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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
THREE-TERM POINCARE DIFFERENCE EQUATIONS

LISA LORENTZEN

ABSTRACT. Let {X,} be a solution of the difference
equation

Xn = (b + (Sn)Xn—l + (a + En)Xn—2-

Then it is well known that the limit lim X, /(b+z)"™ exists (and
is finite) if Y |en| < 00, Y [6n| < co and z(b+ ) = a with
|z| < |b+ x|. We generalize this result to cases where ) &p,

and 26" only converge conditionally. Such results have
applications to the study of asymptotic behavior of orthogonal
polynomials and orthogonal functions, and to the study of
separate convergence of continued fractions.

1. Introduction. We shall study solutions {Z,}32 _; of the
Poincaré difference equation

(1.1) Zn=byZy 1+ anZy 2; n=1,2,3,...; a, #0,

where a,, and b,, are either complex numbers or complex valued func-
tions such that

ap, — a€C, b, — be C\{0},

(1-2) a/b® € C\(—o0,—1/4].

The characteristic equation of (1.1), A2 = b\ + a, has two solutions
r1 = —x and x5 = b+ x, where

(1.3)  @:=b(/1+4a/b®> —1)/2;  R/1+4a/b> >0,
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188 L. LORENTZEN

and thus |z1| < |z2|. It is a consequence of the Poincaré-Pincherle-
Perron theorem [34, 36, 37, 41, p. 45] that the solution space of (1.1)
has a basis {{X,},{Y,}} such that X, 1/X, = —z, Y11/Ysn — b+z,
and thus X, /Y, — 0. We say that a solution

(1.4) {Zn} = ofXn} + B{Ya}

is minimal if a # 0 and 8 = 0, and dominant if 5 # 0. (It is trivial if
a=p=0)

It is a classical result that if now

(1.5) Z\anfa| < oo and Z\bnfb| < o0,

then the (finite) limit

Z
1. Z:= lim —>—

exists, and Z # 0 if and only if {Z,,} is a dominant solution. Moreover,
if {X,,} is a minimal solution of (1.1) and a # 0, then the finite limit
X = lim, 0 X, /(—2z)™ also exists and is nonzero. Finally, if a,, and
b, are analytic functions converging locally uniformly in some domain
D, (1.2) holds in D and the convergence in (1.5) is locally uniform in
D, then the convergence in (1.6) is also locally uniform in D. (See, for
example, [20, 32, 40, 42] for references and historical remarks.)

There has also been derived asymptotics for {Z,} in a series of
particular cases where {a,} and {b,} behave regularly, although (1.5)
fails. Birkhoff’s method [4-6] to solve (1.1) when {a,} and {b,} have
asymptotic expansions of the form

oo
ap ~ /@ g an=I/e, (n — o)
Jj=0

by Nnkz/‘”z,b’jn_j/“’, (n — 00)
=0

for some natural number w and real constants ki, ke is of particular
interest. This method is very well described in [45] or [49].



POINCARE DIFFERENCE EQUATIONS 189

Recurrence relations where a,, and b,, are rational functions of n are
sometimes related to hypergeometric functions and can thus be solved
explicitly in terms of such functions. See, for instance, [2, 8, 9-19,
25-30, 44-48] and references therein.

The purpose of this paper is to show that the finite limit (1.6) also
exists in cases where the series Y (a, —a) and (b, — b) only converge
conditionally, and to derive upper bounds for the truncation error
|Z — Z,/(b+ z)"|. Trench [42] made a recent breakthrough on this
problem. He considered (N + 1)-term difference equations

N
SalZuw;  n=1,23,...;
k=0

(1.7)
=1, a0,
where
(1.8) lim o®) = a® e C; k=1,2,...,N

n—o0

and the corresponding characteristic equation Zi\;o a®gN=k = 0 has
distinct solutions z1,xs,... ,zx. He proved:

Theorem (Trench [42]). In addition to the conditions above, suppose
the following holds:

(i) 0<|z1| < |z2| <+ < anl,
(ii) Zfbozl(a,(zk)—a(k)) converges (to a finite limit) fork =1,2,... ,N,

(iii) there exist positive, nonincreasing null sequences {\,} and {1, }
such that ¥, = o(A\,) as n — oo and

@ —a®)=0(\n),  (m— )

<

Z |a§-k) — " nijok = O(Wm), (m — o0)
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Let r be an integer in {1,2,... ,N} such that |x,| # |zg| if r # k. If
r > 1, suppose also that there are an integer ng and a number R such
that 1 < R < |a,/xr—1| and {R"\,} and {R™,} are nondecreasing
for n > ngy. Then (1.7) has a solution {Z,} such that

(1.10) Z,=z.(1+0(\,)) asn— oco.

We restrict our investigations to the case N = 2 with |z;| < |z2],
but we allow z = ;3 = 0. We are mainly concerned with the limit
(1.6) which corresponds to the case » = 2 in Trench’s theorem. This
is a particularly interesting case in applications, such as orthogonal
polynomials and continued fractions.

Let us write

an = a(l —ey,), by, = b(1 + 6,),

(1.11)

IBn L= 5n71 + 6n + 5n71(5n +éen
if a # 0 and
(1.12) by = b(1+3,) ifa=0.

Although the two cases are similar, it is convenient to treat them
separately. The case where a # 0, and thus x # 0, corresponds to
Trench’s situation. For this we shall prove:

Theorem 1.1. Let (1.2) hold with a # 0, and let there exist a positive
nonincreasing null sequence {\,} such that from some m > mg > 0 on,
Om # —1 and

H (1+49;) 1‘ <Q+d+Ci)Am,
j=m+1

(1.13) o

fj Bi T[ a+46)

j=m+2 v=m+1

S Cl>\m7

0o j—2

01l SdAm and > 18510 [ 1406 < Cotm

j=m+2 v=m-+1
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for some positive constants d, C1 and Co such that |q| := |—x/(b+z)| <
1/(14+Cy). If H;.n:t:H(l +0;) is uniformly bounded with respect to m

and n, then {Z,/(b+ x)"} converges to a finite limit Z, and

(1.14) 12— Z,/(b+2)"| < C Y A r(r+1)%(lg|Q)"

r=0
for every Q > 1+ Cy for some constant C' independent of n,q and Q.

Remarks 1.1. 1. Theorem 1.1 is a special case of a more general
result presented in Section 5 of this paper, Theorem 5.1. Its proof is
also given in Section 5.

2. It is a consequence of Lemma 2.5, to come, that the righthand
side of (1.14) converges to 0 as n — co. If, in addition, there exists an
R < 1/|q|@Q such that {R™\,} is nondecreasing, then

S e+ 12(alQ)" = 2 D" A BT+ 1 (RIgIQ)
=0

r=0

IN

S AR+ DA(RIIQ)
r=0

1+ R|q|Q
~ (1= RlqlQ)?”

and thus |Z — Z,/(b+ z)"| = O(\,), as in Trench’s theorem.

3. If a,, and b,, are complex valued functions, then also the constants
d, C1, C3 and \,;,, may be chosen as functions of the same variables.
The bound (1.14) may then be used to prove uniform convergence of
{Z,/(b + z)"}. An expression for the constant C in (1.14) can be
derived from the proof of Theorem 5.1 and (2.4).

4. In frequent cases, the constant Cs in Theorem 1.1 can be chosen
smaller; the larger one chooses my. In the extreme case, these values
of Cy approach 0 as my — co. Then C5 can be replaced by ¢, = o(1)
in (1.13), and we can conclude that {Z,,/(b + )"} converges locally
uniformly with respect to ¢, for 0 < |¢| < 1. Compared to Trench’s
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conditions,
d; = O(An),
j=m
Z |6j‘>‘j+1 = O(‘PmAm)a
(1.9) =

D ei=0(\),
j=m
> leilA1 = OlemAm),
j=m
conditions (1.13) are weaker.

