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THE FUNDAMENTAL GROUP OF WHITNEY BLOCKS

ALEJANDRO ILLANES

ABSTRACT. Let X be a Peano continuum. Let C(X) be
the hyperspace of subcontinua of X, and let p : C(X) - R
be a Whitney map. In this paper we prove: Theorem A.
If0<Q <R< S <T < p(X), then there exists a sur-
jective homomorphism ¢ : m1(p~1(Q, R)) — 71 (" 1(S,T)),
where 71(Y) means the fundamental group of Y. Theo-
rem B. If 0 < S < T < u(X), then m(u=1(S,T)) is
finitely generated. Theorem C. X is a simple closed curve
if and only if 71 (= 1(S,T)) is a nontrivial group for every
0<8<T < p(X).

0. Introduction. Throughout this paper X will denote a continuum
(a nonempty, compact, connected metric space) with metric d. Let
C(X) denote the hyperspace of all subcontinua of X with the Hausdorff
metric H. A map is a continuous function. A Whitney map for C(X) is
amap p: C(X) — R such that (a) u({z}) = 0 for every z € X, (b) If
A,B e C(X)and A C B # A, then p(A) < p(B), and (c) u(X) = 1.
A Whitney block for C(X), respectively a Whitney level for C(X), is a
set of the form p=1(S,T), respectively u=*(T), where 0 < S < T < 1.
The fundamental group of a space Y is denoted by 7 (Y).

Hyperspaces are acyclic (see [13, Theorem 1.2]). For Whitney lev-
els, the situation is different; the following observation was made by
J.T. Rogers, Jr., in [11]: “As we go higher into the hyperspace, no new
one-dimensional holes are created, and perhaps some one-dimensional
holes are swallowed.” This intuitive statement has found several for-
mulations.

In [12, Theorem 5], J.T. Rogers, Jr., proved:

Theorem. If u is a Whitney map for C(X) and 0 < s <t <1, then
there exists a monomorphism

v HY (T (E) — H (n7(s))
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1426 A. ILLANES

where H'(Y) denotes the reduced nth Alexander-Cech cohomology
group of Y.

In [4, Theorem A], the author proved:

Theorem. If X is a Peano continuum, pu is a Whitney map for
C(X) and 0 < s <t <1, then

r(p=H () < r(uH(s)

where 7(Y) denotes the multicoherence degree of Y.

Two-dimensional holes behave in a different way. A. Petrus [11]
showed that if D denotes the unit disk in the Euclidean plane, then
there exists a Whitney level u=(T) for C(D) (for an appropriate
Whitney map p) such that there exists a retraction of p~1(T) onto
a 2-sphere. Related to these topics, in [3], the author obtained a
characterization of dendroids in terms of n-connectedness of Whitney
levels.

In this paper we study the fundamental group of Whitney blocks. We
prove that if X is a Peano continuum and p is a fixed Whitney map
for C(X), then:

Theorem A. If0 < Q < R< S < T < u(X), then there exists a
surjective homomorphism ¢ : w1 (up=4(Q, R)) = m1(u=(S, T)).

Theorem B. If0 < S < T < 1, then m(u(S,T)) is finitely
generated.

Theorem C. The following assertions are equivalent:
(a) X is a simple closed curve,
(b) 71 (u=(S,T)) is a nontrivial group for every 0 < S < T < 1.

(¢) For each R < 1, there exist R < S < T < 1 such that
7 (= t(S,T)) is a nontrivial group.

1. Preliminary constructions. We will identify X with F}(X) =
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{z} € C(X) : z € X}. The unit closed interval in the real line R is
denoted by I. If A,B € C(X) and A C B, an order arc from A to
Bisamap v : I — C(X) such that v(0) = A, y(1) = Band r < s
implies y(r) C 7(s). The existence of order arcs is guaranteed by [10,
Theorem 1.08]. If a,3: I — Y are two paths in a space Y such that
a(0) = 8(0) and (1) = B(1), the notation o ~ S (in Y') means that
there exists a homotopy F' : I X I — Y such that: (a) F(r,0) = «a(r)
and F(r,1) = B(r) for every r € I, and (b) F(0,s) = «(0) and
F(1,s) = «(l) for each s € I. If A € C(X) and € > 0, define
N(e,A) = {p € X : there exists a € A such that d(p,a) < €}.

