### THE FUNDAMENTAL GROUP OF WHITNEY BLOCKS

#### ALEJANDRO ILLANES

ABSTRACT. Let X be a Peano continuum. Let C(X) be the hyperspace of subcontinua of X, and let  $\mu: C(X) \to \mathbf{R}$ be a Whitney map. In this paper we prove: Theorem A. If  $0 \le Q < R < S < T \le \mu(X)$ , then there exists a surjective homomorphism  $\phi: \pi_1(\mu^{-1}(Q,R)) \to \pi_1(\mu^{-1}(S,T))$ , where  $\pi_1(Y)$  means the fundamental group of Y. Theorem B. If  $0 \le S < T \le \mu(X)$ , then  $\pi_1(\mu^{-1}(S,T))$  is finitely generated. Theorem C. X is a simple closed curve if and only if  $\pi_1(\mu^{-1}(S,T))$  is a nontrivial group for every  $0 \leq S < T \leq \mu(X)$ .

**0.** Introduction. Throughout this paper X will denote a continuum (a nonempty, compact, connected metric space) with metric d. Let C(X) denote the hyperspace of all subcontinua of X with the Hausdorff metric  $\mathcal{H}$ . A map is a continuous function. A Whitney map for C(X) is a map  $\mu: C(X) \to \mathbf{R}$  such that (a)  $\mu(\{x\}) = 0$  for every  $x \in X$ , (b) If  $A, B \in C(X)$  and  $A \subset B \neq A$ , then  $\mu(A) < \mu(B)$ , and (c)  $\mu(X) = 1$ . A Whitney block for C(X), respectively a Whitney level for C(X), is a set of the form  $\mu^{-1}(S,T)$ , respectively  $\mu^{-1}(T)$ , where  $0 \le S < T \le 1$ . The fundamental group of a space Y is denoted by  $\pi_1(Y)$ .

Hyperspaces are acyclic (see [13, Theorem 1.2]). For Whitney levels, the situation is different; the following observation was made by J.T. Rogers, Jr., in [11]: "As we go higher into the hyperspace, no new one-dimensional holes are created, and perhaps some one-dimensional holes are swallowed." This intuitive statement has found several formulations.

In [12, Theorem 5], J.T. Rogers, Jr., proved:

**Theorem.** If  $\mu$  is a Whitney map for C(X) and  $0 \le s \le t \le 1$ , then there exists a monomorphism

$$\gamma^*: H^1(\mu^{-1}(t)) \longrightarrow H^1(\mu^{-1}(s))$$

Received by the editors on April 29, 1994. AMS (MOS) Subject Classification. Primary 54B20. Key words and phrases. Hyperspaces, Whitney blocks, Whitney levels, fundamental group.

where  $H^1(Y)$  denotes the reduced nth Alexander-Čech cohomology group of Y.

In [4, Theorem A], the author proved:

**Theorem.** If X is a Peano continuum,  $\mu$  is a Whitney map for C(X) and  $0 \le s \le t \le 1$ , then

$$r(\mu^{-1}(t)) \le r(\mu^{-1}(s))$$

where r(Y) denotes the multicoherence degree of Y.

Two-dimensional holes behave in a different way. A. Petrus [11] showed that if D denotes the unit disk in the Euclidean plane, then there exists a Whitney level  $\mu^{-1}(T)$  for C(D) (for an appropriate Whitney map  $\mu$ ) such that there exists a retraction of  $\mu^{-1}(T)$  onto a 2-sphere. Related to these topics, in [3], the author obtained a characterization of dendroids in terms of n-connectedness of Whitney levels.

In this paper we study the fundamental group of Whitney blocks. We prove that if X is a Peano continuum and  $\mu$  is a fixed Whitney map for C(X), then:

**Theorem A.** If  $0 \le Q < R < S < T \le \mu(X)$ , then there exists a surjective homomorphism  $\phi : \pi_1(\mu^{-1}(Q,R)) \to \pi_1(\mu^{-1}(S,T))$ .

**Theorem B.** If  $0 \le S < T \le 1$ , then  $\pi_1(\mu^{-1}(S,T))$  is finitely generated.

**Theorem C.** The following assertions are equivalent:

- (a) X is a simple closed curve,
- (b)  $\pi_1(\mu^{-1}(S,T))$  is a nontrivial group for every  $0 \le S < T \le 1$ .
- (c) For each R < 1, there exist  $R < S < T \le 1$  such that  $\pi_1(\mu^{-1}(S,T))$  is a nontrivial group.
  - 1. Preliminary constructions. We will identify X with  $F_1(X) =$

 $\{x\} \in C(X): x \in X\}$ . The unit closed interval in the real line  $\mathbf R$  is denoted by I. If  $A, B \in C(X)$  and  $A \subset B$ , an order arc from A to B is a map  $\gamma: I \to C(X)$  such that  $\gamma(0) = A$ ,  $\gamma(1) = B$  and  $r \leq s$  implies  $\gamma(r) \subset \gamma(s)$ . The existence of order arcs is guaranteed by  $[\mathbf 10$ , Theorem 1.08]. If  $\alpha, \beta: I \to Y$  are two paths in a space Y such that  $\alpha(0) = \beta(0)$  and  $\alpha(1) = \beta(1)$ , the notation  $\alpha \simeq \beta$  (in Y) means that there exists a homotopy  $F: I \times I \to Y$  such that: (a)  $F(r,0) = \alpha(r)$  and  $F(r,1) = \beta(r)$  for every  $r \in I$ , and (b)  $F(0,s) = \alpha(0)$  and  $F(1,s) = \alpha(1)$  for each  $s \in I$ . If  $A \in C(X)$  and  $\varepsilon > 0$ , define  $N(\varepsilon, A) = \{p \in X: \text{ there exists } a \in A \text{ such that } d(p,a) < \varepsilon\}$ .

If  $\mathcal{A} = \mu^{-1}(T)$  is a Whitney level for C(X), we define  $\mathcal{A}^- = \mu^{-1}[0, T]$ . Using order arcs (see [10, Theorem 1.08]), it is easy to show that  $\mathcal{A}^- = \{A \in C(X) : \text{ There exists } B \in \mathcal{A} \text{ such that } A \subset B\}$ , so  $\mathcal{A}^-$  does not depend on  $\mu$ .

**Lemma 1.1.** Let  $\mathcal{A}$  be a Whitney level for C(X). Let  $\alpha, \beta: I \to \mathcal{A}^-$  be two paths such that  $\alpha(0) = \beta(0)$ ,  $\alpha(1) = \beta(1)$  and  $[(\cup \{\alpha(r): r \in I\}) \cup (\cup \{\beta(r): r \in I\})] \in \mathcal{A}^-$ . Then  $\alpha \simeq \beta$  (in  $\mathcal{A}^-$ ).

Proof. Let  $\mathcal{A}=\mu^{-1}(T)$ . Let S be the unit circle in the Euclidean plane  $\mathbf{R}^2$ . Let  $S^-=\{(x,y)\in S:y\leq 0\}$  and  $S^+=\{(x,y)\in S:y\geq 0\}$ . Let  $\rho:\mathbf{R}^2\to\mathbf{R}$  be the projection in the first coordinate. Define  $\rho_1=\rho\mid S^-:S^-\to [-1,1]$  and  $\rho_2=\rho\mid S^+:S^+\to [-1,1]$ . Then  $\rho_1$  and  $\rho_2$  are homeomorphisms. Since we are identifying S with  $F_1(S)=\{\{z\}\in C(S):z\in S\}$ , we may consider the maps  $\rho_1^{-1},\rho_2^{-1}:[-1,1]\to C(S)$ . Since C(S) is homeomorphic to a disk, then there exists a map  $F:[-1,1]\times I\to C(S)$  such that  $F(r,0)=\rho_1^{-1}(r)$  and  $F(r,1)=\rho_2^{-1}(r)$  for every  $r\in [-1,1]$  and F(-1,s)=(-1,0) and F(1,s)=(1,0) for every s.