For the case where a = 0 we prove:

Theorem 1.2. Let (1.2) hold with a = 0, let §,, be given by (1.12),
and let there exist a nonincreasing positive null sequence {\,} such that

> <“;');1 v Y 5)‘ < pAm,

j=m-+1 v=j+1

>\j+1> S pz)‘m

(1.15)

oo

.
> (p|5j|>\j+ 2—;1

j=m+1

for all m > mgy for some constants 0 < p < 1 and mg € Ng. Then
Zn/(b+ x)™ converges to a finite value Z, and

(1.16) |Z - Z,b™ "]

n+1
< (|1 Zme | + |@mg+1Zme—1]) max{ M Ap,,, p} Z P
p(1—=p) —~

where M := 2 4 2\, /p-
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Remarks 1.2. 1. Theorem 1.2 is a special case of the main result in
Section 4, Theorem 4.1. If we add the condition that there exists an
M > 0 such that

m+n
Z 5]' SM)\ma
j=m+1
(117) m+n—1 a m+n
S (G5 Y a) < Mo
Jj=m+1 v=j+1

for alln > 1 and m > myg, we no longer need that {\,,} is nonincreasing.
In this case we use this value for M in (1.16).

2. Also in this case one can often find smaller constants p if myg is
increased. The result for the extreme case where p\,, can be replaced
by ¥m = o(Ay,) is described in Corollary 4.2.

3. Theorem 1.2 generalizes the classical result that P,,b™" converges
if > |0n] < 00 and > |an| < co. Just let 0 < R < 1/2 be arbitrarily
chosen, and let Ay, := max{}>7° ., |d6;[,R"">°7° ., la;b~?[} for all
m. Then there exists an mo € Ny such that (1.15) holds with p = 2R.
Since R was arbitrarily chosen, it follows that Z,,b—™ converges.

4. Asin 1.1 Remark 2, the bound in (1.16) vanishes as n — oo. If,
moreover, there exists an R < 1/p such that {R™\,} is nondecreasing,
then |Z — Z,b7"| < CpA, /(1 — pR) by (1.16), where C represents the
constant factor in front of the summation in (1.16). Tighter bounds
can be obtained from (4.4) in Section 4 .

The conditions in Theorems 1.1 and 1.2 are quite involved, as one
would expect. An alternative approach to the problem is based on the
classical result that if {Z,} is a solution of (1.1) and all by, # 0, then
{Z2n 352 is a solution of

(1.18) Zon = bpZop—o + @pnZon—a forn=2,3,4,...,
where

Bn = b2n—1b2n + agpn + b 2n a2n—1,
(1.19) 2

~ b2n

Ap 1= — 37— 02p—202n—1-

b2n—2
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Similarly, if all bg,,—1 # 0, then {Z2,41}52 _; is a solution of

(120) Z2n+1 = b;Zanl + a:LZQn,'g, fOI‘ n = ]., 2, 3, ceey
where
ban
by, = banbony1 + Gont1 + —b2 o,
(1.21) ot
* L b2n+1
Ay = — a2n—102n.
b2n—1

(See, for instance, [35, pp. 12-13, 22, pp. 83-85].) If one of these recur-
rence relations, say (1.18), satisfies for instance the classical condition
(1.5), then we also find that the limit Z in (1.6) exists:

Theorem 1.3. Let {Z,} be the solution of (1.1), where (1.2)—(1.3)
hold. Let ba, # 0 for all n, let a, and b, be given by (1.19), and

let @ := limay,, b = limb, and & := 5(\/14—4&/52 - 1)/2 where

R\/14+4a/b> > 0. If {Zon/(b+ )"} converges to a finite limit Z,
then {Z,,/(b+ x)"} also converges to Z.

Remarks 1.3. 1. If all bypy1 # 0, then we can use the recurrence
relation (1.20) instead of (1.18) and get an analogous result.

2. If, in particular, a,, and b, are functions satisfying (1.2)-(1.3) in
some domain D, and the convergence of {Zs,/(b + &)™}, {a2,} and
{ban} are locally uniform in D, and |b + z| is locally bounded away
from zero in D, then also {Z,,/(b+ )™} converges locally uniformly in
D to Z.

Theorem 1.3 applies to several interesting examples, some of which
are presented in Section 3, along with the proof of Theorem 1.3.

Section 2 contains some auxiliary results for later reference. Section 4
is devoted to the case where a = 0 and b # 0,00, whereas Section 5
contains the case where a # 0,00 and b # 0,00. Section 6 contains
some examples of applications.

2. Auxiliary results. It follows from (1.4) that if the limit Z in
(1.6) exists and is nonzero for one solution of (1.1), then all solutions
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of (1.1) have the property (1.6). Actually, if |Z —Z,,/(b+z)"| = O(\n)
for one solution with Z # 0, then this holds for all solutions. Moreover,
if a, and b, are complex valued functions and X, /(b + z)* — 0,
Y, /(b+ )" — Y locally uniformly in some domain D, then Z,/(b +
z)" — Z = BY locally uniformly in D as long as o and 8 are locally
bounded in D. Hence, if the particular solution {P,} of (1.1) with
initial values

(21) P,1 = O, PO =1
is dominant, we may restrict the investigations to {P,}.

If {P,} happens to be minimal, then the solution {Py(lm)}ff’:_l of the
shifted recurrence relation
Pém) = bm+nPr(LTi + am+nP7ET%

(2.2)
where am,4n #0; n=1,2,3,...

(m € Ny fixed), with initial values
(2.3) P =9, pP™=1

is dominant for m := 1, since { P, } and {P,gl)} are linearly independent.
We may therefore assume that {P,} is dominant.

Throughout this paper, {Pﬁm)} shall always denote the solution of
(2.2) with initial values (2.3). Similarly, {P,} shall always be the
solution of (1.1) with initial values (2.1), so that P, = PO A general
solution of (1.1) can then be written
Zyp =aP™ 48P for n >m,

n—m-—1

(2.4)
where a: =2, 8 :=an+1Zm_1-

Hence, results for {Pém)/(b + )"} imply results for {Z,/(b+ z)"}.
By induction it follows that
P =, P 4, o PP for all myn € N.
See, for instance, [35, p. 1] or [22, p. 58]. This means that

P'r(Lm) B bm+1 Prsmikl) Ao P(m+2)

n—2

(2:5) (b+x)* b+x(b +;)"—1 + (b+z)2 (b+ )2
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The simple idea behind Theorems 1.1 and 1.2 is to write Prgm)/(b—i-x)”
as a polynomial

(m) n

P,

—— = E p(m;m + n; k)w®
(2.6) b+ =

for all m,n € Np.

If a # 0 (Theorem 1.1), we choose w := ¢ given by

—z 1—\/1—1—4(1,/172
q: =

(2.7) Tbta 141+ dab?
where R4/1+4a/b% > 0,

and if a = 0 (Theorem 1.2), we choose w := b~'. One can then prove
(with the convention that an empty sum has value 0 and an empty
product has value 1):

Lemma 2.1. If a # 0, then Pr(bm)/(b + )™ can be written as a
polynomial (2.6) with w:= q. These polynomials are symmetric in the
sense that

p(m;m +n; k) = p(m;m+n;n — k)

(2.8)
for all m,n,k € Ny,

and p(m;m + n; k) is given recursively by

(2.9)
m—+n
p(m;m +n;0) := H (1+6;) for all m,n € Ny,
j=m+1
p(m;m+n;k) := (1+6pt1) - p(m+ L,m+njk—1)
m+n—k+1 j—2
+ > BipGm+nk-1) [ a+4,)
j=m+2 v=m+1
for all m,n € Ng for k = 1,2,3,..., where 6, and B, are given by

(1.11).
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Proof. We shall first see that PTE’") /(b+z)™ is a symmetric polynomial
in q of degree < n. This is clearly true for n = 0 and n = 1 since
p™
(b+)° ™

and
P™ b1+ Ga)
(b+z)t btz
Since (b + ) = a, and thus, by (2.2),

=(1+¢)(1+dmsa)

P b1 46m4n) P L ol = emsn) P
e E T (R (T
P P
=(1+q(+ 6m+n)m —a(l - €m+")W’

the result follows by induction on n.