If A= p1(T) is a Whitney level for C(X), we define A~ = p 1[0, 7.
Using order arcs (see [10, Theorem 1.08]), it is easy to show that
A~ = {A € C(X) : There exists B € A such that A C B}, so A~
does not depend on .

Lemma 1.1. Let A be a Whitney level for C(X). Let o, : 1 — A~
be two paths such that o(0) = B(0), (1) = B(1) and [(U{a(r) : r €
INUU{B(r):rel})]e A~. Thena~f (in A™).

Proof. Let A = p~Y(T). Let S be the unit circle in the Euclidean
plane R%. Let S~ = {(z,y) € S : y < 0} and S* = {(z,y) € S :
y > 0}. Let p: R? — R be the projection in the first coordinate.
Define py = p | S~ : S~ — [-,, 1] and po = p | ST : St — [-1,1].
Then p; and p are homeomorphisms. Since we are identifying S
with F1(S) = {{z} € C(S) : z € S}, we may consider the maps
o7 p5t i [-1,1] — C(S). Since C(S) is homeomorphic to a disk, then
there exists a map F : [-1,1] x I — C(S) such that F(r,0) = p; *(r)
and F(r,1) = p, (r) for every r € [~1,1] and F(—1,s) = (—1,0) and
F(1,s) = (1,0) for every s.

Define v: S — A~ by:
 Jal(p(z)+1)/2) ifze S
7(2) = {B((pg(z) +1)/2) ifzeSt.
Then v is a map.

Define G: I xI — A by G(r,s) = U{y(z) : z € F(2r —1,s)}. Then
G is a map. Since G(r,s) C U{y(z) : z € S} C (UIma) U (UIm j3), then
G(r,s) € A~ for every (r,s). Notice that G(r,0) = y(p; *(2r — 1)) =
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a(r) and G(r,1) = B(r) for every r. Since G(0,s) = v(—1,0) = «(0)
and G(1,s) = «(1) for every s, therefore a >~ 3 (in A™). O

Theorem 1.2. Let A = p=1(T) be a Whitney level for C(X). If
a: I — A~ is a path such that a(0),a(1) € A, define o™ : T — A by
aA(r) = U{a(t) : r <t < q(r)}, where q(r) € [r,1] is taken in such a
way that u(a?(r)) = T. Then

(a) o is well defined,

() a?(0) = a(0) and a*(1) = a(1),

(c) a* is continuous,

(d) Ifa,B:1— A" are two paths such that a(0) = 3(0) € A and
a(l)=p(1) € Aanda~ B (in A™), then a* ~ B4 (in A).

(e) If a,B: 1 — A~ are two paths such that «(0),5(1) € A and
a(l) = B(0) € A, then (aB)? = a”BA (here we are considering the
usual product of paths).

Proof. (a), (b) and (c) are easy to prove.

(d) Let F:IxI — A" be a map such that F(r,0) = a(r) and
F(r,1) = B(r) for every r, and F(0,s) = «(0) and F(1,s) = a(l)
for every s. Define FA : I x I — A by FA(r,s) = U{F(t,s) :
r <t < q(r,s)}, where ¢q(r,s) € [r,1] is chosen in such a way that
w(FA(r,s)) = T. It is easy to check that F* is a homotopy between
A and B such that F4(0,s) = a”(0) and FA(1,s) = a(1) for all

(e) Suppose that, for each r € I,
(@B)?(r) = V{aB(t) :r <t < qi(r)},
aA(r) =U{a(t):r <t <gar)},
and
BAr) = U{B(t) : 7 < t < gs(r)}.

Let r € [0,1/2]. If qy(r) > 1/2, then (af)?(r) D U{aB(t) :
1/2} = U{a(2t) :r <t <1/2} = U{a(t) : 2r <t < 1} D U{a(t

\_/“3
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t § q2(2r)} = a*(2r). Since (aﬂ)A( ), a(2r) € A, then (af)*(r) =

a?(2r). If qi(r) < 1/2, then (aB)A(r) = U{a(t) : 2r < t < 2qi(r)}
Wthh contains or is contained in U{a(t) : 2r <t < qz( )} = a?(2r),
then (aB)(r) = a(2r). Hence, (aB)(r) = a?(2r) for every
r € [0,1/2]. Similarly, (a8)4(r) = ,BA(QT — 1) for each r € [1/2,1].
Therefore, (af)* = aApA. O

Theorem 1.3. Let A = pu~Y(T) be a Whitney level for C(X). Let
a: I — A be a map. Suppose that there exists a point p in the set
N{a(r) : r € I}. Let vy, respectively v1, be an order arc from {p} to
a(0), respectively from {p} to a(1). Then o =~ (5 y1)? (in A).