Define  $\gamma: S \to \mathcal{A}^-$  by:

$$\gamma(z) = \begin{cases} \alpha((\rho_1(z) + 1)/2) & \text{if } z \in S^-\\ \beta((\rho_2(z) + 1)/2) & \text{if } z \in S^+. \end{cases}$$

Then  $\gamma$  is a map.

Define  $G: I \times I \to \mathcal{A}^-$  by  $G(r,s) = \cup \{\gamma(z) : z \in F(2r-1,s)\}$ . Then G is a map. Since  $G(r,s) \subset \cup \{\gamma(z) : z \in S\} \subset (\cup \operatorname{Im} \alpha) \cup (\cup \operatorname{Im} \beta)$ , then  $G(r,s) \in \mathcal{A}^-$  for every (r,s). Notice that  $G(r,0) = \gamma(\rho_1^{-1}(2r-1)) = 0$ 

 $\alpha(r)$  and  $G(r,1)=\beta(r)$  for every r. Since  $G(0,s)=\gamma(-1,0)=\alpha(0)$  and  $G(1,s)=\alpha(1)$  for every s, therefore  $a\simeq\beta$  (in  $\mathcal{A}^-$ ).  $\square$ 

**Theorem 1.2.** Let  $A = \mu^{-1}(T)$  be a Whitney level for C(X). If  $\alpha: I \to \mathcal{A}^-$  is a path such that  $\alpha(0), \alpha(1) \in \mathcal{A}$ , define  $\alpha^{\mathcal{A}}: I \to \mathcal{A}$  by  $\alpha^{\mathcal{A}}(r) = \bigcup \{\alpha(t): r \leq t \leq q(r)\}$ , where  $q(r) \in [r,1]$  is taken in such a way that  $\mu(\alpha^{\mathcal{A}}(r)) = T$ . Then

- (a)  $\alpha^{\mathcal{A}}$  is well defined,
- (b)  $\alpha^{\mathcal{A}}(0) = \alpha(0)$  and  $\alpha^{\mathcal{A}}(1) = \alpha(1)$ ,
- (c)  $\alpha^{\mathcal{A}}$  is continuous,
- (d) If  $\alpha, \beta : I \to \mathcal{A}^-$  are two paths such that  $\alpha(0) = \beta(0) \in \mathcal{A}$  and  $\alpha(1) = \beta(1) \in \mathcal{A}$  and  $\alpha \simeq \beta$  (in  $\mathcal{A}^-$ ), then  $\alpha^{\mathcal{A}} \simeq \beta^{\mathcal{A}}$  (in  $\mathcal{A}$ ).
- (e) If  $\alpha, \beta: I \to \mathcal{A}^-$  are two paths such that  $\alpha(0), \beta(1) \in \mathcal{A}$  and  $\alpha(1) = \beta(0) \in \mathcal{A}$ , then  $(\alpha\beta)^{\mathcal{A}} = \alpha^{\mathcal{A}}\beta^{\mathcal{A}}$  (here we are considering the usual product of paths).

*Proof.* (a), (b) and (c) are easy to prove.

- (d) Let  $F:I\times I\to \mathcal{A}^-$  be a map such that  $F(r,0)=\alpha(r)$  and  $F(r,1)=\beta(r)$  for every r, and  $F(0,s)=\alpha(0)$  and  $F(1,s)=\alpha(1)$  for every s. Define  $F^{\mathcal{A}}:I\times I\to \mathcal{A}$  by  $F^{\mathcal{A}}(r,s)=\cup\{F(t,s):r\le t\le q(r,s)\}$ , where  $q(r,s)\in[r,1]$  is chosen in such a way that  $\mu(F^{\mathcal{A}}(r,s))=T$ . It is easy to check that  $F^{\mathcal{A}}$  is a homotopy between  $\alpha^{\mathcal{A}}$  and  $\beta^{\mathcal{A}}$  such that  $F^{\mathcal{A}}(0,s)=\alpha^{\mathcal{A}}(0)$  and  $F^{\mathcal{A}}(1,s)=\alpha^{\mathcal{A}}(1)$  for all
  - (e) Suppose that, for each  $r \in I$ ,

$$(\alpha\beta)^{\mathcal{A}}(r) = \bigcup \{\alpha\beta(t) : r \leq t \leq q_1(r)\},$$

$$\alpha^{\mathcal{A}}(r) = \bigcup \{ \alpha(t) : r \le t \le q_2(r) \},$$

and

$$\beta^{\mathcal{A}}(r) = \bigcup \{\beta(t) : r \le t \le q_3(r)\}.$$

Let  $r \in [0, 1/2]$ . If  $q_1(r) \ge 1/2$ , then  $(\alpha \beta)^{\mathcal{A}}(r) \supset \bigcup \{\alpha \beta(t) : r \le t \le 1/2\} = \bigcup \{\alpha(2t) : r \le t \le 1/2\} = \bigcup \{\alpha(t) : 2r \le t \le 1\} \supset \bigcup \{\alpha(t) : 2r \le t \le 1\}$ 

 $t \leq q_2(2r)\} = \alpha^{\mathcal{A}}(2r)$ . Since  $(\alpha\beta)^{\mathcal{A}}(r)$ ,  $\alpha^{\mathcal{A}}(2r) \in \mathcal{A}$ , then  $(\alpha\beta)^{\mathcal{A}}(r) = \alpha^{\mathcal{A}}(2r)$ . If  $q_1(r) \leq 1/2$ , then  $(\alpha\beta)^{\mathcal{A}}(r) = \cup \{\alpha(t) : 2r \leq t \leq 2q_1(r)\}$  which contains or is contained in  $\cup \{\alpha(t) : 2r \leq t \leq q_2(r)\} = \alpha^{\mathcal{A}}(2r)$ , then  $(\alpha\beta)^{\mathcal{A}}(r) = \alpha^{\mathcal{A}}(2r)$ . Hence,  $(\alpha\beta)^{\mathcal{A}}(r) = \alpha^{\mathcal{A}}(2r)$  for every  $r \in [0, 1/2]$ . Similarly,  $(\alpha\beta)^{\mathcal{A}}(r) = \beta^{\mathcal{A}}(2r-1)$  for each  $r \in [1/2, 1]$ . Therefore,  $(\alpha\beta)^{\mathcal{A}} = \alpha^{\mathcal{A}}\beta^{\mathcal{A}}$ .

**Theorem 1.3.** Let  $A = \mu^{-1}(T)$  be a Whitney level for C(X). Let  $\alpha : I \to A$  be a map. Suppose that there exists a point p in the set  $\cap \{\alpha(r) : r \in I\}$ . Let  $\gamma_0$ , respectively  $\gamma_1$ , be an order arc from  $\{p\}$  to  $\alpha(0)$ , respectively from  $\{p\}$  to  $\alpha(1)$ . Then  $\alpha \simeq (\gamma_0^{-1}\gamma_1)^A$  (in A).

