wa(B) = (on?)71S,(B)

lZ'EnB B
where nB = (ns,nt] = I¢(ns;,nt;] for B = (s,t]. If we consider
X = {X(t) : t € [0,1]%} as a stochastic process, then the increment
X (B) of X around a block B = I1¢(s;, t,] is given by

xB=Y Y (1)t 2
e1=0,1 eq4=0,1
X(81 —+ El(tl — 81),82 —+ EQ(tQ — 82), cee y 8q T+ 8d(td — Sd)).

Theorem 3.1. Let {Xj : j € Z4} be an associated random field with
EX; =0, EX;- < oo and define Wy (-) as in (1.3). Assume

(3.2) E{Wn(s)Wn()} — nls| for0<s<t<l,
(3.3) E|W,(B)[*"® < C|B|**%/2 for some constant C,
where B = (s,t] for0 <s <t <1.

Then {Xj : j € Z4Y fulfills the invariance principle.

Proof. By Lemma 2 of Deo [6] it is sufficient to show that Wn(-)
converges weakly in the Skorohod topology to a stochastic process W
which has the following properties:

(@) B{W(®)} =0, B{W(®)*} =t 0<t<1,
(b) W has continuous paths,

(c) Increments of W around any collection of strongly separated
blocks in [0, 1]¢ are independent random variables.

Note that for a block B = I{(s;,t;] C [0,1]¢

(3.4) W (B) = (on®?)™" >~ X;
iEnB
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where nB = [1¢(ns;, nt;] for B = (s,t].
From Chebyshev’s inequality, Schwarz inequality and (3.3), it follows
that, for neighboring blocks B and F,
(3.5)  Pmin(|Wn(B)|, [Wn(F)]) = Al
<A~ G E[{min(|W, (B)|, [Wa (F))}**]
< A CHIE{| W, (B)*H Y E{|W,(F)[FF0}]1?
<A@ (1B 20 (|F|) o)/
< )\7(2+5)C[(|B|‘F‘)1/2]1+5/2
< )\7(2+5)C(‘B‘ + |F|)1+5/2
_ A" B U P2,

Thus by Theorem 3 of Bickel and Wichura [1] the following tightness
condition (3.6) is in force

(3.6) lim sup P{w(W,,6) >e} — 0 asd O
neN

where w(Wy, 8) = Sup <5 [Wo(s) ~Wa(0)] and fls £ = max{]s: -
til,.-. ,|sa — td|}, and thus the sequence {W,} is tight.

It should be noted that Bickel and Wichura [1] assumed that W, (-)
vanishes along the lower boundary of [0, 1]¢:

D [0,1] 5+ x [0,1] x {0} x [0,1] x -+ x [0,1]

1<p<d
({0} is in the pth position). But by (3.3), P(ZieB Xi =0) =1
if |[B| = 0, so a version of W, exists which is zero along the lower

boundary. Let X be a limit in distribution of a subsequence of
{W, : n € N}. Then it follows from (3.6) and Theorem 15.5 of
Billingsley [2] that X is continuous with probability one. It suffices
to show that X is distributed like W. From the assumption it is easily
seen that

(3.7) EWa(t) — 20,  EWZ(t) — |-
By (3.3) for n large enough,
(3.8) E(Wa()]**°) < Clt*+*/?
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and so {W2(t) : n € N} and {W,(t) : n € N} are uniformly integrable
for every t € [0,1]¢. As

Wa(t) — nX(t), W2 () — o X*(1)

in distribution (for a subsequence), Theorem 5.4 of Billingsley [2] and
(3.7) imply
EX(t)=0,  EX*(t) =t

According to Theorem 19.1 of Billingsley [2], X is distributed like W
if X has independent increments, that is, for the strongly separated
blOCkS7 B17 BQ, . ,Bk,

(3.9) X(Bi1),X(B2),...,X(By) are independent for all k£ € N,

where By, = (ék—latk]a Q < 20 <0 < Ek < l
To show (3.9): Since

(Wn(Bl)a s aWn(Bk)) - n(X(Bl)a s aX(Bk))

in distribution, and since the W,,(B;)’s are associated by (P4) of Esary,
Proschan and Walkup [7] X(t,) — X(t,),...,X(t,) — X(t,_,) are
associated, according to (Ps) of [7]. A similar argument as above (using
Theorem 5.4 of Billingsley [2] and the fact that associated random
variables are nonnegatively correlated) yields, for i # j, B; = (s,¢] and
Bj = (u,v],

