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A FORCED PENDULUM EQUATION
WITH MANY PERIODIC SOLUTIONS

RAFAEL ORTEGA

1. Introduction. Consider the periodic problem for the forced
pendulum equation

(1.1) z" + Asinz = p(t)

where A > 0 and p(t) satisfies

T
(1.2) p € LYR/TZ), / p(t)dt = 0.
0

This problem has a long history that can be found in [6]. In particular,
it is known that for each p verifying (1.2) there exist at least two T-
periodic solutions that are geometrically different (this means that they
do not differ by a multiple of 27). Recently it was proved in [3] that
for arbitrary A it is possible to find a certain forcing term p(t) in the
conditions of (1.2) and such that (1.1) has at least four different T-
periodic solutions. The basic technique in [3] was singularity theory,
and the result was of interest because A was arbitrary. We remark that
if A> (2r/T)? the result is trivial. In fact, the autonomous equation
with p = 0 has a closed orbit with minimal period T, and this orbit
produces a continuum of different T-periodic solutions. In the present
paper the following result is proved.

Theorem 1.1. Given A > 0 and an integer N > 1 there exists p(t)
satisfying (1.2) and such that (1.1) has at least 2N T-periodic solutions
that are geometrically different. In addition, there exists § > 0 such
that if p(t) satisfies (1.2) and ||p — p||r < 0 then the conclusion also
holds for p.
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The proof of this result will be based on the perturbation method
developed in [5]. This paper considers the equation

" + g(x) = ep(t)

and assumes that the autonomous equation, € = 0, has a closed orbit
~ of period T. Then, imposing certain conditions on p, it is possible to
obtain many bifurcations from . In this way the perturbed equation
has many periodic solutions for small . The results in [5] are not
directly applicable in our case because the pendulum equation has not
closed orbits of period 7' when A < (27/T)%. However, such an orbit
exists if the phase space is the cylinder instead of the plane. From
this orbit it is possible to create a continuum of T-periodic solutions of
(1.1) with p = po, po(t) = —2m 37> &' .(t). Here dy,(t) is the Dirac
measure at t = tg, and the derivatives are understood in the sense of
distributions. Of course, py is not a function and satisfies (1.2) only
in a generalized sense. At this point we apply the ideas of [5] to the
perturbed equation
" + Asinz = p.(t)

in such a way that p. satisfies (1.2) for some small £ and has many
periodic solutions.

2. An outline of the construction. Assuming that (1.2) holds,
we consider the change of variables

r=y+ P(t)
where P € W21(R/TZ), P" = p. This change transforms (1.1) in
(2.1) y" + Asin(y + P(t)) = 0.

The sets of T-periodic solutions of both equations are in a one-to-one
correspondence because the change is periodic in time. Even when P(t)
is not smooth, the equation (2.1) makes sense, but in such a case (2.1)
is not equivalent to an equation of the kind (1.1).

Consider the equation (2.1) with P(¢t) = 2xt/7. In this case the
function P is not periodic but the equation is not changed if P is
replaced by Py(t) = 2w (t/T — [t/T]), that is, a periodic and nonsmooth
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function. This example was first considered in [1] and it can be shown
that, for P = Py, there exists a continuum of T-periodic solutions
{Yc}teer. The main idea in our construction will be to bifurcate
simultaneously at many points of this continuum. To achieve this we
shall consider the perturbed equation

y" + Asin(y + Py(t) + ¥ (t,e)) =0

and impose conditions on ¥ that guarantee:
(i) the previous equation has at least 2N periodic bifurcations for
€ = 0 of the form
yi(t;€) =y, (¢) + O(e), € —0

with0<cp<c1 <+ <ean_1 <T.
(ii) Po + ¥(-,¢) is smooth for some ¢ small.

The first condition will produce many different periodic solutions
when ¢ is small, and the second condition allows us to transform the
equation to one of the kind (1.1).

3. The autonomous pendulum equation. Consider the au-
tonomous equation

(3.1) " + Asinz = 0.

