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p-LAPLACIAN AND LIENARD-TYPE EQUATION

RAUL MANASEVICH AND STANISLAW SEDZIWY

ABSTRACT. It is shown that the generalized Liénard-type

equation
(' [P=20)" + puf (w)]'[P~2u" + g(u) = 0

where p > 1 and p is a small parameter has exactly one limit
cycle.

1. Introduction. We will consider here a generalized Liénard-type
equation of the form

(1.1) (¢p(u)" + nf(u)dp(u') + g(u) =0,

where p > 1 and p > 0 is a small parameter. The functions f,g : R —
R are continuous.

The quasilinear operator

du

du P2
dt ’

@y =55 %

T dt

called the one-dimensional p-Laplacian, has been dealt with in several
papers, see [4, 5, 3, 2]. For p = 2 equation (1.1) reduces to the classical
Liénard equation.

In this paper we are concerned with existence and uniqueness of a
limit cycle for (1.1). Our method is based on an old, seldom cited,
result due to Pontryagin concerning the existence of limit cycles for
perturbed Hamiltonian systems. This approach has been recently used
by Sedziwy in [7] to obtain a proof, different from the one based on
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the Poincaré-Bendixson theorem, (see, e.g., [1]) of the classical result
on limit cycles of Liénard equations.

We note that, as a consequence of our conditions on f and g and of
the method we use, our existence and uniqueness result is global.

We now state the original Pontryagin result.
Theorem P. Consider the system

(1.2) { u' = —Hy(u,v) + p(u,v, u)

v = Hu(ua ’U) + q(ua v, ,LL),

where H is C* in an open domain D C R?, and the functions p,q : D x
[-M, M] — R are continuous. Suppose that p(u,v,0) = q(u,v,0) =0,
and that pi(u,v) = (8/0u)p(u,v,0), q1(u,v) = (8/0u)q(u,v,0),
(0/0u)p1 and (0/0v)q1 exist and are continuous in D. Assume also
that for a certain hgy the set Cp, = {(u,v) : H(u,v) = ho} is a simple
closed curve and |H,| + |H,| > 0 for every (u,v) € Ch,.

For |h — ho| sufficiently small, define

(1.3) P(h) = //Dh (% + %) du dv,

where Dy, is a bounded domain with boundary Cy = {(u,v) : H(u,v) =

Y. If
(1.4) W(ho) = e #0, and w(ho) =0,

then for small |u| the system has exactly one limit cycle K,,, which is
positively orbitally asymptotically stable provided that pe is negative.
Moreover, lim,_,o K,, = Cp,.

In Section 2 we will prove our main theorem. In the proof of this
result we will need the following auxiliary lemma.

Lemma. Assume U,V : (0,v9) — R are two continuous functions
and that for a certain o < vy the following conditions are satisfied:

(i) V(v) >0 forve(0,a)
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(ii) /t V()U(v)dv >0 for all v € (0,vp];

(iii) U(0) =0 and, for all v € (0,v], U'(v) > 0.
Then

(1.4 ve) [ Vs> [ UV

for all t € (0, vo].

This lemma has been proved in [7]. For the sake of completeness we
next sketch the proof.

Proof. Set
t t
RO =V [ Vs~ [ U@V d.
0 0
Then R satisfies the following differential equation
t
(15) = ©0)(r+ [ VU i)
0

Moreover, from (i) R(to) is positive for all small ¢ > 0. Now, since the
solution to the initial value problem given by (1.5) and R(tg) = Ry >0

has the form
t t rrr Y
R = Ro2 4 Uy / U2(y ( / V(s)U(s) ds) dy,
to 0
it is clear that R(t) > 0 for all ¢ € (0, vo]. o

)
U(to) U?(y)

2. Main theorem. In this section we will prove the following

Theorem. Suppose f,g: R — R are two continuous functions that
satisfy the following conditions

(1) g9(z) = —g(=x), g(x)z >0 forz#0;
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(i) f(z) = f(=x);

also, if we set F(x) = [ f(s)ds, then we assume
(i)

F(z) <0 for 0 < x < a, and F(x) is positive and increasing for a < z;

(iv) EEIEOO F(z) = 4oc.
Under these conditions and for sufficiently small u, the equation (1.1)
has exactly one limit cycle which is orbitally asymptotically stable.