Formula (2.6) clearly holds for all m if n = —1 or n = 0. Hence the

result follows, since the proposed expression for pm /(b+ x)™ satisfies
the recurrence relation (2.5). o

Lemma 2.2. Ifa = 0, then P,(f”)/(b + )™ can be written as a
polynomial (2.6) in w := b~ ', whose coefficients p(m;m + n;k) are
given recursively by

p(m;m+n;—1): =0,
p(m;m+n;0): =1

(210) m+n—k+1 .
pmim+n;k):= Y (nj-p(iim+mnik—1)
j=m+1

+aj41-p(i+Lm+nk—2)

for allm,n € Ny, for k=1,2,3,..., where n, := bd,, with 6, given by
(1.12).

To see this, we just observe that it holds for all mif n = -1l orn =20
and that the expression (2.6) for pim /(b+ x)™ satisfies the recurrence
relation (2.5).
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In both cases, if the limits

(2.11) p(m;oo; k) := lim p(m;n;k) € C for k=0,1,2,...

n—o0

exist, and the formal power series

(2.12) ip(m; 00; k)wk

k=0

converges for |w| < R for some R > 0, and

(Zp(m; oo; k)wk — Zp(m; m+mn; k)wk> —0
k=0 k=0

as n — o0

(2.13)

for |w| < R, then (2.3) holds for |w| < R with limit (2.12). This
approach may seem very restrictive. Equation (2.11) is a strong
condition. However, it is a necessary condition in important cases of
uniform convergence of {PTS’") /(b + z)"} with respect to w = ¢ or
w = b"" in some disk |w| < R:

Lemma 2.3. Let R > 0 and m € Ny be fized. Let a,, b,, b and
x be analytic functions of a complex variable w for lw| < R, and let
b(w)+z(w) # 0 for |w| < R. Assume that PT(Lm)/(b—i—ac)" can be written
as a polynomial (2.6) in w and that {Pr(bm)/(b + )"} converges locally
uniformly in |w| < R. Then the limits (2.11) exist, and the power series
(2.12) converges for |w| < R.

Proof. Since the limit P("™) is an analytic function of w, it has a power
series expansion of the form (2.12) which converges to P(™) =: P(™) ()
for |w| < R. Since the convergence in (2.13) is locally uniform, it
follows by Weierstrass’s double series theorem that the coeflicients of
this power series satisfy (2.11). O

Of course, the expression (2.6) for pim™ /(b+ x)™ gives an expression
for the limit P provided the quantities involved converge. Actually
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we shall see that

(2.14) P () =P = lim —" Z £ g

provided the series converges, where w = ¢ and

tgm) = H (1+6;) forallm
j=m+1
(2.15) ™ = (14 Gy )tV
j—2
+ Z Bjt(] H (1446,) for all m,
j=m+2 v=m+1

for k=1,2,3,...,if a # 0, and where w :=b~! and

=0, ™ :=1 forallme N,
(2.16) = 0 ity + eyt )
j=m+1
for all m; n; = bd;

for k = 1,2,3,..., if a = 0, assuming that these quantities are well-
defined complex numbers.

Lemma 2.4. Let k* € N. The finite limits

p(m;o00;k) := lim p(m;m+ n; k)
(2.17) n—o0
for allm € Ny and k < k*

ezist if and only if all t;cm) are well defined (and finite) for k < k*; by
(2.15) if a # 0, by (2.16) if a = 0. The limits are then p(m;oo; k) =

£,

The proof is found in Section 4 for the case a = 0 and in Section 5
for the case a # 0.
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Lemmas 2.1 and 2.2 are strongly related to other expressions for
solutions of recurrence relations (1.1) and (1.7). See, for instance,
Masson [24], Trench [42] and Runckel [38, 39]. Let is also be
mentioned that, in a series of beautiful papers and results, Ramanujan
(his results are further clarified and proved by Berndt [3]), Masson,
Ismail, Gupta, Wimp [9-19, 25-31, 44-48]|, and others have derived
expressions of a similar nature for solutions of particular recurrence
relations related to hypergeometric functions.

We shall also apply the following standard result which, for instance,
can be found in [21, p. 78]:

Lemma 2.5. Let {z,} and {y,} be two real null sequences. If
> [¥nl < oo, then

n
Zp 1= Zacryn_T; n=20,1,2,...
=0

is also a null sequence.

3. Theorem 1.3 revisited. The simple idea of Theorem 1.3, to
study {Z2,} and its recurrence relation (1.18) instead of {Z,}, has
many applications. The examples we show in this section can all be
treated by Birkhoff’s method, which then gives stronger asymptotics.
(The strength of the present method is that it also applies to cases
where Birkhoff’s method fails.)

Ezample 3.1. Let a, := (=1)""'z/n and b, := 1 for all n. Then
anp, > a=20,b, =b=1and z =0, and we are therefore concerned
with the possible convergence of Z,(z) or P,(z). The coefficients of
(1.18) are

~ z

b(2) =1+ I o

22

4n? —6n+2°

Since 3 |bn(2) — 1| < 00 and Y |an(2)| < oo, it follows that {Ps,(z)}
converges locally uniformly to an entire function of z in C. (Continuity
arguments show that z = 0 does not have to be excluded in this case.)

an(z) =
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Hence {P,(z)} converges locally uniformly in C to an entire function
by Theorem 1.3. This function is not identically zero, since P,(0) =1

for all n. It follows similarly that {Pr(bm) (2)} converges locally uniformly
to an entire function not identically zero for every m € Ny.

Ezample 3.2. Let a, := (—1)""1z/n® and b, := 1 for all n, where
1/2 < a < 1. Then

~ az
— 1 —2—«
bu(2) =1+ n@n—1)= O™,

2'2

n(2) = G e@n -1

for n > 2. Since, thus, 3 |bn(2) —1] < 0o and 3" |, (2)] < oo, it follows
that P,(z) and P,(Lm)(z) converge locally uniformly to entire functions
not identically zero, by the same arguments as in the previous example.

Ezample 3.3. Let a, = (a + (—=1)""'/n*)z and b, := b # 0,00
for all n, where a > 1/2 and az/b* ¢ (—oco0,—1/4]. We consider a
and b as fixed constants and z as a complex variable. Let z(z) :=

b(4/1+4az/b?> — 1)/2 where |b+ z| > |z|. Then

oz
2n(2n — 1)«
52

(2n — 2)«

X (25? Tt (2ni1)a +(9(n2)>,

bn(z) = b + 2az + +0(n"27%),

an(2) = —a*2* +

Since 3 by (2) — b2 — 2az| < 0o and 3 |dn(2) + a222| < oo, it follows
that Py(lm)(z) /(b + z(z))™ converges locally uniformly to an analytic
function in the cut plane where az/b? ¢ (—oo, —1/4] for every m € Ny.
This function is not identically zero, since Pﬁm)(O) /(b+ z(0))" =1 for
all n and m. (Again, continuity arguments show that the point z = 0
does not have to be excluded.)
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Ezample 3.4. The Kummer function is given by
— (B)r 2"
M(B;7;2) == 1F1(B; 73 2) == Z—( ez

where (d);, denotes the usual Pochhammer symbol. We assume that
B+1,v,vy—pB€C\{0,-1,-2,...}. According to Gauss’s contiguous
relations for hypergeometric functions, the sequence {f,(z)} where

fon(2) := M(B + n;v + 2n; 2),
Jont1(2) = M(B+n+1;v+2n+ 1;2),

is a solution of the recurrence relation

fn(z) :fn+1(z)+a"+1zfn+2(z); n=0,12,...,

where
(B+n)z
aoanz2 = ’
(y+2n—1)(y+2n)
tgspz = - (Y= BEm)2
’” (Y +2n)(y+2n+1)

for all n. See, for instance, [1, p. 507, 20, p. 206] or [22, p. 313]. It
follows (see, for instance, [20, p. 206] or [22, p. 313]) that

M@Bvz) . =B . P
MBIyt L D) s p )

where {P,gl)} and {P,} are the special solutions of the recurrence
relation

Zn(2) = Zpe1(2) + anznZn—2(2); n=1,2,3,...,
which we are considering here. The coefficients of (1.18) are now

(28 —7)z
(2n++)(2n + v —2)
a O(n™2).