*Proof.* Notice that  $p \in (\gamma_0^{-1}\gamma_1)(r)$  for every  $r \in I$ . Then  $\alpha$  and  $(\gamma_0^{-1}\gamma_1)^{\mathcal{A}}$  are paths in the space  $C_p(T) = \{A \in \mathcal{A} : p \in A\}$ . As was proved by Lynch in [7], this space is an AR. Therefore,  $\alpha \simeq (\gamma_0^{-1}\gamma_1)^{\mathcal{A}}$  (in  $C_p(T) \subset \mathcal{A}$ ).  $\square$ 

**Theorem 1.4.** Suppose that X is a Peano continuum. Let  $\mathcal{B} = \mu^{-1}(R,S)$  be a Whitney block for C(X). Let  $\mathcal{A} = \mu^{-1}(T)$  be a Whitney level, where R < T < S. Fix  $A_0 \in \mathcal{A}$ ,  $a \in A_0$  and let  $\gamma$  be an order arc from  $\{a\}$  to  $A_0$ . Let  $\alpha : I \to \mathcal{B}$  be a path such that  $\alpha(0) = \alpha(1) = A_0$ . Then there exists a map  $\sigma : I \to X$  such that  $\sigma(0) = \sigma(1) = a$  and  $\alpha \simeq (\gamma^{-1}\sigma\gamma)^{\mathcal{A}}$  (in  $\mathcal{B}$ ).

*Proof.* From [1] and [9], we may assume that the metric  $\boldsymbol{d}$  for X is a convex metric and diameter of X=1. Define  $K:C(X)\times I\to C(X)$  by  $K(A,r)=\{p\in X: \text{ there exists }a\in A \text{ such that }\boldsymbol{d}(a,p)\leq r\}.$  Clearly, (see [10, 0.65.3]) K is continuous and K(A,0)=A and K(A,1)=X for every  $A\in C(X)$ .

Fix  $T_0 \in (R, S)$  such that  $\operatorname{Im} \alpha \subset \mu^{-1}[0, T_0)$ . For each  $s \in I$ ,  $\mu(K(\alpha(s), 0)) = \mu(\alpha(s)) < T_0$  and  $\mu(K(\alpha(s), 1)) = \mu(X) > T_0$ , then there exists  $r(s) \in I$  such that  $\mu(K(\alpha(s), r(s))) = T_0$ . We will show that r(s) is unique. Suppose, on the contrary, that there exist  $r_1 < r_2$  such that  $\mu(K(\alpha(s), r_1)) = T_0 = \mu(K(\alpha(s), r_2))$ . Since  $K(\alpha(s), r_1) \subset K(\alpha(s), r_2)$ , then  $K(\alpha(s), r_1) = K(\alpha(s), r_2)$ . Since  $\mu(X) > T_0$ , we may choose a point  $q \in X - K(\alpha(s), r_2)$ . Let  $p \in \alpha(s)$ 

be such that  $d(p,q) = \min\{d(x,q) : x \in \alpha(s)\}$ . The convexity of d implies that there exists an isometry  $\rho: [0, d(p,q)] \to X$  (see [10, 0.65.3]) such that  $\rho(0) = p$  and  $\rho(d(p,q)) = q$ . Since  $q \notin K(\alpha(s), r_2)$ ,  $0 \le r_1 < r_2 < d(p,q)$ . Let  $y = \rho(r_2)$ , then  $d(p,y) = d(\rho(0), \rho(r_2)) = r_2$ , so  $y \in K(\alpha(s), r_2) = K(\alpha(s), r_1)$ . Then there exists an  $x \in \alpha(s)$  such that  $d(x,y) \le r_1$ . Thus  $d(x,q) \le d(x,y) + d(y,q) \le r_1 + d(p,q) - r_2 < d(p,q)$  which contradicts the choice of p. This contradiction proves that r(s) is unique.

It is easy to show that r is continuous and, from the choice of  $T_0$ , r(s) > 0 for each  $s \in I$ . Let  $r_0 = \min\{r(s) : s \in I\} > 0$ .

Set  $C = \mu^{-1}(T_0)$ . Define  $\beta : I \to C$  by  $\beta(s) = K(\alpha(s), r(s))$ . Then  $\beta$  is continuous. Choose  $\delta > 0$  such that  $|s - t| < \delta$  implies that  $\mathcal{H}(\alpha(s), \alpha(t)) < r_0$ .

Fix a partition  $0 = s_0 < s_1 < \dots < s_m = 1$  of I such that, for every  $i = 1, \dots, m, s_i - s_{i-1} < \delta$ . For each  $i \in \{0, 1, \dots, m\}$ , choose a point  $p_i \in \alpha(s_i)$ , with  $p_0 = p_m = a$ .

Let  $i \in \{0,1,\ldots,m-1\}$ . Let  $s \in [s_i,s_{i+1}]$ . Then  $\mathcal{H}(\alpha(s),\alpha(s_i)) < r_0$ . This implies that  $p_i \in K(\alpha(s),r_0) \subset \beta(s)$ . Then we may choose an order arc  $\gamma_s^{(i)}$  from  $\{p_i\}$  to  $\beta(s)$ . We need to choose  $\gamma_{s_0}^{(0)}$  in a more precise way, we define this order arc by:

$$\gamma_{s_0}^{(0)}(s) = \begin{cases} \gamma(2s) & \text{if } s \in [0, 1/2], \\ K(\alpha(0), (2s-1)r(0)) & \text{if } s \in [1/2, 1]. \end{cases}$$

Set  $\gamma_0 = \gamma_{s_0}^{(0)}$ .

From Theorem 1.3,

$$\begin{split} \beta &\simeq (\beta \mid [s_0, s_1]) (\beta \mid [s_1, s_2]) \cdots (\beta \mid [s_{m-1}, s_m]) \\ &\simeq ((\gamma_{s_0}^{(0)})^{-1} \gamma_{s_1}^{(0)})^{\mathcal{C}} ((\gamma_{s_1}^{(1)})^{-1} \gamma_{s_2}^{(1)})^{\mathcal{C}} \cdots ((\gamma_{s_{m-1}}^{(m-1)})^{-1} \gamma_{s_m}^{(m-1)})^{\mathcal{C}} \\ &= ((\gamma_{s_0}^{(0)})^{-1} \gamma_{s_1}^{(0)} (\gamma_{s_1}^{(1)})^{-1} \gamma_{s_2}^{(1)} \cdots (\gamma_{s_{m-1}}^{(m-1)})^{-1} \gamma_{s_m}^{(m-1)})^{\mathcal{C}} \\ &\simeq ((\gamma_0)^{-1} \gamma_{s_1}^{(0)} (\gamma_{s_1}^{(1)})^{-1} \gamma_{s_2}^{(1)} \cdots (\gamma_{s_{m-1}}^{(m-1)})^{-1} \gamma_{s_m}^{(m-1)} (\gamma_0)^{-1} \gamma_0)^{\mathcal{C}} \end{split}$$

(in C).

Let  $i \in \{1, \ldots, m\}$ . Since d is convex,  $N(r_0, \alpha(s_i))$  is an open connected subset of X, then  $N(r_0, \alpha(s_i))$  is path connected. Since  $p_{i-1} \in N(r_0, \alpha(s_i))$ , there exists a map  $\sigma_i : I \to N(r_0, \alpha(s_i)) \subset \beta(s_i)$ 

such that  $\sigma_i(0) = p_{i-1}$  and  $\sigma_i(1) = p_i$ . Since  $\cup \operatorname{Im} (\gamma_{s_i}^{(i-1)}(\gamma_{s_i}^{(i)})^{-1}) \subset \beta(s_i)$ , Lemma 1.1 implies that  $\gamma_{s_i}^{(i-1)}(\gamma_{s_i}^{(i)})^{-1} \simeq \sigma_i \text{ (in } \mathcal{C}^-)$ . Define  $\sigma = \sigma_1 \sigma_2 \cdots \sigma_m$ . Then  $\beta \simeq (\gamma_0^{-1} \sigma_1 \cdots \sigma_m \gamma_0)^{\mathcal{C}} = (\gamma_0^{-1} \sigma \gamma_0)^{\mathcal{C}}$ 

(in C).