Proof. Notice that p € (v, *71)(r) for every r € I. Then a and
(75 "y1)# are paths in the space C,(T) = {A € A:p € A}. As was
proved by Lynch in [7], this space is an AR. Therefore, a ~ (75 '71)%
(in Cp(T)CA). @O

Theorem 1.4. Suppose that X is a Peano continuum. Let B =
p~Y(R,S) be a Whitney block for C(X). Let A= p=1(T) be a Whitney
level, where R <T < §. Fix Ay € A, a € Ay and let vy be an order arc
from {a} to Ag. Let a: I — B be a path such that a(0) = a(1) = Ay.
Then there exists a map o : I — X such that o(0) = o(1) = a and

~ (v~ 'oy)? (in B).

Proof. From [1] and [9], we may assume that the metric d for X is a
convex metric and diameter of X = 1. Define K : C(X) x I — C(X)
by K(A,r) = {p € X : there exists a € A such that d(a,p) < r}.
Clearly, (see [10, 0.65.3]) K is continuous and K(A4,0) = A and
K(A,1) = X for every A € C(X).

Fix Ty € (R,S) such that Ima C p 1[0,7p). For each s € I,
u(K(a(s),0)) = pla(s)) < To and p(K(a(s),1)) = p(X) > T,
then there exists r(s) € I such that u(K(a(s),r(s))) = Tp,. We
will show that r(s) is unique. Suppose, on the contrary, that there
exist r; < 7o such that u(K(a(s),r1)) = To = u(K(a(s),r2)). Since
K(a(s),r1) € K(a(s),r2), then K(a(s),r1) = K(a(s),r2). Since
w(X) > Ty, we may choose a point ¢ € X — K(a(s),r2). Let p € a(s)
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be such that d(p,q) = min{d(z,q) : * € a(s)}. The convexity of
d implies that there exists an isometry p : [0,d(p,q)] — X (see [10,
0.65.3]) such that p(0) = p and p(d(p,q)) = ¢. Since ¢ ¢ K(a(s),r2),
0<r; <ry<d(p,q). Let y = p(ra), then d(p,y) = d(p(0), p(r2)) = ra,
soy € K(a(s),r2) = K(a(s),r1). Then there exists an = € «a(s) such
that d(z,y) <ry. Thus d(z,q) < d(z,y) +d(y,q) <r1+d(p,q) —r2 <
d(p,q) which contradicts the choice of p. This contradiction proves
that r(s) is unique.

It is easy to show that r is continuous and, from the choice of Tp,
r(s) > 0 for each s € I. Let rp = min{r(s): s € I} > 0.

Set C = u~Y(Tp). Define B : I — C by B(s) = K(a(s),r(s)). Then
B is continuous. Choose § > 0 such that |s — ¢| < ¢ implies that
H(a(s),at)) < ro.

Fix a partition 0 = sy < s1 < -+ < 8, = 1 of I such that, for every
i=1,...,m, 8; — s;_1 < d. For each i € {0,1,... ,m}, choose a point
pi € afs;), with pg = pm, = a.

Leti € {0,1,... ,m—1}. Let s € [s;, si4+1]- Then H(a(s), a(s;)) < 7o.
This implies that p; € K(a(s),79) C B(s). Then we may choose an

order arc 7" from {pi} to B(s). We need to choose %EE) in a more

precise way, we define this order arc by:
(0)( ) 7(28) if s € [07 1/2]7
Tso K(a(0), (25 — 1)r(0)) if s € [1/2, 1].
Set v = 7§2).
From Theorem 1.3,

~ (B | [s0,51])(B | [51,82]) = (B | [Sm—1, 5m])

(YO (v ) Ty e (M D) Ty l))e
= (1) (4 D)D) (yfmm D)Ly mmtye
~ (

(70) 1O () Ty (D) - (D) Ty D) () L)€

12

(in C).

Let 7 € {1,...,m}. Since d is convex, N(ro,a(s;)) is an open
connected subset of X, then N(rg,a(s;)) is path connected. Since
pi—1 € N(ro,a(s;)), there exists a map o; : I — N(rg,a(s;)) C B(s;)
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such that ¢;(0) = p;—1 and ¢;(1) = p;. Since UIm (7& U(’ygf)) b c
B(s;), Lemma 1.1 implies that 7(1 1)(~y§?) ~g; (inC™).