We note that our assumptions on f and g are independent of p.

Proof. Let p* be the conjugate exponent of p, i.e.,, 1/p+ 1/p* = 1.
Then, using the substitution v = —¢,(u’) and the identity ¢,~ o
®p(s) = s, we have that equation (1.1) can be replaced by the following
equivalent first order system

(2.1) u' = —dp+ (v), v = —puf(u)v + g(u).

System (2.1) is a particular case of system (1.2) for a Hamiltonian
given by
H(u,v) = G(u) + @p- (v)

with

_

6 = [ae)ds,  Bp)= [ op(ds=

and
p(“v v, /J/) = 07 q(u7 v, l"’) = _/l’f(u)v

Observe that since both functions G and ®,- are convex, nonnegative
and unbounded from above, it follows that for any positive number A,
the set

Dy, = {(u,v) : H(u,v) < h}

is convex and bounded. This, in turn, implies that the curve C;, = 0D,
is closed and star-shaped with respect to the origin.
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Let us set as before
w(h) = —/ F(u) dud.
Dy

Then, from the symmetry of D}, with respect to the u and v axes, and
performing the integration with respect to u, we find that

vo (h)
(2:2) v == [ Floto,m)do

where the positive number vy = vo(h) and the function p = p(v, h) are
implicitly defined by

h=H(0,v0) = ®p-(v0),  h=H(p,v)=G(p)+ Pp(v).
Thus, vy = (p*h)'/?", and
p=7(h—®p-(v))

where 7 : [0,4+00) — R is the inverse function of G|jo 4o0). It is clear
that, for v € (0,v9), we have

(2.3) 0 = p(vo, h) < p(v, h) < p(0,h) =~(h)
and

0 1

2P, h) = ——=< >0,
(2.4) oh gl ;”}8)))

50" M) = = g, <

By (iii), ¥(h) > 0 for small h. Since limp_,ovg(h) = +00, condition
(iv) implies that ¥(h) < 0 for large enough h. Thus equation ¢ (h) =0
is solvable. Let hg be its smallest solution. Condition (iii) implies that
v(ho) > a. We will prove that ¢'(h) < 0 provided (k) > a. Thus, ¢ is
strictly decreasing in the interval [G(a), +00), and therefore hg is the
unique root of ¥(h) = 0. Clearly this will complete the proof of the
theorem.
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Let us set U(v) = ¢p«(v) and V(v) = f(p(v,h))/g9(p(v,R)) in the
lemma of the first section. Then conditions (i) and (iii) of this lemma
are obviously satisfied. To show (ii) observe that, from assumption (iii)
of the theorem and conditions (2.3) and (2.4) we obtain that

On the other hand, (2.2), (2.3) and (2.4) yield

(2.5) /0 V(v)do = Ovo % do = — /().

Also, from (1.4) with ¢ = vy, we obtain that

~(1/4)¢' (h)p-(v0) > F(y(R)).

Thus, ¢’(h) is negative whenever y(h) > a. From Theorem P we then
conclude that system (2.1) has a periodic solution. Since hg is the
unique root of v, system (2.1) possesses exactly one periodic solution
which is globally asymptotically stable. a

Remarks. 1) The integral in (2.5) is convergent. This is due to the
fact that the integral
/ v du
4 =
0 g(p(v, h))

is equal to the period of the solution to (2.1) with x = 0 and the initial
conditions u(0) = 0, v(0) = vy, and therefore is finite.

2) It is an interesting question to prove existence and uniqueness of
a limit cycle for “large” values of p, i.e., p = 1.

3) Our main theorem will still hold true if the function ¢, appearing
in (1.1) is replaced by an odd strictly increasing function ¢ : R — R.
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