=1+0(n?),

IS
3
—~

N
~—

Il



POINCARE DIFFERENCE EQUATIONS 203

This means that 3 |d,(z)] < oo and Y |b,(z) — 1] < oo, and thus
{Pﬁl)(z)} and {P,(z)} converge locally uniformly in C to entire func-
tions P(1)(2) and P(z). As before, z = 0 represents no problem. Since

pm (0) = 1 for all m and n, it follows that neither P(!)(z) nor P(z)
are identically equal to zero.

This result is not new, of course. Actually, it follows from the
recurrence relation for {f,(z)} above that {f2,(2)} is a solution of

fan—2(2) = En(z)f%(z) + @nt1(2) f2n+2(2)

and thus, by standard arguments, that

Fon(2) = M(—8 —n;y — 2n; —2)
Fn+B8+1)(n+v—-5+1)
I'2n+~+ DI'(2n+ v+ 2)
My —B+n+1Lv+2n+2;—2)

Gon(2) = (=1)"2*"

are solutions of the recurrence relation (1.18). (See, for instance, [25,
44, 46, 22, p. 198].) The general solution of (1.18) is therefore
Zon(z) = C1F2,(2)+C2G2,(2) in the present case. From [23, p. 133] we
find that both M (—8—n; —y—2n; —z) and M (y—B+n+1;y+2n+2; —z)
converge locally uniformly to e #/2. Since Stirling’s formula shows that

Pn+B+1DI(n+~vy—F+1)
F'2n+~v+1)I'2n+~v+2)

c 2n+vy+1
=e 7 — 1+0(m ! as n —
() a0 ) wnow,
this means that G, (z) converges locally uniformly to 0. More accurate
results can also be obtained from these sources.

Ezample 3.5. Let a,, := a+ (—=1)"*l¢/n® and b, := 2 + (—1)"d/n”,
where a > 1/2, 8 > 1/2 and a/2? ¢ [—00,—1/4]. We assume that
¢ € C is chosen such that all a,, # 0. Then

- dBz 2
=224 2q¢— -
b =2 2= o TP T @n= 1P @n)?
N ca B daB/z +Om1)

2n(2n — 1)@ n(2n —2)8
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for an € > 0, and

_ 9 caq da®B/z
In = O G — 1) | n(en—2)?
82
+ —+0(n~"7H)

(2n — 1)2(2n — 2)

for a p > 0. Hence {P,Sm)/(z + z)"}, where z := z(y/1+4a/2% —
1)/2;Ry/--- > 0, and thus |z + 2| > |z|, converges locally uniformly
in the cut plane where a/z? ¢ [—o0o,—1/4], to an analytic function

for every m € Ny. Since lim,_, ., Py(Lm)/(z +2)" =1 at z =0 for all
m,n € Ny, this function is not identically zero.

Ezample 3.6. Similarly to the Kummer function in Example 3.4, the
hypergeometric function

[ee) o zk
i 50

k=0
a7/8+177a77ﬂ777a+1 S C\{O,*l,*?,...}

satisfies the recurrence relation

fn(Z) :fn+1(z)+an+1zfn+2(z); ’I’L:0,1,2,... ’
where
(@+n)(y=B+n)
¥+2n)(y+2n+1)’

(B+n)(y—a+n)
(y+2n—1)(y +2n)’

A2n+1 = —(

a2n = —

in the sense that

fan(2) = 2F1(a +n, B+ n;y + 2n; 2),
font1(2) = 2Fi(a+n;8+n+ 1,74+ 2n+ 1;2).

See, for instance, [20, p. 200, 22, p. 294] where it is also proved that

fo(2) _ 1_ a(y —B)

z lim P,(Ll)(z)
fi(z) V(Y +1) nooe Pu(2)
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where {Pﬁl)} and {P,} are our specific solutions of the recurrence
relation
Zn(2) = Zy-1(2) + anzZ,—2(z); n=1,2,3,....
The coefficients of (1.18) are now
2a8 — —v/2
bu(e) =1 2 4 2282t f=7/2)
2 (y+2n—-2)(y+2n)

22

an(2) = 16
(8- a+1/2+5(a+B—1/2) ~208n+0(1) ,
2(y+2n-3)(y+2n—2)(y +2n - 1)

(8 ot 1/27n £ (v~ 2n) + O() ,
(vy+2n—=3)(y+2n—2)2(y+2n—1)
Hence, 3 |bn(2) — 1 + 2/2| < 0o and Y |an(z) + 22/16| < oo, which
means that {P,(z)/(1 4+ z(z))"}, where z(z) := (v/1—2z —1)/2, con-
verges locally uniformly in the cut plane z € D := C\[1,00) to an

analytic function P(z). (The point z = 0 is included by a continu-
ity argument.) Since P(0) = 1, this function is not identically zero.

Similarly, PT(LI)(z) — PM(2) £ 0 locally uniformly in D.
Also, this is already well known. In fact, also in this case, we know
the general solution (1.18). It is Za,(2) = C1Fa,(2) + C2Gay(2) where
Fon(2) = oF1(—a —n, =8 —n; =y — 2n; 2)
Gan(2) = 220 Ma+n+1)I'(B+n+1)

L(y+2n+ )T (y +2n +2)
xI'(y—a+n+1)I'(y-B+n+1)
XoFi(a+n+1L,8+n+1;y+2n+2;z).

According to Watson’s asymptotic formula [43] (see, for instance, [7,
p. 77])

)

—a—A
-1 2
<z > 2F1<a+)\,a—c+1+)\;a—b—|—1+2)\:l >
—z

2
:2a+b\/§ Dla—b+1+2)  _ine
AT(a—c+1+NI(c—b+A)

~ (l‘* 675)7c+1/2(1_+ efﬁ)cfafbfl/z
x (L+0M\ 1) as |\ =0
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for |arg \| < m—6 for a § > 0, where ¢ is defined by z4+/22 — 1 = e*¢,
By settinga := o, b:=a—vy+1,¢c:=a—F+1, A\:=nand z :=1-2/w
in Watson’s formula, we get e=¢ = —(1 + /1 — w)/(1 — y/1 — w), and
thus

o F1(a+n, B+ n;y + 2n;w)

— (_ l>a+n22a—7+1\/f F(’y + 2n)
w WT(B+n)l(y — B+n)

x ( 1+m>“+"< 2 )5‘“‘1/2
1-—

C1-Vi-w Vi-w
- — y—a—b—1/2
x (12— V\/ll_w> (1+0m™Y)
—V1—w
where Stirling’s formula shows that
I'(y +2n) 2nty—1 | T -1
= g2t [T .
T+ G+ ) o)

Hence
2Fi(a+n, B +n;y 4+ 2n; 2)
1 2n+vy—1
Y (3 /1 — z)vfafﬁflﬂ
z(2)

(z
x ()24 0m )

- ( §>2nﬂl(1 + 2(z))2 1

z

x (VI 2)1 e b 2((L1)Bal/2 L oLy,

Proof of Theorem 1.3. We have @ = —a?, b = b + 2a and

&= (b°\/1+4a/b2 —b*> —2a)/2 where b+ Z| > |Z].