Define 0 = 0109---0,,. Then 3 ~ (’Yo o1 0mY0)’ = ('yalo'yo)c
(in C).

Define G: I x I — B by

K(a(0),3st(r(0))) if0<s<1/3,
G(s,t) {K( (3s—1),t(r(3s—1))) if1/3 <s<2/3,
K((0),3(1 - 5)t(r(0)))  if2/3<s<1,

Then G is continuous. Notice that

v((Bs+1)/2) if0<s<1/3,
G(s,1) {,8(331) if1/3<s<2/3
70((4—3s)/2) if2/3<s <1,

and the map ((s) = G(s,0) is such that { ~ « (in B). Therefore

a = (yo [ [1/2,1)B(v | [1/2,1])"* (in B). Set v* =10 | [1/2,1]. Then
o~y By Tt 2y (95 toy0) Sy (in B).

Define A: I x I — C(X) by
2o(t(1—3s)) 0 <s<1/3,
A(s, 1) o(3s—1) if1/3<s<2/3,
7(t(3s —2)) if2/3<s<1L.
Then A is continuous and p(A(s,t)) < p(yo(t)) for every (s,t).
Define L : I x I — B by
(Yo((3ts +1)/2) if0<s<1/3,
U{A\(u, (t4+1)/2) : 3s—1<u<q(s,t)}
where ¢(s,t) € [3s — 1, 1] is chosen

Lis,t) = in such a way that u(L(s,t)) =
uol(t +1)/2)) i£1/3< s <23
yo((3t(L — ) +1)/2) if2/3<s< 1.

Clearly L(s,t) € B for every (s,t) and L is continuous.

Notice that, for each s, A(s,1/2) = (70 | [0,1/2]) " o (0 | [0,1/2])(s) =
o (s)-
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Since
Ay if0<s<1/3
or2/3<s<1,
L(s,0) = U{ytoy(u) : 3s—1<u<q(s,0)},
where u(L(s,0)) =
n(1(1/2)) =T if 1/3 <s5<2/3.
Then the map (;(s) = L(s,0) is such that ¢; ~ (y"'oy)4 (in A).
Notice that, for each s, A(s,1) = 7, 'o70(s). Then
Y0((3s +1)/2) if0<s<1/3,
U{7o toyo(u) : 3s—1<u<q(s, 1)}
where u(L(s,1))=p(8(0))=T if1/3 <s<2/3,
(31— 5) +1)/2) if2/3<s <.

L(s,1) =

= (7" (% "o70) " 1)(s).

Therefore, (y~'oy)* ~ v*(v5'o70)¢v*™" ~ a (in B). Thus a ~

(7'oy)4 (n B).  ©
2. Theorem A.

Construction 2.1. Let A = p~(T) be a Whitney level for C(X).
Let C be a pathwise connected subset of A~. Choose elements Ay € A
and Cy € C such that Cy C Ag. Let v be an order arc from Cy to
Ag. Define ¢o : m1(C, Co) — m1(A, Ao) by do([a]) = [(y tay)?]. Let
B = u~'(R,S) be a Whitney block for C(X) such that R < T < S.
Then we consider the function ¢ : w1 (C,Co) — w1 (B, Ag) defined by
¢(la]) = [(v" o).

Lemma 2.2. ¢y and ¢ are well defined homomorphisms.
Proof. 1t follows from Theorem 1.2. o

Theorem 2.3. Suppose that X is a Peano continuum. If C contains
a Whitney level v=1(Q) and Co is a fived element in v=1(Q), then
¢ :m1(C,Co) — m1 (B, Aop) is surjective.
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Proof. Let [a] € m1(B, Ap). Fix a point a € Cy and let v; be an order
arc from {a} to Cy. From Theorem 1.4, there exists amap o : I — X
such that 0(0) = (1) = a and o ~ ((117)"'oy1y)? (in B). Let
D = v7(Q) C C. Define 3 = v; *oy1, then B(0) = Cy = B(1) and
ImB3 C D~. We will prove that ¢([3°]) = [a]. It is enough to prove
that (v~ '877)4(s) = (v "87)"(s) for every s.

We will assume that y~!3Py and y~!3y are parametrized in thirds,
that is,

7~1(3s) if0<s<1/3,
(v'8P~)(s) =4 BP(3s—1) if1/3<s<2/3,
v(8s—=2) if2/3<s<1.
y~1(3s) if0<s<1/3,
(v'87)(s) =% B(Bs—1) if1/3<s<2/3,
v(8s—2) if2/3<s<1.

