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EXCELLENT RINGS, HENSELIAN RINGS,
AND THE APPROXIMATION PROPERTY

CHRISTEL ROTTHAUS

1. Excellent rings. In the 1950s M. Nagata constructed a vari-
ety of local Noetherian rings which behave strangely under completion.
For example, he constructed a local Noetherian normal domain (A, m)
whose completion A is not reduced [15, p. 209]. The observation of
such deviant behavior within the supposedly “nice” class of Noetherian
rings has led to the widespread use of certain additional conditions on
Noetherian rings, conditions which insure good behavior for comple-
tions. Rings which satisfy these conditions are called “excellent.”

Before defining excellence, we consider the question:

Question. What properties should a Noetherian ring have in order
to be considered “excellent”?

It has been generally agreed that “excellent” Noetherian rings should
behave similarly to the rings found in algebraic geometry, specifically,
those rings of the form

A=K[Xy,...,X,]/I

where A has finite type over a field K. Our question becomes:
Question. What are the fundamental properties of geometric rings?

To consider this question formally, let K be a field, and let A =
K[X1,...,X,]/I be a reduced ring. Then A is the coordinate ring of
an algebraic variety Y = Z(I), or the set of zeros of the ideal I in
n-dimensional space over K. From a well-known theorem in algebraic
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318 C. ROTTHAUS

geometry, the singular locus of Y is again an algebraic variety [10,
Theorem 5.3], that is,

Sing (A) : = {P € Spec (A) | Ap not regular}
= V(J) for some ideal J of A

and this set is closed in Spec(A). We list this as the first geometric
property:

Property (a). The singular locus of A is closed in Spec (A).

A related property of geometric rings, used in the proof of Property
(a), is that these rings admit the “Jacobian criteria.” If the field K is
algebraically closed, the following equivalences hold:

Ap is regular <= rank ((0f;/0z;) mod (P) =r
<= P ¢ the ideal generated by the
r x r minors of (0f;/0X;).

Here r denotes the height of the ideal I = (fi,...,fs) in the
localized polynomial ring K[X7, ..., X,]p. If the field K is not perfect,
the Jacobian criterion stated above does not measure regularity but
does measure smoothness, which is not equivalent to regularity. For
example, let K be a field of characteristic p > 0, and let L = K[X]/(f),
where f = XP — a for some element a € K — KP. Then L is a proper
purely inseparable extension of K. Since df/0X = 0 the Jacobian
criterion for smoothness shows that L fails to be smooth over K.
However, L is regular and there is a KP-derivation D : K[X] — K[X]
with D(f) # 0. This reflects the basic idea of Nagata’s Jacobian
criterion for regularity [14, Theorem 30.10]. If the field K is not perfect
of characteristic p > 0, the derivations under consideration are not only
the partial K-derivations 0f;/0X;, but also the K P"_derivations of K
(for all n € N). Of course, over perfect fields the two concepts agree.

Three additional fundamental properties of geometric rings also de-
serve mention:

Property (b). FEvery extension of finite type is a geometric ring.
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Property (c). A is universally catenary. This means that A is
Noetherian and for every finitely generated algebra B over A, whenever
P and Q are prime ideals of B with P C @, every two mazximal chains
of prime ideals from P to Q have the same length. Catenary conditions
are discussed in full detail in [14, Section 31].

Property (d). Hironaka’s theorem on resolution of singularities for
schemes over geometric rings holds (at least in characteristic 0).

Among these properties, the fact that geometric rings admit Jacobian
criteria is the most central for the theory of excellent rings. Although
some consider resolution of singularities more important, the Jacobian
criteria are more relevant to the definition and study of excellent
rings. Moreover, it is somewhat misleading to mention Hironaka’s
theorem in regard to the geometric motivation for excellence. The
concept of excellent rings was known at the time of Hironaka’s work on
the resolution of singularities. Indeed, Hironaka proved resolution of
singularities for schemes (of finite type) over excellent rings containing
the rationals.