Define  $G: I \times I \to \mathcal{B}$  by

$$G(s,t) = \begin{cases} K(\alpha(0), 3st(r(0))) & \text{if } 0 \le s \le 1/3, \\ K(\alpha(3s-1), t(r(3s-1))) & \text{if } 1/3 \le s \le 2/3, \\ K(\alpha(0), 3(1-s)t(r(0))) & \text{if } 2/3 \le s \le 1. \end{cases}$$

Then G is continuous. Notice that

$$G(s,1) = \begin{cases} \gamma_0((3s+1)/2) & \text{if } 0 \le s \le 1/3, \\ \beta(3s-1) & \text{if } 1/3 \le s \le 2/3 \\ \gamma_0((4-3s)/2) & \text{if } 2/3 \le s \le 1, \end{cases}$$

and the map  $\zeta(s) = G(s,0)$  is such that  $\zeta \simeq \alpha$  (in  $\mathcal{B}$ ). Therefore  $\alpha \simeq (\gamma_0 \mid [1/2, 1]) \beta(\gamma_0 \mid [1/2, 1])^{-1}$  (in  $\mathcal{B}$ ). Set  $\gamma^* = \gamma_0 \mid [1/2, 1]$ . Then  $\alpha \simeq \gamma^* \beta \gamma^{*-1} \simeq \gamma^* (\gamma_0^{-1} \sigma \gamma_0)^{\mathcal{C}} \gamma^{*-1}$  (in  $\mathcal{B}$ ).

Define  $\lambda: I \times I \to C(X)$  by

$$\lambda(s,t) = \begin{cases} \gamma_0(t(1-3s)) & \text{if } 0 \le s \le 1/3, \\ \sigma(3s-1) & \text{if } 1/3 \le s \le 2/3, \\ \gamma_0(t(3s-2)) & \text{if } 2/3 \le s \le 1. \end{cases}$$

Then  $\lambda$  is continuous and  $\mu(\lambda(s,t)) \leq \mu(\gamma_0(t))$  for every (s,t).

Define  $L: I \times I \to B$  by

$$L(s,t) = \begin{cases} \gamma_0((3ts+1)/2) & \text{if } 0 \le s \le 1/3, \\ \cup \{\lambda(u,(t+1)/2): 3s-1 \le u \le q(s,t)\} & \text{where } q(s,t) \in [3s-1,1] \text{ is chosen} \\ & \text{in such a way that } \mu(L(s,t)) = \\ & \mu(\gamma_0((t+1)/2)) & \text{if } 1/3 \le s \le 2/3 \\ \gamma_0((3t(1-s)+1)/2) & \text{if } 2/3 \le s \le 1. \end{cases}$$

Clearly  $L(s,t) \in \mathcal{B}$  for every (s,t) and L is continuous.

Notice that, for each s,  $\lambda(s, 1/2) = (\gamma_0 \mid [0, 1/2])^{-1} \sigma(\gamma_0 \mid [0, 1/2])(s) =$  $\gamma^{-1}\sigma\gamma(s)$ .

Since

$$L(s,0) = \begin{cases} A_0 & \text{if } 0 \le s \le 1/3 \\ & \text{or } 2/3 \le s \le 1, \\ \cup \{\gamma^{-1}\sigma\gamma(u): 3s-1 \le u \le q(s,0)\}, \\ & \text{where } \mu(L(s,0)) = \\ & \mu(\gamma_0(1/2)) = T & \text{if } 1/3 \le s \le 2/3. \end{cases}$$

Then the map  $\zeta_1(s) = L(s,0)$  is such that  $\zeta_1 \simeq (\gamma^{-1}\sigma\gamma)^A$  (in A).

Notice that, for each s,  $\lambda(s,1) = \gamma_0^{-1} \sigma \gamma_0(s)$ . Then

$$L(s,1) = \begin{cases} \gamma_0((3s+1)/2) & \text{if } 0 \le s \le 1/3, \\ \cup \{\gamma_0^{-1}\sigma\gamma_0(u) : 3s-1 \le u \le q(s,1)\} & \text{where } \mu(L(s,1)) = \mu(\beta(0)) = T & \text{if } 1/3 \le s \le 2/3, \\ \gamma_0((3(1-s)+1)/2) & \text{if } 2/3 \le s \le 1. \end{cases}$$
$$= (\gamma^*(\gamma_0^{-1}\sigma\gamma_0)^{\mathcal{C}}\gamma^{*-1})(s).$$

Therefore,  $(\gamma^{-1}\sigma\gamma)^{\mathcal{A}} \simeq \gamma^*(\gamma_0^{-1}\sigma\gamma_0)^{\mathcal{C}}\gamma^{*-1} \simeq \alpha$  (in  $\mathcal{B}$ ). Thus  $\alpha \simeq (\gamma^{-1}\sigma\gamma)^{\mathcal{A}}$  (in  $\mathcal{B}$ ).

# 2. Theorem A.

Construction 2.1. Let  $A = \mu^{-1}(T)$  be a Whitney level for C(X). Let C be a pathwise connected subset of  $A^-$ . Choose elements  $A_0 \in A$  and  $C_0 \in C$  such that  $C_0 \subset A_0$ . Let  $\gamma$  be an order arc from  $C_0$  to  $A_0$ . Define  $\phi_0 : \pi_1(C, C_0) \to \pi_1(A, A_0)$  by  $\phi_0([\alpha]) = [(\gamma^{-1}\alpha\gamma)^A]$ . Let  $\mathcal{B} = \mu^{-1}(R, S)$  be a Whitney block for C(X) such that R < T < S. Then we consider the function  $\phi : \pi_1(C, C_0) \to \pi_1(B, A_0)$  defined by  $\phi([\alpha]) = [(\gamma^{-1}\alpha\gamma)^A]$ .

**Lemma 2.2.**  $\phi_0$  and  $\phi$  are well defined homomorphisms.

*Proof.* It follows from Theorem 1.2.

**Theorem 2.3.** Suppose that X is a Peano continuum. If C contains a Whitney level  $\nu^{-1}(Q)$  and  $C_0$  is a fixed element in  $\nu^{-1}(Q)$ , then  $\phi: \pi_1(C, C_0) \to \pi_1(B, A_0)$  is surjective.

Proof. Let  $[\alpha] \in \pi_1(\mathcal{B}, A_0)$ . Fix a point  $a \in C_0$  and let  $\gamma_1$  be an order arc from  $\{a\}$  to  $C_0$ . From Theorem 1.4, there exists a map  $\sigma: I \to X$  such that  $\sigma(0) = \sigma(1) = a$  and  $\alpha \simeq ((\gamma_1 \gamma)^{-1} \sigma \gamma_1 \gamma)^{\mathcal{A}}$  (in  $\mathcal{B}$ ). Let  $D = \nu^{-1}(Q) \subset \mathcal{C}$ . Define  $\beta = \gamma_1^{-1} \sigma \gamma_1$ , then  $\beta(0) = C_0 = \beta(1)$  and  $\operatorname{Im} \beta \subset D^-$ . We will prove that  $\phi([\beta^D]) = [\alpha]$ . It is enough to prove that  $(\gamma^{-1}\beta^D\gamma)^{\mathcal{A}}(s) = (\gamma^{-1}\beta\gamma)^{\mathcal{A}}(s)$  for every s.