Let (y7!87)4(s) = U{y™'8y(r) = s < 7 < au(s)}, (v718P7)A(s) =
U{y=1BP(r) s <7 < ga(s)}, and BP(s) = U{B(r) : s <7 < g3(s)}-

If g1(s) < ga(s), since B(r) C B2 (r) for every r, then (y~*fy)A(s) C
(Y1BP9)A(s), thus (v 187)A(s) = (v 'BP7)*(s). If ga(s) < 1/3,
then (y7'18P4)A(s) = U{y"'(3r) : s < r < gqa(s)} is contained or
contains to (y~187)4(s), so (y"18Pv)A(s) = (y"187)"(s). The case
2/3 < s is similar. Then we may assume that 1/3 < g2(s) < ¢q1(s) and
s <2/3.

I£2/3 < qu(s), (7 16P7)A(s) € Iy 609(r) = s <7 < u(s)} =
U{y18y(r) = s <7 < qu(s)} = (v7'87)A(s). Thus, (y71677)4(s) =
(y~1B7v)*(s). Hence, we may assume that g;(s) < 2/3.

Define J = [1/3,2/3]N[s, g2(s)] # @. Let g4 = sup{qs(3r—1) : r € J}.
If (a4 +1)/3 < qu(s), let 7 € J C [1/3,2/3], so v 13P4(r) =
BPEBr—1) cU{B(t):3r—1<t<q} CU{B(t):3r—1 <t < 3q(s)—
1} = U{y718y(t) : r <t < qi(s)} € (v71By)A(s). Tt follows that
(v1BP7)A(s) € (v71B7)A(s)- Thus (y18P9)*(s) = (v787)*(s).

Finally, if ¢i1(s) < (ga + 1)/3, then 3¢i1(s) — 1 < g4. Thus there
exists 7o € J such that 3¢qi1(s) — 1 < g3(3ro — 1). Let r € [s,q1(5)]
be such that 1/3 < r. If rp < 7, then 3rp — 1 < 3r —1 <
g3(3r0 — 1), 50 Y~ B(r) = B(3r = 1) € BP(3ro — 1) C (y'BP7)A(s).

<
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Thus, v~ Bv(r) C (v 18Py)A(s). If r < ry, then s < r < gofs),
v 1By(r) = BBr—1) C BD(37° — 1) € (y'8Py)*(s). This

implies that y~18vy(r) C ( ~18Py)A(s) for every r € [s, q (s)] Hence

(7_157)A() C (v7'BP7)A(s). Thus, (v7'87)*(s) = (v71877)(s)-

Therefore, for every s € I, (v 187)"(s) = (Y 1B8Pv)A(s).

Therefore, ¢ is surjective. u]

Proof of Theorem A. From Theorem 2.3, it is enough to show that
p~ (@, R) is pathwise connected. From [10, Theorem 14.8], every
Whitney level for C'(X) is pathwise connected. Taking a fixed Whitney
level contained in x~'(Q,R) and, using order arcs, it follows that

~1(Q, R) is pathwise connected. O

Theorem B.

Lemma 3.1. Suppose that X is a Peano continuum. Let U be a
finite nonempty family of subsets of X such that each element in U is
open and connected. Let F = {Py € U : U € U} be a chosen set. Then
there exists a finite connected graph G C X such that FF C G and if
UV el andUNV # &, then there exists a path in GN(UUV) joining
PU and Pv.

Proof. If X is an arc, the lemma is immediate. So we may suppose
that X is not an arc.

First, we will prove that if W is an open subset of X, ¢ > 0 and H is
a finite connected graph contained in X, then only a finite number of
components of H N W have diameter larger than e.

Suppose, on the contrary, that there exists a sequence {C4,Cs,...}
of pairwise different components of H N W such that dim C,, > ¢ for all
n. Since H has a finite number of vertices, we may assume that there
are no vertices in the set U{C},, : n > 1}. Thus each C), is contained
in some segment of H. Since H has a finite number of segments, we
may also assume that every C,, is contained in a fixed segment J of H.
Then each C,, is a subinterval of J of diameter larger than . Since it
is not possible, then the assertion is proved.
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Now we will prove the following assertion:

(¥) If W is an open subset of X, H is a finite connected graph
contained in X and o : I — W is an arc such that «(0) € H,
then there exists a finite connected graph H; and there exists an arc
B:I— HyNW such that H C H; C X, a(1) € Hy and S joins «(0)
and a(1).