Cov (X (B;), X(B;)) = lim Cov (Wn(B;), Wn(B;))

n—o0

= lim Cov (Wa((s,¢]), Wn((u, v]))

according to (iii) of Theorem 2.1. Hence the X (B;)’s are associated and
uncorrelated random variables and thus independent by Corollary 3 of
Newman [9]. This proves (3.9) and therefore the proof of Theorem 3.1
is complete. ]
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4. Applications. In this section we will apply the notions of associ-
ated random fields to the random measures, that is, a simple argument
using Chebyshev’s inequality allows us to extend the invariance prin-
ciple for associated random fields to random measure. B¢ denotes the
collection of Borel subsets of d-dimensional Euclidean space R%. The
space M of all nonnegative measure y defined on (R%,B¢) and finite
on bounded sets will be equipped with the smallest o-field containing
basic sets of the form {u € M : u(A) < r} for A€ B4 0 <r < co.
A random measure X is a measurable map from a probability space
(Q, F, P) into (M, M), the induced measure Px = Po X! on (M, M)
is the distribution of X, and if X is a random measure and B is a Borel
subset of R%, then X (B) represents the random mass of the region B.

For the random measure X, define the K-renormalization of X to be
the signed random measure Xy, where

X(KB) - EX(KB)
O.Kd/z ’

(4.1) Xk(B) =
and let Xk (t) = Xk (t1,...,tq) be defined by
(4.2) Xk (t) = Xk ((0,t1] x -+ x (0,tq])

for t € [0,00)4. Let {Xk} be a sequence of random measures on R%. A
set function X satisfies the central limit theorem if, for any bounded
B € B Xg(B) converges in distribution to N(0,|B|) as K — oo
where Xk (B) is defined in (4.1) and |B| denotes the Lebesgue measure
of B and the random measure X satisfies the invariance principle if X i
converges weakly to the d-dimensional Wiener measure W.

Definition 4.1 [5]. A random measure X is associated if and only
if the family of random variables F = {X(B) : B a Borel set} is
associated.

Theorem 4.2. Let X be an associated random measure with
EX(B) = 0, EX?*(B) < oo and define Xk(t) as in (4.2). Assume
that

(4.3) E{Xk(s)Xx(®)} — ls| for0<s<t<L
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For A € B¢, A bounded, |A| > 1, there exist constants C' < oo and
& > 0 such that

(4.4) E(|X(A) — EX(A)[2+0) < ' (02|A])1+9/2).

Then X satisfies the invariance principle.

Proof. Note that, for a block B C [0,1]¢,

X(KB) - EX(KB)

(4.5) Xy (B) = o

where, if B = I1%_| (s;,t;], then KB = 11¢_| (Ks;, Kt;]. Asin (3.5) from
(4.4), it follows that for neighboring blocks B and F,

Plmin(|Xk (B)|, Xk (F)|) > A < A=CH¢’(|B U F|)1+0/2

and thus by Theorem 3 of Bickel and Wichura [1] the sequence { X}
is tight. As in the proof of Theorem 3.1, by (4.4), P(X(A) =0) =1 if
|A| =0, so a version of Xk exists which is 0 along the lower boundary.

Suppose X is the limit in distribution of a subsequence. Then X is
continuous with probability one by the similar arguments in the proof
of Theorem 3.1. It suffices to show that X is distributed as W. From
(4.5) and condition (4.3), it is easily seen that

(4.6) EXk(t)=0,  EX%(t) — xlt|
By condition (4.4), for K large enough,

1

E(IXx(@®)**) < (KT

C/(O'2Kd|ﬂ)1+6/2

and so {Xk(t)} and {X%(t)} are uniformly integrable for every t €
[0,1]4. As

Xk(t) — xX(1),  Xg(t) — xX*(t)
in distribution, Theorem 5.4 of Billingsley [3] and (4.6) imply that

EX(t)=0,  EX>(t)=[t.
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Finally, let By, ..., B, C [0,1]¢ be strongly separated blocks, and let
B; = (s,t], Bj = (u,v], where 0 < s <t < u < v < L. Since random
variables X (I j) are nonnegative correlated, it follows from (4.3) that

(4.7) Cov (Xg(B;), Xk (Bj))
< Cov (X (t) — Xk (), Xx(v) — XK (uw) — K0

according to Theorem 2.1, where I; = (j—Lj]for1<jez4,

Since X (B;)'s are associated, by Corollary 3 of Newman [9] and
(4.7) the XK(Bi)'s are independent as K — oco. Hence, X must have
independent increments. Thus, every subsequence { Xk} of { Xk} has
further subsequence of {Xk~} which converge weakly to the Wiener
measure W on [0,1]¢. It follows that X converges weakly to the
d-dimensional Wiener measure W.
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