We will assume that  $\gamma^{-1}\beta^D\gamma$  and  $\gamma^{-1}\beta\gamma$  are parametrized in thirds, that is,

$$(\gamma^{-1}\beta^{D}\gamma)(s) = \begin{cases} \gamma^{-1}(3s) & \text{if } 0 \le s \le 1/3, \\ \beta^{D}(3s-1) & \text{if } 1/3 \le s \le 2/3, \\ \gamma(3s-2) & \text{if } 2/3 \le s \le 1. \end{cases}$$
$$(\gamma^{-1}\beta\gamma)(s) = \begin{cases} \gamma^{-1}(3s) & \text{if } 0 \le s \le 1/3, \\ \beta(3s-1) & \text{if } 1/3 \le s \le 2/3, \\ \gamma(3s-2) & \text{if } 2/3 \le s \le 1. \end{cases}$$

Let  $(\gamma^{-1}\beta\gamma)^{\mathcal{A}}(s) = \bigcup \{\gamma^{-1}\beta\gamma(r) : s \leq r \leq q_1(s)\}, \ (\gamma^{-1}\beta^D\gamma)^{\mathcal{A}}(s) = \bigcup \{\gamma^{-1}\beta^D\gamma(r) : s \leq r \leq q_2(s)\}, \ \text{and} \ \beta^D(s) = \bigcup \{\beta(r) : s \leq r \leq q_3(s)\}.$ 

If  $q_1(s) \leq q_2(s)$ , since  $\beta(r) \subset \beta^D(r)$  for every r, then  $(\gamma^{-1}\beta\gamma)^A(s) \subset (\gamma^{-1}\beta^D\gamma)^A(s)$ , thus  $(\gamma^{-1}\beta\gamma)^A(s) = (\gamma^{-1}\beta^D\gamma)^A(s)$ . If  $q_2(s) \leq 1/3$ , then  $(\gamma^{-1}\beta^D\gamma)^A(s) = \cup \{\gamma^{-1}(3r) : s \leq r \leq q_2(s)\}$  is contained or contains to  $(\gamma^{-1}\beta\gamma)^A(s)$ , so  $(\gamma^{-1}\beta^D\gamma)^A(s) = (\gamma^{-1}\beta\gamma)^A(s)$ . The case  $2/3 \leq s$  is similar. Then we may assume that  $1/3 < q_2(s) < q_1(s)$  and s < 2/3.

If  $2/3 \leq q_1(s)$ ,  $(\gamma^{-1}\beta^D\gamma)^{\mathcal{A}}(s) \subset \cup\{\gamma^{-1}\beta^D\gamma(r): s \leq r \leq q_1(s)\} = \cup\{\gamma^{-1}\beta\gamma(r): s \leq r \leq q_1(s)\} = (\gamma^{-1}\beta\gamma)^{\mathcal{A}}(s)$ . Thus,  $(\gamma^{-1}\beta^D\gamma)^{\mathcal{A}}(s) = (\gamma^{-1}\beta\gamma)^{\mathcal{A}}(s)$ . Hence, we may assume that  $q_1(s) < 2/3$ .

Define  $J = [1/3, 2/3] \cap [s, q_2(s)] \neq \emptyset$ . Let  $q_4 = \sup\{q_3(3r-1) : r \in J\}$ . If  $(q_4 + 1)/3 \le q_1(s)$ , let  $r \in J \subset [1/3, 2/3]$ , so  $\gamma^{-1}\beta^D\gamma(r) = \beta^D(3r-1) \subset \cup \{\beta(t) : 3r-1 \le t \le q_4\} \subset \cup \{\beta(t) : 3r-1 \le t \le 3q_1(s) - 1\} = \cup \{\gamma^{-1}\beta\gamma(t) : r \le t \le q_1(s)\} \subset (\gamma^{-1}\beta\gamma)^{\mathcal{A}}(s)$ . It follows that  $(\gamma^{-1}\beta^D\gamma)^{\mathcal{A}}(s) \subset (\gamma^{-1}\beta\gamma)^{\mathcal{A}}(s)$ . Thus  $(\gamma^{-1}\beta^D\gamma)^{\mathcal{A}}(s) = (\gamma^{-1}\beta\gamma)^{\mathcal{A}}(s)$ .

Finally, if  $q_1(s) < (q_4 + 1)/3$ , then  $3q_1(s) - 1 < q_4$ . Thus there exists  $r_0 \in J$  such that  $3q_1(s) - 1 < q_3(3r_0 - 1)$ . Let  $r \in [s, q_1(s)]$  be such that  $1/3 \le r$ . If  $r_0 \le r$ , then  $3r_0 - 1 \le 3r - 1 < q_3(3r_0 - 1)$ , so  $\gamma^{-1}\beta\gamma(r) = \beta(3r - 1) \subset \beta^D(3r_0 - 1) \subset (\gamma^{-1}\beta^D\gamma)^A(s)$ .

Thus,  $\gamma^{-1}\beta\gamma(r) \subset (\gamma^{-1}\beta^D\gamma)^{\mathcal{A}}(s)$ . If  $r \leq r_0$ , then  $s \leq r \leq q_2(s)$ , so  $\gamma^{-1}\beta\gamma(r) = \beta(3r-1) \subset \beta^D(3r-1) \subset (\gamma^{-1}\beta^D\gamma)^{\mathcal{A}}(s)$ . This implies that  $\gamma^{-1}\beta\gamma(r) \subset (\gamma^{-1}\beta^D\gamma)^{\mathcal{A}}(s)$  for every  $r \in [s, q_1(s)]$ . Hence  $(\gamma^{-1}\beta\gamma)^{\mathcal{A}}(s) \subset (\gamma^{-1}\beta^D\gamma)^{\mathcal{A}}(s)$ . Thus,  $(\gamma^{-1}\beta\gamma)^{\mathcal{A}}(s) = (\gamma^{-1}\beta^D\gamma)^{\mathcal{A}}(s)$ .

Therefore, for every  $s \in I$ ,  $(\gamma^{-1}\beta\gamma)^{\mathcal{A}}(s) = (\gamma^{-1}\beta^{\mathcal{D}}\gamma)^{\mathcal{A}}(s)$ .

Therefore,  $\phi$  is surjective.

Proof of Theorem A. From Theorem 2.3, it is enough to show that  $\mu^{-1}(Q,R)$  is pathwise connected. From [10, Theorem 14.8], every Whitney level for C(X) is pathwise connected. Taking a fixed Whitney level contained in  $\mu^{-1}(Q,R)$  and, using order arcs, it follows that  $\mu^{-1}(Q,R)$  is pathwise connected.  $\square$ 

### Theorem B.

**Lemma 3.1.** Suppose that X is a Peano continuum. Let  $\mathcal{U}$  be a finite nonempty family of subsets of X such that each element in  $\mathcal{U}$  is open and connected. Let  $F = \{P_U \in U : U \in \mathcal{U}\}$  be a chosen set. Then there exists a finite connected graph  $G \subset X$  such that  $F \subset G$  and if  $U, V \in \mathcal{U}$  and  $U \cap V \neq \emptyset$ , then there exists a path in  $G \cap (U \cup V)$  joining  $P_U$  and  $P_V$ .

*Proof.* If X is an arc, the lemma is immediate. So we may suppose that X is not an arc.

First, we will prove that if W is an open subset of X,  $\varepsilon > 0$  and H is a finite connected graph contained in X, then only a finite number of components of  $H \cap W$  have diameter larger than  $\varepsilon$ .

Suppose, on the contrary, that there exists a sequence  $\{C_1, C_2, \dots\}$  of pairwise different components of  $H \cap W$  such that  $\dim C_n > \varepsilon$  for all n. Since H has a finite number of vertices, we may assume that there are no vertices in the set  $\cup \{C_n : n \geq 1\}$ . Thus each  $C_n$  is contained in some segment of H. Since H has a finite number of segments, we may also assume that every  $C_n$  is contained in a fixed segment J of H. Then each  $C_n$  is a subinterval of J of diameter larger than  $\varepsilon$ . Since it is not possible, then the assertion is proved.