Let Z be an open proper subset of X such that Ima C Z C Clx(Z) C
W. Let € = {min{d(a,z) : a € Ima and z € X — Z})/2 > 0. From the
assertion proved above, there exists only a finite number of components
Cy,...,Cn of HN Z such that dim C; > €. Suppose that «(0) € C;.

Let C be a component of H N Z such that C ¢ {C4,...,C,}. Since
a(0) ¢ C, then C # H, so there exists a point p € Bdg(C). Since H is
a Peano continuum, C'is an open subset of H, thenp ¢ C. Thus p ¢ Z.
This implies that CNIm o = &. Therefore InaNHNZ C C1U---UC,.

Let t; = maxa }(Clx(Cy)). Then a(t;) € Cy. Since C; is pathwise
connected, then 0 = ¢; or there exists an arc 8y : I — C; joining «(0)
and a(t;). If a(t;,1]N(CoU---UC,) = &, then a(t,1]N H = @.
In this case, define Hy = H U at1, 1] and let 8 be the product of the
paths: Bi(a | [t1,1]) with an injective parametrization.

If a(ty, 1] N (C2U---UC,) # @, let ta = min([t, 1] Na (Clx(Cy U
---UCh))). Since a(ty) ¢ Clx(CeU---UC,), then t; < ty. Suppose, by
example, that a(ty) € Clx(Cs). Then a(tz) € Clx(Cy) NH N Z = Cs.
Let t3 = max([t2,1] N a™!(Clx(C2)). Since Cy is pathwise connected,
then ¢, = t3 or there exists an arc B2 : I — Cs joining a(t2) and «(ts).
If a(ts, 1] N (C3U---UC,) = &, then afts,1]N H = &. In this case
define H1 =HU Ol[tl,tz] U Ol[tg, 1] and B = 51(06 | [tl,tz])ﬁg(a | [tg, ].])

In the case a(ts, 1]N(CsU---UC,) # &, applying repeatedly a similar
procedure, we can conclude the existence of H; and 3.

Now we are ready to prove inductively the lemma. If &/ has only
one element, Y = {U}, then define H = py. Suppose that the
lemma has been proved for families with exactly n elements, and
suppose that U = {Ui,...,Up+1}. Let H be the respective graph
for Uy = {Ux, ... ,U,}. Suppose that Uy, ... Uy, 0 < m < n, are the
elements in Uy which intersect U, 4.

If m =0, that is, if U,y1 N (U1 N---NU,) = &, applying (x) to H,
to a fixed arc o : I - W = X joining py, and py, , with a(0) = py,,

n+1
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then there exists a finite connected graph H; such that H C H; C X
and py,,, € H;. Then G = H, satisfies the required properties. Then
we may assume that m > 1.

If pu, # pu,,.> applying (x) to H and to a fixed arc oy : I —
Ui U Upq1 joining py, and py,,, with a1(0) = py,, we have that
there exists a finite connected graph H; and there exists an arc
,81 I - Hi N (U1 UUn+1) such that H ¢ H, C X, Pu,1 € H,
and 3 joins py, and py,,,.- If py, = pu,,,, define H; = H and
ﬂl :I - H{ N (Ul U Un+1) by ,Bl(t) =Py, for every t.

If m > 2 and py, # pu,.,, again applying (*) to H; and to a fixed
arc ap : I — Uz U Upq joining py, and py, ., with az(0) = pu,,
we have that there exists a finite connected graph Hs and there exists
an arc By : I — Hs N (Uz UUp4q) such that Hy € Hy C X and
B2 joins py, and py,,,. If pv, = pu,.,, define Hy = H; and define
B2: I — HyN(UzUUy41) by Ba(t) = pu, for every t.

Proceeding in this way, it is possible to construct H € H; C Hy C
.-+ C Hp, and paths Bi,..., 0By such that 8; : I — H; N (U; N Up1)
and f; joins py, and py Therefore, G = H,, satisfies the required
properties.

n+1°

This completes the induction and the proof of the lemma. a

Lemma 3.2. Suppose that X is a Peano continuum. Let A =
p~Y(T) be a Whitney level with 0 < T, and let p be a point in X. Then
there exists a finite connected graph G C X such that p € G and, for
each loop « in the pointed space (X,p), there exists a loop B in the
pointed space (G,p) such that o~ (in A7).