Since a = z(b+ z) by (1.3), it thus follows that Z = —z? and
(b+Z) = (b+z)? and thus |b+ Z| > |Z| if and only if |b+ z| > |z|.
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If Zon/(b+ &) = Zon /(b + x)2" converges to Z, then it follows from
(1.1) that

bon  Zon—a _ Zon G Zon—2
b+z (b+z)2»1  (b+2)> (b+z)? (b+z)n?2
sz b 2

(b+x)? T btz

Since by, — b # 0, this proves the assertions. a

Theorem 1.3 was based on even (or odd) contractions. One can
also use other contractions than the even part {P,,} or the odd part
{Pant1} of {P,}. If {ny} is a subsequence of N, n_; := —1, and
P10 for all k, then

nkfnk,lfl
(3.1) P, =bxPy, , +apPn, , fork=1,23,...,
where

51 = Pnl/Pno
(ng—1+1) np_1+1
g = _ Putacion kl_ll (—a;)
= (nrat1) 7))
(32) Pnkilink,zfl j=ng_2+2

(nr—2+1)
7 Pnkfnk,zfl
By, 1= — e me2 1

= P(nk—2+1)

Ng—1—MNk—2—1

for k=2,3,4,.... (See [35, p. 12].)

Another tool of this type is extensions, [35, p. 13]. Also other
transformations can be used, such as the Bauer-Muir transformation:
If {Z,} is a solution of (1.1), and {w,}52, is a sequence of complex
numbers such that

(3.3) On = ap — Wp_1(bp +wyp) #0 for all n € N,

then {Z,, + Z,,_1w,} is a solution of the recurrence relation

n Xn—2;

n—1

X, = (bn + wn — n wn—2> Xn_1+an_1

Pn—1

(3.4)
n=2734,....
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(See, for instance, [35, p. 25, 22, p. 76].)

4. Theorem 1.2 revisited. In this section we consider the case
where a,, — 0 and b,, — b # 0, 0o, and we use the notation

(4.1) b, =b(146,) =b+ 1.

Since z given by (1.3) is equal to zero, we want to find sufficient
conditions for the existence of the limit Z := lim,,_,o Z,b~". Our
main result is:

Theorem 4.1. Let (1.2) hold with a = 0 and b # 0,00. Let there
ezist positive constants p < 1 and M, integers ky > 1 and my > 0, and
a positive null sequence {\,} such that the following three conditions
all hold with the notation from (4.1), Lemma 2.2 and (2.16):

i > (nmt,(cm) + am+1t,(ﬁfl)) converges to a finite value for

m=1

k=0,1,... k.

(i) Tt < Ay [l | < JbloAms 3052 041 (0165 Aj+]aj 11572 Ag11) <
p*Am for all m > mg.

(iii) |p(m;m+n;ko)| < MMy, [p(m;m+n; ko +1)| < M|blpA,, for
all m > mgy and n > k.

Then {Pﬁm)b*”}f;;o converges to the finite limit P(™ in (2.14) for
every m € Ny, and

H
pm _ pm)p—n| ____=m
| WS G =)
(4.2) ko—1 n+1
X { Z )ufm—l—n—l—l—rpr + Z )\m+n+1—rpr}
r=1 r=ko

for m > mg and n > ko — 1, where C = p|b|, i, := maxi<,<k, |t£m)|
and

K, = max{[p(m;m+n;r)|: 0 <r < ko and n € Ny},
Hp, i= max{MAm, MApC, MAp,,C* 1 K., C, K, CFot 1,
K, G0, Oy,
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Remarks 4.1. Condition (i) is just that t,(cm) exists for k =0,1,... , ko+

)

1. Condition (ii) ensures the existence of all t,(cm for larger k.

2. Theorem 4.1 is not so easy to apply if kg > 1. Its conditions
involve both p(m;m + n; k) and t,(cm) for k=0,1,...,ko. It should be
regarded as an auxiliary result. The useful results are its corollaries,
such as Theorem 1.2.

3. The righthand side of (4.2) converges to 0 as n — oo. This
is a consequence of Lemma 2.5. If there exists an R < 1/p such
that {R™\,} is nondecreasing, then it can be replaced by O(An4n)
as in Remark 1.2.4. From the proof of Theorem 4.1 one also gets the
following tighter bound in Theorem 4.1:

n

|ptm) — plmp=n| < L Z{M)\m

02k0
k=1
min{kfko,k!ofl}
~ ‘tv(ﬂm+n+177d)|0k07r
r=1
k—Fko
+M>\m Z >\m+n+1—r
T:kg
min{k,ko—1}
(4.3) + > |t(mtnt1=r)

r=max{l,k—ko+1}
cp(mym +n —rik —r)|C%ko—k
k

+ E )\m+n+177‘
r=max{ko,k—ko+1}

X [p(m;m+n—r;k — r)|C”"+k°_k’}pk’

>\m pn+1
Ckol—p
for m > mg and n > kg — 1.

The proof of Theorem 4.1 is deferred to the end of this section. We
shall rather look at some implications. The conditions in Theorem 4.1
simplify considerably if we require that ky := 1, which is the case
described in Theorem 1.2.
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Proof of Theorem 1.2. Let kg := 1 and replace {\,} by {|b|\n} in
Theorem 4.1. Assume that the conditions in Theorem 1.2 hold. Since
t(()m) =1land t(frll) = 0 and, since Y 7, and E(nmtgm) +am+1) converge
by (1.15), Condition (i) in Theorem 4.1 holds. Also Condition (ii) holds,
since by the first two inequalities in (1.15) we have

=1 Y ] < b,
j=m+1

5 =1 S it + azi1)| < [6PpAm,
j=m+1

and the third inequality carries over by multiplication of |b|. To
check Condition (iii) we observe that, by (2.10), p(m;m + n;1) =
Z;’Z;ZH nj = t§’”)—t§’”+”), which means that [p(m; m+n; 1)| < 2|b| A\,
when {)\,} is nonincreasing.

In the same way, we find that p(m;m+n;2) = tém) ft§m+") -p(m; m+

n—1;1) — 5" and thus [p(m;m + n;2)] < (26 + 2Amtn) B2 Am-
Hence, Condition (iii) holds with M := 2 + 2\,,,/p. We therefore get
from (4.3) that

m m —-n 1 =
P = P < s S { i,
k=1
k—

1
5D DI PRTRER T} PR

k-1
k—1
X Z >\m+n+1—r + Am—i—n—i—l—k}p
r=1

n

Amp
1—p

max{ M, p} w
< —— >\m n—TpT
p(1—p) ZO *

+
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for all n € Ng and m > my. It follows therefore by (2.4) that (1.16)
holds. o

If the constant p in Theorem 4.1 can be chosen smaller the larger one
chooses my, such that this value of p approaches 0 as mg — oo, then
we are in a situation similar to the one described by Trench [42]:

Corollary 4.2. Let there exist a positive constant M, integers ko > 1
and my > 0, and two positive null sequences {\,} and {k,} such that
the following three conditions all hold:

(1) E;’:zl(nmt,(cm) + am+1t,(:jir1)) converge to finite values for k =
0,1,... k.
(i) 16”1 < Ams [l ] < By 5% (5010 + g A) <
K2, Am for all m > my.
(iii) |p(m;m + n;ko)| < My, [p(m;m +n;ko +1)| < MEgm Ay for
all m > mg and n > ky.