Now we will prove the following assertion:

(\*) If W is an open subset of X, H is a finite connected graph contained in X and  $\alpha:I\to W$  is an arc such that  $\alpha(0)\in H$ , then there exists a finite connected graph  $H_1$  and there exists an arc  $\beta:I\to H_1\cap W$  such that  $H\subset H_1\subset X$ ,  $\alpha(1)\in H_1$  and  $\beta$  joins  $\alpha(0)$  and  $\alpha(1)$ .

Let Z be an open proper subset of X such that  $\operatorname{Im} \alpha \subset Z \subset \operatorname{Cl}_X(Z) \subset W$ . Let  $\varepsilon = \{\min\{d(a,z) : a \in \operatorname{Im} \alpha \text{ and } z \in X - Z\}\}/2 > 0$ . From the assertion proved above, there exists only a finite number of components  $C_1, \ldots, C_n$  of  $H \cap Z$  such that  $\dim C_i \geq \varepsilon$ . Suppose that  $\alpha(0) \in C_1$ .

Let C be a component of  $H \cap Z$  such that  $C \notin \{C_1, \ldots, C_n\}$ . Since  $\alpha(0) \notin C$ , then  $C \neq H$ , so there exists a point  $p \in \operatorname{Bd}_H(C)$ . Since H is a Peano continuum, C is an open subset of H, then  $p \notin C$ . Thus  $p \notin Z$ . This implies that  $C \cap \operatorname{Im} \alpha = \emptyset$ . Therefore  $\operatorname{Im} \alpha \cap H \cap Z \subset C_1 \cup \cdots \cup C_n$ .

Let  $t_1 = \max \alpha^{-1}(\operatorname{Cl}_X(C_1))$ . Then  $\alpha(t_1) \in C_1$ . Since  $C_1$  is pathwise connected, then  $0 = t_1$  or there exists an arc  $\beta_1 : I \to C_1$  joining  $\alpha(0)$  and  $\alpha(t_1)$ . If  $\alpha(t_1, 1] \cap (C_2 \cup \cdots \cup C_n) = \emptyset$ , then  $\alpha(t_1, 1] \cap H = \emptyset$ . In this case, define  $H_1 = H \cup \alpha[t_1, 1]$  and let  $\beta$  be the product of the paths:  $\beta_1(\alpha \mid [t_1, 1])$  with an injective parametrization.

If  $\alpha(t_1,1] \cap (C_2 \cup \cdots \cup C_n) \neq \emptyset$ , let  $t_2 = \min([t_1,1] \cap \alpha^{-1}(\operatorname{Cl}_X(C_2 \cup \cdots \cup C_n)))$ . Since  $\alpha(t_1) \notin \operatorname{Cl}_X(C_2 \cup \cdots \cup C_n)$ , then  $t_1 < t_2$ . Suppose, by example, that  $\alpha(t_2) \in \operatorname{Cl}_X(C_2)$ . Then  $\alpha(t_2) \in \operatorname{Cl}_X(C_2) \cap H \cap Z = C_2$ . Let  $t_3 = \max([t_2,1] \cap \alpha^{-1}(\operatorname{Cl}_X(C_2))$ . Since  $C_2$  is pathwise connected, then  $t_2 = t_3$  or there exists an arc  $\beta_2 : I \to C_2$  joining  $\alpha(t_2)$  and  $\alpha(t_3)$ . If  $\alpha(t_3,1] \cap (C_3 \cup \cdots \cup C_n) = \emptyset$ , then  $\alpha(t_3,1] \cap H = \emptyset$ . In this case define  $H_1 = H \cup \alpha[t_1,t_2] \cup \alpha[t_3,1]$  and  $\beta = \beta_1(\alpha \mid [t_1,t_2])\beta_2(\alpha \mid [t_3,1])$ .

In the case  $\alpha(t_3, 1] \cap (C_3 \cup \cdots \cup C_n) \neq \emptyset$ , applying repeatedly a similar procedure, we can conclude the existence of  $H_1$  and  $\beta$ .

Now we are ready to prove inductively the lemma. If  $\mathcal{U}$  has only one element,  $\mathcal{U} = \{U\}$ , then define  $H = p_U$ . Suppose that the lemma has been proved for families with exactly n elements, and suppose that  $\mathcal{U} = \{U_1, \ldots, U_{n+1}\}$ . Let H be the respective graph for  $\mathcal{U}_0 = \{U_1, \ldots, U_n\}$ . Suppose that  $U_1, \ldots, U_m$ ,  $0 \le m \le n$ , are the elements in  $\mathcal{U}_0$  which intersect  $U_{n+1}$ .

If m = 0, that is, if  $U_{n+1} \cap (U_1 \cap \cdots \cap U_n) = \emptyset$ , applying (\*) to H, to a fixed arc  $\alpha : I \to W = X$  joining  $p_{U_1}$  and  $p_{U_{n+1}}$  with  $\alpha(0) = p_{U_1}$ ,

then there exists a finite connected graph  $H_1$  such that  $H \subset H_1 \subset X$  and  $p_{U_{n+1}} \in H_1$ . Then  $G = H_1$  satisfies the required properties. Then we may assume that  $m \geq 1$ .

If  $p_{U_1} \neq p_{U_{n+1}}$ , applying (\*) to H and to a fixed arc  $\alpha_1: I \to U_1 \cup U_{n+1}$  joining  $p_{U_1}$  and  $p_{U_{n+1}}$  with  $\alpha_1(0) = p_{U_1}$ , we have that there exists a finite connected graph  $H_1$  and there exists an arc  $\beta_1: I \to H_1 \cap (U_1 \cup U_{n+1})$  such that  $H \subset H_1 \subset X$ ,  $p_{U_{n+1}} \in H_1$  and  $\beta_1$  joins  $p_{U_1}$  and  $p_{U_{n+1}}$ . If  $p_{U_1} = p_{U_{n+1}}$ , define  $H_1 = H$  and  $\beta_1: I \to H_1 \cap (U_1 \cup U_{n+1})$  by  $\beta_1(t) = p_{U_1}$  for every t.

If  $m \geq 2$  and  $p_{U_2} \neq p_{U_{n+1}}$ , again applying (\*) to  $H_1$  and to a fixed arc  $\alpha_2: I \to U_2 \cup U_{n+1}$  joining  $p_{U_2}$  and  $p_{U_{n+1}}$ , with  $\alpha_2(0) = p_{U_2}$ , we have that there exists a finite connected graph  $H_2$  and there exists an arc  $\beta_2: I \to H_2 \cap (U_2 \cup U_{n+1})$  such that  $H_1 \subset H_2 \subset X$  and  $\beta_2$  joins  $p_{U_2}$  and  $p_{U_{n+1}}$ . If  $p_{U_2} = p_{U_{n+1}}$ , define  $H_2 = H_1$  and define  $\beta_2: I \to H_1 \cap (U_2 \cup U_{n+1})$  by  $\beta_2(t) = p_{U_2}$  for every t.

Proceeding in this way, it is possible to construct  $H \in H_1 \subset H_2 \subset \cdots \subset H_m$  and paths  $\beta_1, \ldots, \beta_m$  such that  $\beta_i : I \to H_i \cap (U_i \cap U_{n+1})$  and  $\beta_i$  joins  $p_{U_i}$  and  $p_{U_{n+1}}$ . Therefore,  $G = H_m$  satisfies the required properties.

This completes the induction and the proof of the lemma.

**Lemma 3.2.** Suppose that X is a Peano continuum. Let  $A = \mu^{-1}(T)$  be a Whitney level with 0 < T, and let p be a point in X. Then there exists a finite connected graph  $G \subset X$  such that  $p \in G$  and, for each loop  $\alpha$  in the pointed space (X, p), there exists a loop  $\beta$  in the pointed space (G, p) such that  $\alpha \simeq \beta$  (in  $A^-$ ).