Proof. Suppose that the metric d is a convex metric. Let ¢ > 0 be
such that if A, B € C(X) and H(A, B) < 2¢, then |u(A) — u(B)| < T.
Let U = {Uy,...,U,} be an open cover of X such that each Uj; is
connected and diamU; < e. Suppose that p € U;. Choose points
pr=p € Uy,ps € Us,...,p, € U,. Let G C X be a finite connected
graph as in Lemma 3.1 for the family U/ and the set F' = {p1,... ,pn}.

Let a be a loop in (X, p). From the Lebesgue number theorem, there
exists a 4 > 0 such that if A is a subset of I and diam A < §, then
A C a=1(U;) for some i. Choose a partition 0 =ty <ty < -+ <t, =1
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of I such that ¢, — ty—; < 0 for each £k € {1,...,m}. For each
k € {1,...,m}, choose a number s; € (tx_1,tx) and choose an index
i(k) € {1,...,n} such that [tx_1,tc] C o '(Ujx)). Since Uy is
pathwise connected, there exists a path v, : I — Uy such that
Y (0) = a(sk) and k(1) = pir)-

If 1 <k <m,a(ty) € Ujk) N Ujg41), then there exists a path gy :
I = (Ui(ky U Ui(e41)) N G such that B1(0) = pixy and Bi(1) = pigri1)-
Since p = a(0) € Uy NUjq) and p = a(l) € Uy N UL, there exist
paths By : I — (Up UU;(1)) NG and B, = I — (Ujmy U Up) NG such
that Bo = p, Bo(1) = pi(1), B (0) = Pi(m) and B, (1) = p.

Defining 8 = 505182 - - - Bm—18m, then § is a loop in (G, p).

If1 <k < m, the set C; = ImfB;, UIm (’y,;l(a | [Sks Sk+1])VE+1)
is contained in Uj(x) U Uj(k41), then dimCy < 2¢, this implies that
Cr C A~. Then, from Lemma 1.1, 3; =~ 'y,;l(a | [8ks Sk+1])VE+1 (in
A7). Similarly, 8y ~ (a | [0,51])71 (in A7) and B >~ v, (| [$m, 1])
(in A7).

Therefore, a =~ (a | [0,51)71)(7i (@ | [s1,52])72) - (mia(e |
[sm—1,8m])Tm) (V' (@ | [5m,1])) =~ B (in A7). O

Proof of Theorem B. Fix an element Ag € p=1(S,T). Let R = pu(Ap)
and A = p~1(R). Let C = F1(X) and fix a point p € Ag. Let v be an
order arc from p to Ag. Consider ¢ : m1(C,{p}) = m1(B, Ag) defined
by ¢([a]) = [(7*ay)?]. From Theorem 2.3, ¢ is surjective.

Let G be as in Lemma 3.2. Consider the natural homomorphism
¥ : m(G,p) — m(C,p), that is, $([3]) = [8). Then ¢ oy : m(G,p) —
m1(B, Ap) is a homomorphism. In order to show that ¢ o1 is surjective,
let [0] € m(B,Ap); then there exists [a] € m1(C,{p}) such that
o~ (ytay)? (in B). From Lemma 3.2 there exists a loop 3 in (G, p)
such that 8 ~ o (in A7). Then ¢ o 9 ([3]) = [(v~'B7)*] = [o]. Hence
¢ o ¥ is surjective.

Since w2 (G, p) is finitely generated (see [8, Theorem 5.2]), we conclude
that 71 (B, Ao) is finitely generated. O

4. Theorem C.

Proof of Theorem C. (a) = (b) and (b) = (c) are immediate. In
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order to prove that (c) = (a), let Tp = 1/2. Fix a point py € X.
Let G be a finite connected graph contained in X as in Lemma 3.2
for Ay = p~'(Tp) and the point py. Define 7* = max{u(H) : H is
a proper subgraph of G}. Then 0 < T* < u(G) < 1. Then there
exists 77 such that Ty, T* < Ty < 1. If G # X, then we may ask
that u(G) < Ti. From the hypothesis, there exists T} < R < S <1
such that m (1 1(R,S)) is a nontrivial group. Choose T € (R, S), let
A=pYT) and B = p!(R,S).

Suppose that X is not a simple closed curve.

Choose a maximal tree L of G. If L = G, choose a vertex p € L. If
L # G, let J be a segment of G such that J is not a segment of L; in
this case, choose a vertex p of J, then p € L. Clearly, for each loop «
in (X, p), there exists a loop 3 in (G, p) such that o ~ 3 (in A7).