One possible method of enlarging the class of geometric rings would
be to include all rings which admit Jacobian criteria. Unfortunately,
the class of local Noetherian rings having a sufficiently large module of
derivations to permit establishment of Jacobian criteria on the rings is
fairly small, and it is too restrictive to consider only this class of rings.
This may be illustrated by the following example:

Let 0 = exp(exp(X) — 1) = e -1 ¢ Q[[X]]. The power series
o is chosen such that o and do/0X are algebraically independent
over Q(X) (see [4]). The intersection ring A = Q(X,0) N Q[[X]] is
a discrete valuation ring which contains Q[X](x) and which has field of
quotients Q(X, o). However, every derivation d : A — Q[[X]] satisfies
the condition d(o) = d(X)Jo/0X. Since A has transcendence degree
2 over Q and since o and 9o /90X are algebraically independent over
Q(X), it follows that d(oc) ¢ A whenever d(X) # 0. Hence there is
only the trivial derivation from A into itself.

But then, what conditions on A would imply a closed singular locus?

The key observation here is that, although there are no Jacobian
criteria available for arbitrary Noetherian local rings, there are Ja-
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cobian and regularity criteria for complete local rings. Nagata and
Grothendieck formulated these criteria, which are similar to the above-
mentioned criterion. The main objective in the theory of excellent rings
is to make use of the Jacobian criteria on the completion A of a local
(excellent) ring A in order to describe some of its (A’s) properties, al-
though the ring A itself fails to admit Jacobian criteria. This theory
requires considerable theoretical background. Grothendieck’s theory of
formal smoothness was developed to make this connection between the
local ring A and its completion A work. In the following, we describe
briefly its main ideas.

For a local Noetherian ring (A, m), the completion A is the homo-
morphic image of a formal power series ring over K, where K is a field
or a complete discrete valuation ring, that is, A = K[[X1,..., X,]]/I.
The singular locus of A is closed by the Jacobian criteria on complete
local rings [14, Corollary to Theorem 30.10]. One way to guarantee
closure of the singular locus of A is to require that the singular loci of
A and of A be generated by the same ideal, that is, to require:

Sing (A) = V(J)

and

Sing (A) = V(JA), for some ideal J C A.
This last condition is equivalent to:
V@ € Spec (fl), Apna is regular <= AQ is regular.

Since the induced morphism Agna — AQ is faithfully flat, the direction
“&” is always satisfied. If the fiber at P = QN A (the ring Ag/PAg)
is regular, then “=" holds.

We still require a few more preliminaries for the definition of an
“excellent” Noetherian ring:

Definition 1.1. Let (A,m) be a local Noetherian ring and A its
completion. The formal fibers of A are the rings A ®4 k(P) where
P € Spec(A) and k(P) = Ap/PAp.
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In a local Noetherian ring, if the formal fibers A ® 4 k(P) are regular,
then A has an open regular locus (the complement of the singular
locus). Since an open regular locus is desirable in any algebra of finite
type over A, we need a more complex definition:

Definition 1.2. Let K be a field and B a Noetherian K-algebra. B
is called geometrically regular over K if, for every finite field extension
K C L, the ring B ® g L is regular.

Remark 1.3. We can restrict to purely inseparable finite field exten-
sions K C L in Definition 1.2.

We now state the main definition:

Definition 1.4 (Grothendieck). Let (A, m) be a local Noetherian ring.
Then A is called excellent if

(a) The formal fibers of A are geometrically regular, that is, for all
P € Spec (A), the ring A® 4 L is regular, for every finite field extension
L of k(P).

(b) A is universally catenary.

The completion A of an excellent local ring A inherits many good
properties from A; basically the completion has all the properties which
can be expressed in terms of Serre’s conditions, such as the following:

Theorem 1.5. Let (A,m) be an excellent local ring, let Q €
Spec (A), and P = QNA. Then the ring Ap is regular (respectively nor-
mal, reduced, Cohen-Macaulay, Gorenstein) if and only if the ring Ag

is regular (respectively normal, reduced, Cohen-Macaulay, Gorenstein).

Corollary 1.6. For an excellent local ring (A, m), the singular locus
of A is closed in Spec (A).

If the ring A is not semilocal, the singular locus is not necessarily
closed when the formal fibers of its localizations at prime ideals are
geometrically regular. Thus the definition of excellence requires an
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additional condition.

Definition 1.7. A Noetherian ring A is called excellent if

(a) for every maximal ideal m € Spec(A) the local ring Am is
excellent.

(b) The regular locus of A is universally open, that is, for every A-
algebra B of finite type, the regular locus of B is open in Spec (B).