Then {Prgm)b’”}ff:o conwverges locally uniformly for all b=t € C to the
analytic function P (b=1) # 0 in (2.14) for every m € Ny, and

(4.5) |P™ (b=t — pimp—

n+1
=0t = Diminsaosg + 3 Amsniarlion/ 1)),

’I‘:k:o

where fi; := max{y, : r > j} and &; := max{k, : r > j}. If, moreover,
there exists an R > 0 such that {\,R"} is nondecreasing, then

(4.6)  [PU(7Y) = PIbT" = O((ko = 1)fim-tnsz—ko + Amen)-

Proof. Let R* > 0 be arbitrarily chosen, and let m§ > mo be chosen
such that x,, < R* for all m > mg. Then the conditions of Theorem 4.1
hold for m > mg with &,,»/|b| as the new constant p. It follows,

therefore, that {P,gm)b*"} converges if |b| > R*. Equation (4.5) follows
by (4.2), and (4.6) follows by an argument similar to Remark 1.1.2.
O
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For the special case where all b, = b, which is an important case
in continued fraction theory, Theorem 1.2 simplifies further. Then the
recurrence relation (1.1) can be written

(4.7) Q%m) = Qiﬂ + am-«—ansr—l)za am+n 7 0;

n=1,2,3,...,
where w := b~2 and Q&m) = P,(lm)b_". Since all §,, = 0, we find that
p(m;m + n; k) = 0 for odd values of k. Hence, the solution of (4.7)

with initial values Q(_”}) =0, ng) =1 can be written

[n/2]
m — . . k.
(48) QY (w) = k§:0: g(m;m + n kyw';

q(m;m +n; k) = p(m;m + n; 2k),

where [r] := min{m € Z : r < m} for an r € R. We get:

Corollary 4.3. Let stm)(w) be the solution of (4.7) with initial
values Q(_nf)(w) =0, Q(()m)(w) = 1. If there exist a positive constant C,
an integer mo € Ny and a positive nonincreasing null sequence {\,,}
such that

(oo}

> 4
j=m-+2
oo

>l < Chn

j=m+2

S A’ITL’

(4.9)

for all m > my, then the sequence {Q%m)(w)}?fzo converges locally
uniformly for |lw| < 1/C to the analytic function

Q(w) := lim Qi (w)

(4.10) = Ztg:)wk for jw| < 1/C;
k=0

Q™ (w) £0,
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for every m € Ny, and
(411) QU (w) — QY™ (w)]
[n/2]
2)‘ Arn—!—n—i—l—r )‘m—l—n—l—l—k k
_Z{ "y EEE 4 SRR (Clw))

r=1
Am (Clw])n/2H1
C 1-Clu

[n/2] +1
max{2\,,,C} m+n+1 r( -
< E (Clwl)

- C(1-Clwl|)

for all n € Ng, m > myg and |w| < 1/C.

Proof. Set 6, := 0, b := 1 and replace a, by a,w and A, by
|w|A,/p in Theorem 1.2. Then (1.15) reduces to (4.9) with C := p?/|w|.
Clearly p < 1 if and only if |w| < 1/C, and thus (4.10) follows. Since

Q4™ (0) = 1 for all n, it follows further that Q(™ (w) # 0. Moreover,
it follows from the proof of Theorem 1.2 that we can use M := 2
in Theorem 4.1. The bound (4.11) follows then by the same type of
arguments as in (4.3). O

To prove Theorem 4.1, we shall use a number of lemmas. The first
one is easily proved by induction on k:

Lemma 4.4.
p(m;m+n+ N;k) — p(m;m + n; k)

:Zp(m—}-n—i—lfr;m—i—n—}—N;r)p(m;m—l—nfr;k71")
r=1

for all m,n,k, N € Ny.

Remark 4.2. Tf t{™ is well defined for all m € Ny and k < k* for
some k* € N = N U {oo}, then one also has, by the same method of
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proof, that

k
t,(cm) —p(m;m+n;k) = Z g(mntl-r)
r=1

(4.12)
-p(m;m+n—rik—r),

and thus also that

m+n—k
413) Y it + ajatdH) — plmsm+nik 4+ 1)
j=m+1
k
= Ztngr"H*T)p(m; m+n—rik+1—r)
r=1
for k < k*.

Proof of Lemma 2.4 for the case a = 0. First let all t,(cm);k <
k* be well defined. Equation (2.17) holds trivially for all m, with
p(m;oo; k) = t™ ) if k = 0. Assume that it holds for k = 0,1,... , ko
for some integer ko, 0 < ko < k*—1. If welet k ;== kg+1and n — oo in
(4.12), then t{" ") 5 0 and p(m; m4n—r; ko+1—7) — té?lkr #
oo for r = 1,2,... ko + 1. This proves (2.17) with p(m;oo; k) = t,(cm)
for k = kg + 1, and thus this follows for all £ < k* by induction.

Now let the finite limits p(m;oo; k) exist. Then p(m;o00;0) = 1
which is equal to t(()m), and p(m;o0;1) = 372 . 7; which is equal
to tgm). Assume that t,(cm) is well defined for all k < kg for some kg,

1 < ky < k*—1. Since t£m+n+17r) — 0asn — oo for r < kg and
p(mim+n—r;kg+1-—71r)— té?lkr # oo for r > 1, it follows from

(4.13) that 372 () + a1t ™)) = p(mycoske +1). O

Proof of Theorem 4.1. We shall first prove that

\t,&m)\ < AmCFFo for all m > mg and k > ko;

(4.14)
C := [blp,

and thus that the series in (2.14) converges locally uniformly for
|lw| = [b71| < 1/C. Equation (4.14) holds for k = kg and k = ko + 1 by
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Condition (ii), and it follows by induction on k for larger values of k,
since the induction step goes (using (2.16) and Condition (ii))

m ] 1+1
< 3 (gt + laget )

j=m+1
< CFhomt Z (Clni|Aj + laj+1lAj+1)
j=m+1

< Amck+1fk0.
In a similar manner we also find, using (2.10) and Condition (iii), that

p(msm + n; k)| < M, CF ko

(4.15)
for all n € Ng, m >mg, k> ko.

Next we shall prove (4.3). According to Lemma 2.2 and formula (4.12),
using (4.14), we have for fixed m > mgy and n > kg — 1,

St — PImb < ST — pmim + s k)|
k=0 k=0

S R N T
k=n-+1

< z": zk: ‘t£m+n+1—r)

k=1r=1
p(miym+n—r;k—r)|

bR A Y O Ry R
k=n+1

Using (4.14) and (4.15), this proves (4.3). If we apply the inequalities
[t < py for 1 <7 < ko

and
p(m; j;r)| < K, for 0 <r < ko, m>my
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for all j € Ny, we find that (4.3) is bounded by

1 n min{kfko,kofl}
o DY ETC VRS SRS EL
k=1 r=1
k—ko
+ M>\m Z )‘m+n+177‘
’I‘:k:o
min{k,ko—1}
+ KmC2k07k Z Hm4n+1—r
r=max{l,k—ko+1}
k
+ Km Z )‘m+n+1—rck0k+r}
r=max{ko,k—ko+1}
)\mpn—i-l
Cko(1—p)
H n min{k,kgfl} k
< CTTI:O Z { Z Mm4n+1—r + Z >\m+n+1—r}
k=1 r=1 r=kg
n+1

Cho(1—p)

xpk—i—

Changing the order of summation shows that this bound is less than
the bound in (4.2). O

5. Theorem 1.1 revisited. In this section we consider the case
where a,, — a # 0,00 and b, — b # 0,00 and a/b?> € C\{0} is not
a real, negative number < —1/4. Let = be given by (1.3), and let d,
and 3, be given by (1.11) and ¢ be given by (2.7). Then |g| < 1. This
time, P,(Lm)/(b + 2)"™ can be written as a polynomial (2.6) in w = g,
whose coefficients p(m;m + n; k) are given recursively by (2.9). Our
main result is now, with the notation from (2.15),

Theorem 5.1. Let (1.2) hold with a # 0,00 and b # 0,00. Let there
exist positive constants M, Cy,Cy and d, integers kg > 0 and mg > 0,
and a positive nonincreasing null sequence {\,,} such that the following
four conditions all hold:
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(1) O0m # —1 for m > myg, and H;’;mo(l + ;) and Z;imo-m Bj x
222 ., (1+46,) converge.

v=mo+1

(i) >7lore ,Bjt,(cj) Hf;fnﬁl(l + d,) converge to finite values for
—0,.. ko —1.