Choose A € Asuch that p € A. Let C = F;(X). Let y be an order arc
from {p} to A. Consider the homomorphisms ¢ : m1(C,p) — 71(B, A)
and ¥ : m(G,p) — m(C,p) defined by ¢([o]) = [(v'ay)”] and
¥(Ja]) = [a]. Reasoning as in the proof of Theorem B, we have that
¢ o1 is surjective. We will obtain a contradiction by proving that ¢ o)
is constant.

If G # X, then for every [a] € m1(G, p), p(U{a(r) : r € I}) < u(G) <
T. Then, from Lemma 1.1, o ~ the constant map p. Thus, (7 ‘ay)* ~

the constant map Ag. Hence ¢ o is constant. So we may assume that
G=X.

Let M be a segment of G with extremes a and b such that M is not a
segment of L. Let aps be the path 01502_1, where o1, respectively oo, is
a parametrization of the unique arc in L joining p and a, respectively p
and b, notice that o; can be a constant map, and § is a parametrization
of the segment M.

From [8, Theorem 5.2], the set £ = {ap : M is a segment of G and
M is not a segment of L} generates the group (G, p).

Let apy € S; if M = J, we may assume that a = p. Then o is a
constant map, and this implies that Im ay; is a simple closed curve.
Since X is not a simple closed curve, Im o, is a proper subgraph of
G. Hence, u(Imaps) < T. From Lemma 1.1, aps ~ the constant map
p (in A™). Therefore, ¢ o ¢([a]) is the unit element in 7 (B, A).

If M # J, then Im s is a subgraph of G and J is not a segment of
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Im apy. Thus Im oy is a proper subgraph of G. Reasoning as in the
paragraph above, ¢ o ¢([a]) is the unit element in 7 (B, A).

Therefore, ¢ o 9 is a surjective constant map. This contradiction
completes the proof of the theorem. a

5. Examples.

Ezample 5.1. Theorem A and implication (¢) = (a) in Theorem C
do not hold without the hypothesis of local connectedness.

Consider X to be the Warzaw circle in the Euclidean plane. It is easy
to check that if p is a Whitney map for C'(X), then:

a) If 0 < R < S < 1 are small numbers, then the Whitney
block x~ (R, S) is homeomorphic to the open cylinder X x (0, 1), so
m1(p (R, S)) consists only of the unit element, and

(b) If 0 < R < S <1 are large numbers, then the Whitney block
p~ (R, S) is homeomorphic to the open cylinder S* x (0, 1), where S!
is a simple closed curve, so 71 (u~!(R, S)) is isomorphic to the integers.

Ezample 5.2. Theorem B does not hold without the hypothesis of
local connectedness.

If p and ¢ are two points in the Euclidean plane, let pg denote the
segment joining them.

Define X = (0,-1)(0,1) U (U{(1/n,-1)(1/n,1) : n > 1}) U
(0,1)(1,1) U (0,—1)(1, —1). It is easy to prove that f 0 < R < S <1
are small numbers then the Whitney block x~*(R, S) has the homotopy
type of X, and the group m1(p~1(R,S)) is not finitely generated.

6. Remarks and questions.

Question 6.1. Theorems A, B and C were inspired in Theorems A,
B and D in the author’s paper [4]. In that paper, the following result
was also proved:

Let X be a Peano continuum, for a connected space Y, let r(Y")
denote the multicoherence degree of Y. If 0 < m < r(X), then there
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exists a Whitney map v : C(z) — [0,1] and there exists ¢ € [0, 1]
such that r(v=1(t)) = m.

What could be an appropriate version of this result for fundamental
group and Whitney blocks?

Question 6.2. Are Theorems A, B and C true for Whitney levels
instead of Whitney blocks?

Question 6.3. Is the implication (b) = (a) true for every pathwise
connected continuum X (instead of Peano continuum)?

Question 6.4. Is the following greater dimensional version of impli-
cation (c¢) = (a) in Theorem C true:

Let X be a Peano continuum and let p be a Whitney map for
C(X). If for each R < 1, there exist R < S < T" < 1 and there
exists an integer n > 1 such that m,(x~'(S,7)) is a non-trivial
group, then X is a finite connected graph?

Question 6.5. Characterize the finite connected graphs satisfying the
assertion in Question 6.4 (compare with Question 3.5 in [5]).
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