With this definition the class of excellent Noetherian rings is closed
under extensions of finite type:

Theorem 1.8. Let A be an excellent ring and B an A-algebra of
finite type. Then B is excellent.

The proof is nontrivial (see [8, (7.8.3)(ii)]). The difficult part is to
prove the statement, “Let A be a complete local ring and P a prime
ideal of A. Then Ap is excellent.”

Ezamples 1.9. (a) Fields, the integers Z, and complete local Noethe-
rian rings are excellent.

(b) The easiest example of a nonexcellent ring can be obtained as
follows:

Let K be a field of characteristic p > 0, X a variable. Consider the
canonical extension:

K[X](x) — K[[X]].

Let w € K[[X]] be a power series which is transcendental over K[X].
Put

C = K(X,wP) N K[[X]).

The ring C is a discrete valuation ring with completion C' = K[[X]].
However, C is not excellent since the extension of the quotient fields
Q(C) — K((X)) is not separable. For an excellent local domain A
whose completion A is also a domain, the field extension Q(A) — Q(A)
is always separable. (This last result holds with the much weaker
hypothesis that the ring A be Nagata.)
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Remarks 1.10. (a) If A is a discrete valuation ring of characteristic 0,
then A is excellent.

(b) The discrete valuation ring C of (1.9) is not of finite type over
the field K.

(c) Nagata provided the first example of a local Noetherian (nonex-
cellent) normal domain whose completion is not reduced [15, Example
7]. It also provides an example of a two-dimensional regular local ring
containing the rationals which fails to be excellent (or even Nagata).

Here is another property of interest for applications of excellent rings:

Theorem 1.11. Let A be an excellent ring, I C A an ideal, and

—

A* = (A, I) the I-adic completion of A. Then A* is excellent if one of
the following conditions is satisfied:

(a) the ring A is semilocal, or

(b) the rationals are contained in A.

A proof of this theorem can be found in [5, 21 and 22]. In the
case where A is not semilocal, the proof uses resolution of singularities.
If resolution of singularities holds true in general (currently a matter
of some uncertainty), then the theorem is always true, that is, A* is
always excellent.

In the special case where A* = K[Xy,...,X,][Y1,-..,Ym]], a power
series ring over a polynomial ring over a field K, A* is excellent, even
when K has positive characteristic (see [27]). In this case, enough
derivations on A* exist to yield Jacobian criteria on the ring, and
therefore we get a special proof of the excellence of A*.

Theorem 1.11 is of interest for questions of the following type: Sup-
pose that a certain class of excellent local rings has property P. Does
the completion A of A also have property P? Using Theorem 1.11
we can pass from A to Ain steps of taking completions with respect
to principal ideals. Thus, often it is sufficient to show the following
statement:

(¥) Let A be an excellent local ring which satisfies property P, and
let s € m be an element in the maximal ideal of A. Then the (s)-adic

completion (m) has property P.
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A proof of statement (x) is often technically easier than the statement

for A. One reason is that every ideal in (m) which contains the
element s is extended from A. This idea can be used to show that
some properties of complete local rings descend to excellent local rings
or to certain classes of excellent local rings like excellent local Henselian
rings.

2. Henselian rings. In the following let (A, m,k) be a local
Noetherian ring.

Definition 2.1. The ring A is Henselian if the following condition,
known as Hensel’s lemma, is satisfied:

For every monic polynomial P € A[X] such that, over the residue
class field k, the image P of P can be expressed as P = FG €
k[X], with F and G relatively prime monic polynomials, there exist
monic polynomials F,G € A[X] with P = FG and F = F, G =
G mod (mA[X]).

Remark 2.2. Henselian rings were first observed in algebraic number

theory. Hensel’s lemma holds for the ring of p-adic numbers Z,) =
@ Z/(p™). More generally,

Theorem 2.3. Let A= A be a complete local Noetherian ring. Then
A is Henselian.

Many popular local Noetherian rings fail to be Henselian:

Ezample 2.4. Let k be a field, A = k[X](x) the polynomial ring over
k. The monic polynomial P = T? + T + X € A[T] is irreducible, but
its image

P=T*+T=T(T+1) € k[T]
is reducible and splits into relatively prime factors. Thus A fails to be
Henselian.