(i) [ty” =1 < (1+d+C)Am, 81l < Ay | 5201085 T i
(1+6,)] < Cidm and 352, o 1BiIN [T sr 11+ 6,] < Cadp for all
m > my.

(iv) |p(m; metns ko)—1] < M(1+d+Cr)Am and | 7705 B 1T 25
(1+6,)] < MCiA, for alln € Ng and m > my, and p(m;m+n; k) is

untformly bounded with respect to m and n for k =0,... kg — 1.

k

Then, for every m € Ny, the sequence {PT(lm)/(b + 2)"}52, converges
to

(5.1) P ="Mk for 0 < gl < 1/(1+ Ca),
k=0

and

™

(5.2) P — Gror

< (X s+ DP0lQ) 4004 ).

=0

for |qg| < 1/(1 + C3) and Q > 1+ Cy for some constants C > 0
(independent of m,n,q and Q), where p, := max{A,, \t,(cm) —1);m >
’I’L,O S k< ko}

Remarks 5.1. Conditions (i) and (ii) are required so that t((]m), e ,t,(cm)

shall be well defined complex numbers. We shall see that Condition (1101)
implies that t,(cm) exists for k > kqg. The condition §,, Z —1 for m > my
is to ensure that the series in Condition (i) converges also if mg is
replaced by m > my. It always holds for m, sufficiently large, since

Om — 0.

2. Theorem 5.1 should be regarded as an auxiliary result, the
important results being its corollaries, such as Theorem 1.1.

3. From the proof of Theorem 5.1, one can also derive more precise
upper bounds for |P(™ — P{™ /(b + z)"|.
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4. Asin Remark 1.1.3, we may extend the domain of convergence to
all ¢ with 0 < |¢q| < 1 if C can be chosen arbitrarily small by increasing
mg. That is, if the conditions of Theorem 5.1 hold, and there exists
a positive null sequence {k,} such that Condition (iii) holds with C5
replaced by K, then {P,(Lm) /(b+ )"} converges locally uniformly for
0 < |g| <1 to the analytic function P(™) = P(™)(q).

The proof of Theorem 5.1 is deferred to the end of this section. We
shall first consider some special cases. If we set kg := 0 in Theorem 5.1,
we have the situation described in Theorem 1.1.

Proof of Theorem 1.1. We set kg := 0 in Theorem 5.1. Conditions
(i) and (iii) of Theorem 5.1 hold by (1.13). Condition (ii) is empty in
this case. It remains to prove that Condition (iv) holds. Let M; > 0
be such that Hm+n |1+ ;| < My for all m and n. Then

j=m+1
m4n
p(mim+n;0)—1|=| [ 1+48)-1
j=m+1

< |t§™ = 1] + |p(m; m + n; 0)| [t — 1]
SAn(L+d+Cr) + Midpyn(1+d+ Ch).

Moreover,

j—2

fj g I 1+6)

j=m-+2 v=m-+1

m+n ji—2

s ] a+4)

j=m-+2 v=m-+1

<

m+n—1
+ ] a+6)
v=m+1
o) j—2
<[ Y 8 ] a+6)

j=m+n+1 v=m-+n
< Cidm + MiCidmsn—1.

Hence, Condition (iv) holds with any M > 1+ Mj. The result follows
now by means of (2.4). O
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In the special case where all b,, = b, and thus all §,, = 0, the formulas
for p(m; m + n; k) and t,(cm) reduce to

p(m;m+mn;0):=1
p(m;ym+n;k):=p(m+1;,m+n;k—1)

(29)l m+n—k+1
+ > gp(Gim+nk—1),
j=m-+2
and
t(()m) =1,
(2.15)' ™= g Z et
j=m+42
for k=1,2,3,....

For this special case Theorem 1.1 reduces to

Corollary 5.2. Let all §,, = 0. If there exist a positive constant
C < —1+1/|q|, an integer my € No and a positive nonincreasing null
sequence {\,} such that

(5.3) > el < Am
j=m+2
and o
> lejlAj < CAm for all m > my,
j=m-+2

then {P,Sm)/(b + )"} converges for every m € Ny, and

p{™

(5.4) |Pt™) — Gior

< (X2 Aurtncrlr+ DX (al) + ()"

r=0

for every Q > 1+ C, for some constant C' > 0 independent of n,m,q
and Q.
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To prove Theorem 5.1 we shall use the following analogue to Lemma 4.4.
It is easily proved by induction on k, although it requires a fair amount
of computation.

Lemma 5.3.

p(m;m+n+ N; k) —p(m;m + n; k)
= p(m;m + n; k){p(m +n;m+n+ N;0) — 1}
k
—I—Zp(m;m—i—n—r;k—r)

r=1
x{p(m+n—rim+n+N;r)— (14 0nin—ri1)
-p(m+n—-r+1;m+n+ N;r—1)}
for all m,n,k, N € Ny.

Remark 5.2. Let k* € N = NU{oo}. If t,(cm) is well defined for all m
and k < k*, then one also has, by similar arguments,

t,(cm) — p(m;m + n; k)
=p(m;m+n; k){t(()m+n) -1}
k
(5.5) —I—Zp(m;m—i—n—r;k—r)
r=1
X () — (14 Gty ")
and
m+n+1—k j—2
m—+1 j
6 {a+amd Ve Y sy [ a+a)}
j=m-+2 v=m+1
—p(m;m +n; k)
= p(m;m + n; k)(t((]m+n) -1)
k-1
+ Y plmim+n—rik—r) )
r=1
- (1 + 6m+n—r+1)t£n—11+nir+l))



POINCARE DIFFERENCE EQUATIONS 221

for all m,n € Ny and 0 < k < k*.

Proof of Lemma 2.4 for the case a # 0. Assume first that all t,(cm) are
well defined by (2.15) for k < k*. Then t;cm+") — lasn — oo for all m
and k < k*, and p(m; m+n;0) — t((]m) as m — 0o, by definition. Assume
that p(m;m + n; k) — t,(cm) for all m for £ = 0,... ,kg — 1 for a ko,
1 < ky < k*. Let m € Ny be fixed, and let M > 0 be arbitrarily chosen.
Let N be separated into two monotone sequences, {n, } and {#,}, such
that |p(m;m—+mn,;ko)| < M for all v and |p(m;m+f,; ko)| > M for all
v. If {n,} contains infinitely many values, then p(m; m+n,; ko) — t,(;:)
as v — oo by (5.5). If {f, } contains infinitely many values, then (5.5)
implies that

o (m+iy)
0 -1 < g™ -1
p(m;m + iy ko) < [fo |
1 &
+ 3 2 | plmim + i, — 73k — 1)
r=1

m—+n,—r m+n,—r+1
AR (L Sy, e )BT TTOY
—0 as v — oo.

Hence also p(m;m + 7i,; ko) — t;cT) as v — oo. In this way it follows

that p(m;m + n; k) — t,(cm) for all m for k = ky as n — oo, and thus
for all k£ < k* by induction.

Conversely, assume that the finite limits p(m;oo; k) exist. Then
p(m;00;0) = [152,, 1 (1 +6;) = ™ so t™ is well defined. Assume
that t,(cm) is well defined and equal to p(m;oo; k) for all m € Ny for
k=0,...,ko < k* —1. Then it follows from (5.6) that tl(c?-«)-1 is well
defined and equal to p(m;oo;ke + 1). Hence the lemma follows by
induction. o

Proof of Theorem 5.1. Let m{§ > myq be chosen such that 1 + C3 +

dAms1 < Q for all m > mg. t™ is well defined in C for all k < ko by
Conditions (i) and (ii). We shall see by induction on & that this also
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holds for k > ky. Simultaneously we also prove that

k—ko
5 1 1 < A1 +d+C) > Q7
) =0

for m > mg and k > k.

Both claims hold for k = kg by Conditions (ii) and (iii). Assume that
they hold for all £ up to, but not including some value of k, k > k.