*Proof.* Suppose that the metric d is a convex metric. Let  $\varepsilon > 0$  be such that if  $A, B \in C(X)$  and  $\mathcal{H}(A, B) < 2\varepsilon$ , then  $|\mu(A) - \mu(B)| < T$ . Let  $\mathcal{U} = \{U_1, \ldots, U_n\}$  be an open cover of X such that each  $U_i$  is connected and diam  $U_i < \varepsilon$ . Suppose that  $p \in U_1$ . Choose points  $p_1 = p \in U_1, p_2 \in U_2, \ldots, p_n \in U_n$ . Let  $G \subset X$  be a finite connected graph as in Lemma 3.1 for the family  $\mathcal{U}$  and the set  $F = \{p_1, \ldots, p_n\}$ .

Let  $\alpha$  be a loop in (X, p). From the Lebesgue number theorem, there exists a  $\delta > 0$  such that if A is a subset of I and diam  $A < \delta$ , then  $A \subset \alpha^{-1}(U_i)$  for some i. Choose a partition  $0 = t_0 < t_1 < \cdots < t_m = 1$ 

of I such that  $t_k - t_{k-1} < \delta$  for each  $k \in \{1, \ldots, m\}$ . For each  $k \in \{1, \ldots, m\}$ , choose a number  $s_k \in (t_{k-1}, t_k)$  and choose an index  $i(k) \in \{1, \ldots, n\}$  such that  $[t_{k-1}, t_k] \subset \alpha^{-1}(U_{i(k)})$ . Since  $U_{i(k)}$  is pathwise connected, there exists a path  $\gamma_k : I \to U_{i(k)}$  such that  $\gamma_k(0) = \alpha(s_k)$  and  $\gamma_k(1) = p_{i(k)}$ .

If  $1 \leq k < m$ ,  $\alpha(t_k) \in U_{i(k)} \cap U_{i(k+1)}$ , then there exists a path  $\beta_k : I \to (U_{i(k)} \cup U_{i(k+1)}) \cap G$  such that  $\beta_k(0) = p_{i(k)}$  and  $\beta_k(1) = p_{i(k+1)}$ . Since  $p = \alpha(0) \in U_1 \cap U_{i(1)}$  and  $p = \alpha(1) \in U_{i(m)} \cap U_1$ , there exist paths  $\beta_0 : I \to (U_1 \cup U_{i(1)}) \cap G$  and  $\beta_m : I \to (U_{i(m)} \cup U_1) \cap G$  such that  $\beta_0 = p$ ,  $\beta_0(1) = p_{i(1)}$ ,  $\beta_m(0) = p_{i(m)}$  and  $\beta_m(1) = p$ .

Defining  $\beta = \beta_0 \beta_1 \beta_2 \cdots \beta_{m-1} \beta_m$ , then  $\beta$  is a loop in (G, p).

If  $1 \leq k < m$ , the set  $C_k = \operatorname{Im} \beta_k \cup \operatorname{Im} (\gamma_k^{-1}(\alpha \mid [s_k, s_{k+1}])\gamma_{k+1})$  is contained in  $U_{i(k)} \cup U_{i(k+1)}$ , then  $\dim C_k < 2\varepsilon$ , this implies that  $C_k \subset \mathcal{A}^-$ . Then, from Lemma 1.1,  $\beta_k \simeq \gamma_k^{-1}(\alpha \mid [s_k, s_{k+1}])\gamma_{k+1}$  (in  $\mathcal{A}^-$ ). Similarly,  $\beta_0 \simeq (\alpha \mid [0, s_1])\gamma_1$  (in  $\mathcal{A}^-$ ) and  $\beta_m \simeq \gamma_m^{-1}(\alpha \mid [s_m, 1])$  (in  $\mathcal{A}^-$ ).

Therefore,  $\alpha \simeq (\alpha \mid [0, s_1])\gamma_1)(\gamma_1^{-1}(\alpha \mid [s_1, s_2])\gamma_2)\cdots(\gamma_{m-1}^{-1}(\alpha \mid [s_{m-1}, s_m])\gamma_m)(\gamma_m^{-1}(\alpha \mid [s_m, 1])) \simeq \beta \text{ (in } \mathcal{A}^-). \quad \Box$ 

Proof of Theorem B. Fix an element  $A_0 \in \mu^{-1}(S, T)$ . Let  $R = \mu(A_0)$  and  $\mathcal{A} = \mu^{-1}(R)$ . Let  $\mathcal{C} = F_1(X)$  and fix a point  $p \in A_0$ . Let  $\gamma$  be an order arc from p to  $A_0$ . Consider  $\phi : \pi_1(\mathcal{C}, \{p\}) \to \pi_1(\mathcal{B}, A_0)$  defined by  $\phi([\alpha]) = [(\gamma^{-1}\alpha\gamma)^{\mathcal{A}}]$ . From Theorem 2.3,  $\phi$  is surjective.

Let G be as in Lemma 3.2. Consider the natural homomorphism  $\psi: \pi_1(G, p) \to \pi_1(\mathcal{C}, p)$ , that is,  $\psi([\beta]) = [\beta]$ . Then  $\phi \circ \psi: \pi_1(G, p) \to \pi_1(\mathcal{B}, A_0)$  is a homomorphism. In order to show that  $\phi \circ \psi$  is surjective, let  $[\sigma] \in \pi_1(\mathcal{B}, A_0)$ ; then there exists  $[\alpha] \in \pi_1(\mathcal{C}, \{p\})$  such that  $\sigma \simeq (\gamma^{-1}\alpha\gamma)^{\mathcal{A}}$  (in  $\mathcal{B}$ ). From Lemma 3.2 there exists a loop  $\beta$  in (G, p) such that  $\beta \simeq \alpha$  (in  $\mathcal{A}^-$ ). Then  $\phi \circ \psi([\beta]) = [(\gamma^{-1}\beta\gamma)^{\mathcal{A}}] = [\sigma]$ . Hence  $\phi \circ \psi$  is surjective.

Since  $\pi_2(G, p)$  is finitely generated (see [8, Theorem 5.2]), we conclude that  $\pi_1(\mathcal{B}, A_0)$  is finitely generated.  $\square$ 

#### 4. Theorem C.

Proof of Theorem C. (a)  $\Rightarrow$  (b) and (b)  $\Rightarrow$  (c) are immediate. In

order to prove that  $(c) \Rightarrow (a)$ , let  $T_0 = 1/2$ . Fix a point  $p_0 \in X$ . Let G be a finite connected graph contained in X as in Lemma 3.2 for  $A_0 = \mu^{-1}(T_0)$  and the point  $p_0$ . Define  $T^* = \max\{\mu(H) : H \text{ is a proper subgraph of } G\}$ . Then  $0 \leq T^* < \mu(G) \leq 1$ . Then there exists  $T_1$  such that  $T_0$ ,  $T^* < T_1 < 1$ . If  $G \neq X$ , then we may ask that  $\mu(G) < T_1$ . From the hypothesis, there exists  $T_1 < R < S < 1$  such that  $\pi_1(\mu^{-1}(R,S))$  is a nontrivial group. Choose  $T \in (R,S)$ , let  $A = \mu^{-1}(T)$  and  $B = \mu^{-1}(R,S)$ .

Suppose that X is not a simple closed curve.

Choose a maximal tree L of G. If L = G, choose a vertex  $p \in L$ . If  $L \neq G$ , let J be a segment of G such that J is not a segment of L; in this case, choose a vertex p of J, then  $p \in L$ . Clearly, for each loop  $\alpha$  in (X, p), there exists a loop  $\beta$  in (G, p) such that  $\alpha \simeq \beta$  (in  $A^-$ ).