By Theorem 2.3, every local Noetherian ring can be embedded in a
local Henselian ring.
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Question 2.5. Is there a “smallest” Henselian ring (in A) containing
a given local Noetherian ring A, and, if so, is this ring unique up to
isomorphism?

The answer is “yes,” and this “smallest” Henselian ring containing
A is called the Henselization of A. We now outline the construction of
the Henselization. This requires the notion of an étale morphism:

Definition 2.6. Let ¢ : (A,m) — (B, N) be a local morphism with B
essentially finite over A. Then B is called étale over A if the following
condition is satisfied:

Suppose that C is an A-algebra, N C C' is an ideal with N? = 0, and
that the following diagram commutes:

B—"—~C/N

i_}l

Then there is a unique A-algebra morphism u : B — C which lifts @,
that is, vu = @.

B is called an étale neighborhood of A if B is étale over A and
A/m = B/N (that is, there is no residue field extension).

Note that Henselian local rings are closed under extensions by étale
neighborhoods:

Theorem 2.7. Let A be a local Henselian ring. Then A is closed
under étale neighborhoods, that is, for every étale neighborhood ¢ : A —
B, we have that A = B, considered as A-algebras.

Next we observe that étale extensions are very common:

2.8. Structure theorem for etale extensions. Let ¢ : (A,m) — (B,N)
be a local morphism with B essentially finite over A. Then B is étale

over A if and only if
B = (A[X]/(P))n
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where
(1) P € A[X] is a monic polynomial.
(2) N C A[X] is a prime ideal with NN A =m.
(3) P’ ¢ N.

The proof of the structure theorem is quite hard. It is an application
of Zariski’s main theorem [20, Chapter 4].

Using the structure theorem we may define a “representative set” of
the étale neighborhoods of A:

P € A[X] monic

N € Spec (A[X]),P e N
P¢N,NNA=m
(A[X]/N)x = A/m

A={(P,N)

C A[X] x Spec (A[X]).

Our goal is to define the Henselization as a direct limit over the set
A. Let Ay = (P1,N;) and Ay = (P,,N3) be elements of A, and let
B; = (A[X]/(P1))N,, respectively, Bo = (A[X]/(P:))N,, denote the
corresponding étale neighborhoods. Then we define a partial order
on A by Ay < A if and only if there is a local A-algebra morphism
T : By — Bs. In order to define a direct limit over the set A, two
conditions must be satisfied. First, the set of A-algebra morphisms
between B; and B; has to be rather small in order to restrict each
choice of A-algebra morphisms to one for which “it all fits together.”
Second, the partially ordered set A must be directed, that is, for every
pair A1, A2 € A, there must be a third element A3 € A with \; < A3
and A < A3. The following result makes this work:

Theorem 2.9. Let B]_ = (A[X]/(Pl))Nl and B2 = (A[X]/(PZ))Nz;
be étale neighborhoods of A. Then:

(1) there is at most one A-algebra morphism 7 : By — Ba.

(2) There is an element A3 = (P3,N3) € A which contains By and
B,.
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By statement (2), there exists an étale neighborhood Bs=(A[X]/(P3))~
and A-algebra morphisms such that the following diagram commutes:

3

A——— (AX]/(P1))~

|

(A[X]/(P2))n, — (A[X]/(P3))N

1

3

Theorem 2.9 shows that the set
{(A[X]/(P))~ | (P,N) € A}

is directed in a natural way. The direct limit of this system is defined
to be the Henselization of the ring A:

A=l (AIX]/(P)
A=(P,N)EA

We list a few properties of the Henselization:

(a) A" is the smallest Henselian ring containing A. The Henselization
is unique up to isomorphism with respect to this property. That is, if
C is a Henselian ring and ¢ : A — C'is a local morphism of rings, then
¢ factors through the Henselization of A:

¢

A———C

>0

Ah

(b) The Henselization is defined similarly for non-Noetherian quasilo-
cal rings. However, aring A is Noetherian if and only if its Henselization
Al is,

(c) If (A, m) is a local Noetherian ring, then its Henselization A" is
again a local Noetherian ring with maximal ideal mA". The Henseliza-
tion is situated between A and its completion A and has the same
completion: .

A Ah e A = Ah.
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(d) The formal fibers of a ring A are geometrically regular if and only
if the formal fibers of the Henselization A" are geometrically regular
(see [9, Chapter 4]). If A is excellent, then so is its Henselization A"
[9, Chapter 4].