Then it follows that the expression (2.15) for t,(cm) converges, since

o0 Jj—2 oo ji—2
>ty I a+a)= > 6 [ a+6)
j=m-+2 v=m-+1 j=m-+2 v=m-+1
00 j—2
+ > s -y [ a+e),
j=m+2 v=m-+1

where the first series converges by Condition (i) and the second series
converges absolutely by (5.7) and Condition (iii). Moreover,

m m+1 m+1
0 1 < Y 1 1 (Y )]+ [

[e%s) j—2
+1 > 8 [ a+é)

j=m+2 v=m+1

(¢S] ) ji—2
+ >0 Bl =1 I htal
j=m-+2 v=m-+1

Inserting (5.7) for \t,(gzl — 1| proves that (5.7) also holds for t,(cm).

Without loss of generality, we assume that M > d/(1 + d). Then we
similarly find from Conditions (iii) and (iv) that

k—ko
(5.8) p(msm +n;k) — 1] < MAm(1+d+C1) Y Q"
r=0
We shall see that this means that
k
) r=0

p(m;m +n;k) = 1] < B(k + 1) pn Q"
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for all n € Ny, kK € Ny and m > my for some appropriately chosen
constants A and B independent of m,n,k,q and . The inequality
for t,(cm) follows trivially from (5.7). The inequality for p(m;m + n; k)
needs a little more consideration for k& < kg if kg > 0. Assume that
the inequality for t;cm) holds with Apy, = jim- By Condition (iv)
there exists a constant M; > 0 such that |p(m; m + n; k)| < M; for all
m >mg, n>0and 0 <k < ky. Hence, by (5.5) we find that

Ip(mim +n;k) — 1] < |t — 1 + [p(m; m + n; k)|

k
|t(m+" 1|+Z|p(m;m+n—r;kz—r)\
r=1

x {|t(m+nir) - l‘ + (1 + d)‘m—'rn—r)
|t(m+n r+1) 1| + d>\m+n—r}

k
< (k4 1)fimQ" + Mifim + Y My{(r + 1)jimQ"

r=1
+ (L +d\)rfin, Q"1 4+ dAn}
< fim (ko + My + ko(ko + 1) M,
+ My (1 + dXo)k2 + dko)QF

for k < ko and n > k. This proves (5.9). It follows therefore that

Zt,(cm =Y q" + 2:(15,c — 1)¢® converges, locally uniformly for
lg] < 1/Q to a limit P(™). We shall see that this also is the limit

of {P{™ /(b+ z)"}, i.e., that

ptm - th("‘ (m;m +n; k)| |q*

Z 1" gk

k=n+1

b—i—x

(5.10)




224 L. LORENTZEN

approaches 0 as n — oo. It follows from (5.5) and (5.9) that
[t = p(mim +n; k)| < (1+ (k + 1) Btm @) Aptrn 1
k
+3 {1+ (k—r+1)BunQ* "}

X {(r+1)Bpmin—rQ" + TB#m—'rn—H—lQril
+ d)\m+nfr(1 + TB/J/m+n7T+1QT_1)}

k
<Ck+1)°Q">  pmin—r

r=0

for some appropriately chosen constant C' > 0, independent of m,n, k, g
and Q. Hence, for |¢| < 1/Q,

Z|t(m mm+nk)||q|k<CZ (k+1) <Zum+n r>(qu)
k=0

<CY tminr ) (k+1)*(lgQ)*

r=0 k=r

<O bt + 1D2(dlQ)

r=0

for some new constant C' > 0. This converges to 0 by Lemma 2.5. The
last term in (5.10) satisfies

o0 oo

STt < ST @+t —1)lg
k=n-+1 k=n+1
< > (4 Ak + DpmQF)|gl*
k=n+1
< Dn(Qlq])"

for some absolute constant D > 0. Hence, {Pr(/")/ (b+ x)"} converges
to the limit (5.1) for every m > m{, and thus also for all m < mg if
lg] < 1/Q. Since Q@ > 1+ C5 was arbitrarily chosen, this proves the
theorem. o
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6. Some applications. Let

QAnp aj as as
K(&n)=2 92 9
<bn> b1 +by+ b3+
= 4 3 an #0,
(6.1) as
by +

by +

as

by + .

be a continued fraction whose elements a,,b, are either complex
numbers or complex valued functions. The approximants

a1 as (079 ~
6.2 L= 2 e, n=1,23,...
(62) 4 by + b2 -+ by K

of K(a,/b,) can be written f, = A,/B,, where A, and B, are
solutions of the recurrence relation

(6.3) Xn=bpXn_1+anXn_o; n=123,...
with initial values
(6.4) A1 =1, Ay =0, B_1 =0, By =1.

We say that {A,} and {B,} are the canonical numerators and denomi-
nators of K (ay/by,). If the (finite) limits A := lim A,, and B := lim B,
both exist and are not both zero, we say that K(a,/b,) converges
strongly separately. More generally, if the finite limits

(6.5) A:= lim A/, Bi= lim B,/T,

both exist and are not both zero for some given sequence I" := {T',,},
we say that K(a,/b,) converges separately modulo T'. Since

(6.6) B,=P,=P" and A,=a,P",

with our previous notation, we can conclude separate convergence

modulo {(b + z)"} from results in this paper. From Lemma 2.3, we
find immediately:
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Lemma 6.1. Let m € Ny be arbitrarily chosen. Then the continued
fraction K(a,/b,) converges separately if and only if its mth tail
converges separately.

It is evident that the results in Section 4 can be used to conclude
strongly separate convergence if b = 1 and that the results in Section 5
implies separate convergence modulo I' = {(b + x)"}. But also the
technique in Section 3 gives interesting results.

Ezample 6.1. Let a,, := (a+(—1)""1)z/n and b, := (b+(—1)")w/n?
where o > 1/2 and 8 > 1/2, and where a,b, z,w are complex param-
eters and/or variables such that bw # 0 and all a, # 0. Then it
follows as in Example 3.5 that K (a,/b,) converges separately modulo
' = {(bw+z)"}, where z := bw(\/1 + 4daz/b?w? — 1) /2; |bw + x| > |z|.
The convergence is locally uniform with respect to a,b, z and w as long
as [bw + x| > |z|.

Ezample 6.2. The regular C-fraction expansion 1 + K (a,z/1) of the
following ratio M (8;v;2)/M (B8 + 1;v+ 1;z) of Kummer functions, has
coefficients a,, as given in Example 3.4 [20, p. 206, 22, p. 313]. Hence,
it follows from this example that this C-fraction converges strongly
separately in the entire complex plane. The convergence is locally
uniform with respect to z in C.

Ezample 6.3. The regular C-fraction expansion 1 + K(a,z/1) of the
following ratio o Fy (o, 8;7;2)/2F1(a, B + 1;v + 1; 2) of hypergeometric
functions, has coefficients a, as given in Example 3.6, [20, p. 199,
22, p. 295]. Hence, this C-fraction converges separately modulo I' =
{((1 ++1—2)/2)"}. The convergence is locally uniform for z in the
cut plane D := C\[1, o0).

A system {P,(z)} of monic orthogonal polynomials are solutions of
a three-term recurrence relation of the form

(6.7) Pr(z) = (x — cn)Pn_1(x) — \pyPr_2(z) n=1,23,...,

with initial values P_;(z) = 0 and Py(z) = 1. Hence the results in this
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paper give sufficient conditions for

(6.8) Pn(z) = O(|b+z|*) asn — oo.

Ezample 6.4. Let ¢, := (—1)"*'d/nf and )\, := —a + (=1)"¢/n% in
(6.7), where & > 1/2 and 8 > 1/2. Then it follows from Example 3.5
that P, (x) = O(Jz|(v/1 + 4a/22 4+ 1)/2|™), locally uniformly in the cut

plane where R4/1 + 4a/z2 > 0.
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