Choose  $A \in \mathcal{A}$  such that  $p \in A$ . Let  $\mathcal{C} = F_1(X)$ . Let  $\gamma$  be an order arc from  $\{p\}$  to A. Consider the homomorphisms  $\phi : \pi_1(\mathcal{C}, p) \to \pi_1(\mathcal{B}, A)$  and  $\psi : \pi_1(G, p) \to \pi_1(\mathcal{C}, p)$  defined by  $\phi([\alpha]) = [(\gamma^{-1}\alpha\gamma)^A]$  and  $\psi([\alpha]) = [\alpha]$ . Reasoning as in the proof of Theorem B, we have that  $\phi \circ \psi$  is surjective. We will obtain a contradiction by proving that  $\phi \circ \psi$  is constant.

If  $G \neq X$ , then for every  $[\alpha] \in \pi_1(G, p)$ ,  $\mu(\cup \{\alpha(r) : r \in I\}) \leq \mu(G) < T$ . Then, from Lemma 1.1,  $\alpha \simeq$  the constant map p. Thus,  $(\gamma^{-1}\alpha\gamma)^{\mathcal{A}} \simeq$  the constant map  $A_0$ . Hence  $\phi \circ \psi$  is constant. So we may assume that G = X.

Let M be a segment of G with extremes a and b such that M is not a segment of L. Let  $\alpha_M$  be the path  $\sigma_1 \delta \sigma_2^{-1}$ , where  $\sigma_1$ , respectively  $\sigma_2$ , is a parametrization of the unique arc in L joining p and a, respectively p and b, notice that  $\sigma_i$  can be a constant map, and  $\delta$  is a parametrization of the segment M.

From [8, Theorem 5.2], the set  $\mathcal{L} = \{\alpha_M : M \text{ is a segment of } G \text{ and } M \text{ is not a segment of } L\}$  generates the group  $\pi_1(G, p)$ .

Let  $\alpha_M \in S$ ; if M = J, we may assume that a = p. Then  $\sigma_1$  is a constant map, and this implies that  $\operatorname{Im} \alpha_M$  is a simple closed curve. Since X is not a simple closed curve,  $\operatorname{Im} \alpha_M$  is a proper subgraph of G. Hence,  $\mu(\operatorname{Im} \alpha_M) < T$ . From Lemma 1.1,  $\alpha_M \simeq$  the constant map p (in  $A^-$ ). Therefore,  $\phi \circ \psi([\alpha])$  is the unit element in  $\pi_1(\mathcal{B}, A)$ .

If  $M \neq J$ , then Im  $\alpha_M$  is a subgraph of G and J is not a segment of

Im  $\alpha_M$ . Thus Im  $\alpha_M$  is a proper subgraph of G. Reasoning as in the paragraph above,  $\phi \circ \psi([\alpha])$  is the unit element in  $\pi_1(\mathcal{B}, A)$ .

Therefore,  $\phi \circ \psi$  is a surjective constant map. This contradiction completes the proof of the theorem.  $\Box$ 

#### 5. Examples.

Example 5.1. Theorem A and implication (c)  $\Rightarrow$  (a) in Theorem C do not hold without the hypothesis of local connectedness.

Consider X to be the Warzaw circle in the Euclidean plane. It is easy to check that if  $\mu$  is a Whitney map for C(X), then:

- a) If  $0 \le R < S \le 1$  are small numbers, then the Whitney block  $\mu^{-1}(R,S)$  is homeomorphic to the open cylinder  $X \times (0,1)$ , so  $\pi_1(\mu^{-1}(R,S))$  consists only of the unit element, and
- (b) If  $0 \le R < S \le 1$  are large numbers, then the Whitney block  $\mu^{-1}(R,S)$  is homeomorphic to the open cylinder  $S^1 \times (0,1)$ , where  $S^1$  is a simple closed curve, so  $\pi_1(\mu^{-1}(R,S))$  is isomorphic to the integers.

Example 5.2. Theorem B does not hold without the hypothesis of local connectedness.

If p and q are two points in the Euclidean plane, let pq denote the segment joining them.

Define  $X = (0,-1)(0,1) \cup (\cup\{(1/n,-1)(1/n,1) : n \geq 1\}) \cup (0,1)(1,1) \cup (0,-1)(1,-1)$ . It is easy to prove that if  $0 \leq R < S \leq 1$  are small numbers then the Whitney block  $\mu^{-1}(R,S)$  has the homotopy type of X, and the group  $\pi_1(\mu^{-1}(R,S))$  is not finitely generated.

### 6. Remarks and questions.

Question 6.1. Theorems A, B and C were inspired in Theorems A, B and D in the author's paper [4]. In that paper, the following result was also proved:

Let X be a Peano continuum, for a connected space Y, let r(Y) denote the multicoherence degree of Y. If  $0 < m \le r(X)$ , then there

exists a Whitney map  $v: C(x) \to [0,1]$  and there exists  $t \in [0,1]$  such that  $r(v^{-1}(t)) = m$ .

What could be an appropriate version of this result for fundamental group and Whitney blocks?

Question 6.2. Are Theorems A, B and C true for Whitney levels instead of Whitney blocks?

Question 6.3. Is the implication (b)  $\Rightarrow$  (a) true for every pathwise connected continuum X (instead of Peano continuum)?

Question 6.4. Is the following greater dimensional version of implication (c)  $\Rightarrow$  (a) in Theorem C true:

Let X be a Peano continuum and let  $\mu$  be a Whitney map for C(X). If for each R < 1, there exist  $R < S < T \le 1$  and there exists an integer  $n \ge 1$  such that  $\pi_n(\mu^{-1}(S,T))$  is a non-trivial group, then X is a finite connected graph?

Question 6.5. Characterize the finite connected graphs satisfying the assertion in Question 6.4 (compare with Question 3.5 in [5]).

## REFERENCES

- 1. R.H. Bing, Partitioning a set, Amer. Math. Soc. 55 (1949), 1101-1110.
- 2. C. Eberhart and S.B. Nadler, Jr., The dimension of certain hyperspaces, Pol. Acad. Sci. 19 (1971), 1027-1034.
- 3. A. Illanes, Characterizing dendroids by the n-connectedness of the Whitney levels, Fund. Math. 140 (1992), 157–174.
  - 4. ——, Multicoherence of Whitney levels, Topology Appl., 68 (1996), 251–265.
- 5. A. Illanes and I. Puga, Determining finite graphs by their large Whitney levels, Topology Appl. 60 (1994), 173–184.
- 6. J. Krasinkiewicz and S.B. Nadler, Jr., Whitney properties, Fund. Math. 98 (1978), 165-180.
- 7. M. Lynch, Whitney levels in  $C_p(X)$  are ARS, Proc. Amer. Math. Soc. 97 (1986), 748-750.
- 8. W.S. Massey, Algebraic topology, An introduction, Springer-Verlag, New York, 1987.

- 9. E.E. Moise, Grille decomposition and convexification theorems for compact locally connected continua, Amer. Math. Soc. 65 (1949), 1111–1121.
  - $\textbf{10.} \ \text{S.B.} \ \text{Nadler, Jr., } \textit{Hyperspaces of sets}, \ \text{Marcel Dekker, New York, } 1978.$
- 11. A. Petrus, Contractibility of Whitney continua in C(X), Gen. Top. Appl. 9 (1978), 275–288.
- 12. J.T. Rogers, Jr., Applications of a Vietoris-Begle theorem for multivalued maps to the cohomology of hyperspaces, Michigan J. Math. 22 (1976), 315–319.
- ${\bf 13.}$  J. Segal, Hyperspaces of the inverse limit space, Proc. Amer. Math. Soc.  ${\bf 10}$  (1959), 706–709.

Instituto de Matemáticas, UNAM. Circuito Exterior, Ciudad Universitaria, México, 04510, D. F., MEXICO

 $E ext{-}mail\ address: illanes@gauss.matem.unam.mx}$