Remarks 2.10. (a) The Henselization A" of a ring A is in general much
smaller than the completion A In particular, A" is an algebraic exten-
sion of A, whereas its completion A is usually of infinite (uncountable)
transcendence degree over A.

(b) If A is an excellent normal domain, its Henselization A" is the
“algebraic closure” of A in A, that is, every element w € A — A"
is transcendental over A. The proof uses the fact that any finite
normal extension B of A" is local, since A" is Henselian, and that
the completion B is a local normal domain, since A is excellent.
The statement also follows trivially if we assume that A" has the
approximation property, a property of local Noetherian rings which
we discuss next. Both of these concepts, excellent rings and Henselian
rings, are central to this discussion.

3. Artin approximation.

Definition 3.1. Let (A, m) be a local Noetherian ring with completion
(A, m). We say that A has the approzimation property if, for every ideal
f=(f,---,fr) € A[Xq,...,X,] for which the system of equations
f = 0 has a solution & = (a,...,d,) in A™, there is an element
a=(ay,...,a,) € A" with f(a) =0.

If A has the approximation property, then every system of equations
over A which has a solution in the completion A is already solvable in A.
Moreover, if A has the approximation property and a € A™ is a solution
for a system of equations f = 0 over A, then a can be approximated
by solutions in A, that is, for every integer & € N, there is an element
agy € A™ such that f(a)) = 0 and ag) = @ (mod mk Am).

Remark 3.2. Since complete local rings are Henselian, it is easy to
see that every ring with the approximation property is Henselian.

M. Artin showed in his celebrated paper [2] of 1969 that the following
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class of rings has the approximation property: Let D be a field or an
excellent discrete valuation ring. Then the ring

A= (D[Xla s aXn](mD,Xl,... ,Xn))h

has the approximation property. He conjectured in the same paper
that excellent Henselian rings have the approximation property. In the
following we will refer to this claim as Artin’s first conjecture. In the
early ’80’s Artin established an even stronger proposition, referred to
here as his second conjecture, which would imply his first conjecture.
Before stating this we must introduce another concept:

Let f = (f1,...,fr) € A[X41,...,X,] be an ideal. It is easy to see
that the system of equations f = 0 has a solution in A if and only
if the canonical morphism ¢ : A — A factors through the A-algebra
B = A[Xy,...,X,]/(f):

A—2 A

Suppose that the morphism 7 factors through an algebra D which is of
finite type over A and smooth over A:

A—2 4

all

Then, assuming that A is Henselian, there is an A-algebra morphism
v : D — A. This last statement follows easily from a well-known
property of Henselian rings (see [3] for details). Since B maps into D,
the existence of a solution of f =0 in A is implied, and we are done.

This yields the following question: Suppose that A is an excellent
Henselian local ring, and suppose that there is given an A-algebra B
such that the first diagram commutes. Then does the morphism 7
always factor through a smooth A-algebra D of finite type? This can
be considered as a property of the morphism ¢ and the question can
be asked in much more generality. First we need another definition:
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Definition 3.3. Let ¢ : A — B be a morphism of Noetherian
rings. Then ¢ is called a regular morphism if ¢ is flat and if, for
all P € Spec (B), the fiber ring B® 4 k(P) is geometrically regular over
k(P), that is, for all finite field extensions k(P) C L, the ring B®4 L
is regular.

Remark 3.4. Let (A,m) be a Henselian local ring. Then it is well
known that A is excellent if and only if the canonical morphism A — A
is regular.

Now we are ready to state Artin’s second conjecture:

Artin’s second conjecture. Let ¢ : A — A’ be a reqular morphism
of Noetherian rings. Is A’ a direct limit of smooth A-algebras of finite
type?

The meaning of this conjecture is exactly what was described above:

Suppose that the morphism ¢ factors through an A-algebra B of finite
type:

A—2 L u

i/

In order for A’ to be a direct limit of smooth A-algebras of finite type
every such morphism 7 has to factor through a smooth A-algebra D of
finite type:

¢

A—— A

s

Artin’s second conjecture is very powerful. It implies not only his first
conjecture but also some parts of the Bass-Quillen conjecture, which
has been open for a long time.

Some remarks on the status of Artin’s conjectures:

Artin published his famous paper in 1969, in which he established the
approximation property for the Henselization of localizations of rings of
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finite type over a field, respectively over an excellent discrete valuation
ring. He had already shown in an earlier (1968) paper that convergent
power series rings over the complex numbers possess the approximation
property. The proofs in both papers rely heavily on the Weierstrass
preparation theorem. In the paper of 1969, Artin also conjectured
that excellent Henselian rings have the approximation property. This
conjecture seemed inaccessible for a long time, mainly because Artin’s
proof did not generalize to arbitrary excellent Henselian rings. The
Weierstrass preparation theorem is not available over arbitrary excel-
lent Henselian rings. For example, the Weierstrass preparation theorem
fails for rings of the type A = K[X1,..., X,]x)[[Y1,..,Ym]] or their
Henselizations (K is a field). It seems impossible to extend Artin’s
proof of the approximation property to this class of Noetherian rings.
See [5] for a discussion of the case where n +m = 5.

In 1985 and 1986, D. Popescu published two papers investigating
Artin’s second conjecture in the case where the rings contain a field
[17, 18]; there was considerable discussion about these papers. Later,
T. Ogoma published a paper in which he explains the critical parts in
Popescu’s proof [16]. Popescu’s proof (and necessarily probably any
proof of Artin’s second conjecture) distinguishes between the charac-
teristics of the rings involved. The cases where A contains a field of
positive characteristic, and where A does not contain a field, require
extra work and are considered more difficult than the characteristic
ZEero case.

In 1987 this author published a paper proving Artin’s first conjecture
for excellent Henselian rings which contain the rationals [23].

In 1992 M. Spivakovsky and M. André both made preprints available
in which they prove Artin’s second conjecture in some important cases.
M. André also investigates the case where the rings contain a field;
he uses his cohomology for the proof and, as he mentions, some of
Popescu’s ideas. The proof offered by Spivakovsky is quite different
from Popescu’s proof. Spivakovsky considers the case where the base
ring A contains an arbitrary field as well as some mixed characteristic
cases. Although Spivakovsky’s proof seems difficult to comprehend to
this author, it is generally agreed that the case where the rationals are
contained in the base ring is settled.
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Finally we note that the converse of Artin’s first conjecture is true
in all cases. Rings with the approximation property are excellent and
Henselian (see [24]).

4. An application: The Bass-Quillen conjecture. The ap-
proximation theorem is one outstanding application of Artin’s second
conjecture. Another very important application, the Bass-Quillen con-
jecture, is quite different in nature.

In 1979 Quillen and Suslin solved Serre’s conjecture for projective
modules:

Serre’s conjecture 4.1. Let K be a field, and let M be a finitely
generated projective K[Xy, ... ,X,]-module. Then M is a free module.

Actually, Quillen proved an even stronger result, that Serre’s conjec-
ture also holds for K a principal ideal domain. Shortly afterwards, the
Bass-Quillen conjecture, a generalized form of Serre’s conjecture, was
introduced:

The Bass-Quillen conjecture 4.2. Let R be a regular Noetherian
ring, and let M be a finitely generated projective module over the
polynomial ring R[X]. Then M is extended from R, that is, there is a
finitely generated projective R-module My such that M = My Qg R[X].

In many cases, for example, if the ring R contains a field, the Bass-
Quillen conjecture becomes a corollary of Artin’s second conjecture.
This can be seen as follows:

Suppose that R contains a field, and let P C R be the prime field.
Since R is a regular ring and P is a perfect field, the embedding P — R
is a regular morphism. Thus, by Artin’s second conjecture, R is a
direct limit of smooth P-algebras D of finite type. By investigating a
free resolution of the R[X]-module M, it can be seen that there is a
finite type P-subalgebra B of R and a projective B[X]-module M, with
M = My ®p[x) R[X]. The embedding B — R factors through a finite
type smooth P-algebra D, and we obtain a finitely generated projective
D[X]-module M; with M = M; ® pix] R[X]. The smoothness of D over
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P is equivalent to D being a regular ring. Thus it is enough to show the
conjecture in the case where the ring R is a regular finitely generated
algebra over a field k. The validity of the Bass-Quillen conjecture in
this case has been shown by Lindel [13].

Acknowledgment. I would like to thank Sylvia Wiegand for her
advice and helpful suggestions concerning the preparation of this paper.
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