We denote by x¢(t) the solution of (3.1) satisfying:
(i) zo(t +T) = zo(t) + 27 for all t € R,
(ii) zp(t) > 0 for all t € R,
(iii) zo(0) = 0.

This solution exists and is unique. In fact, from the conservation of
energy, (i) and (ii), we deduce that it must verify

' =+/2(E + Acosz)
for some E > A. Also, it is easy to prove that the function

27 df

0 VBT AcosE)’

7(E) = E>A
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is smooth, strictly decreasing and 7(+o00) = 0, 7(A + 0) = 4+oc0. In
consequence, there is a unique F > A such that 7(E) =T and zy is a
solution of the corresponding first order equation with initial condition
z(0) = 0. The uniqueness of o implies that it is an odd function. The
Fourier expansion of zf, in terms of cosines is denoted by

2nmt
xy(t) ~ Z a, cos 7;71- .

n>0

Lemma 3.1. The set I = {n € N : a,, # 0} is infinite.

Proof. A trigonometric polynomial of period T" and degree N > 1
can be written in the form f(¢) = EanN fne2 /T with f, = f_n,
fn # 0. We use the notation d(f) = N and remark that d(f") = d(f),
d(fg) = d(g) + d(g)- By a contradiction argument, assume that zy, is
a trigonometric polynomial and d(z() = N > 1. From the equation
we deduce also that sinzg is a trigonometric polynomial with degree

N. Taking derivatives, (coszg) = —z(sinzo and d(coszg) = 2N.
Taking derivatives again, (sinzg)’ = xjcoszo and d(sinzg) = 3N. A
contradiction with the previous value of this degree. O

Remark. 1t is possible to express the period function 7(E) in terms of
elliptic integrals and zy in terms of the Jacobi functions, see [2]. Using
the Fourier expansion of sn and cn one can compute the expansion of
zg and verify the validity of the previous lemma in a direct but more
tedious way.

4. The perturbation result. In this section we consider the
differential equation

(4.1) y" + Asin <y + % + 1/1(t)> =0

where 1 € L?(R/TZ). When ¢ is smooth, the change of variables
z = y+2nt/T + 9(t) reduces (4.1) to the forced pendulum equation
with p = ¢”. When ¢ = 0 the function z((t) of the previous section
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allows us to construct a continuum of T-periodic solutions of (4.1).
These periodic solutions are defined as

27t
Ye(t) = zo(t +¢) — %, ceR.

The existence of such a continuum was first observed in [1]. We look

for small perturbations of yy(t) when v is small.

Proposition 4.1. Given v > 0 there exist positive constants C' and
c such that if the following conditions hold

T
Wl e [ af@u@d=o
0
T
| at @it de = vl
0
then (4.1) has a T-periodic solution y(t;v) satisfying

2 2
(69 = alt) + [+ (69) = ) + | < Cllolls

for allt € R.

This result will be obtained as a modification of the results in [5].
The proof is postponed to the end of the paper.

5. Proof of Theorem 1.1. We start with a multiplicity result for
equation (4.1). To state this result, we need to consider the convolution
operator generated by z{;’. This operator associates to v € L2(R/TZ)
the smooth function

Fy(r) :/0 St — DY) dt, T € R.

Lemma 5.1. Given an integer N and positive constants p,v with p <
T/(2N +1) there exists € > 0 such that (4.1) has at least 2N T -periodic
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solutions that are geometrically different for every ¢ € L*(R/TZ) with
|||z < e and satisfying the condition stated below

Fy has 2N zeros in [0, 7] satisfying
P<TI << - <Tan<T-—p,
Ti Tl >p, iF

[Fy(7i)l = vl e

(Cn)

Proof. From the definition of zy in Section 3 we obtain positive
constants 8 and ~y, with v < 27, such that

(5.1) |.Z'0(t1) — xo(t2)| > ﬂ, th,tz S R, with ‘tl — t2| > P,

(52) ‘Io(tl)—mo(tgﬂ <9, th,tg € [p,T—p].

Let C and ¢ be the constants given by Proposition 4.1, and define
e = min{c, 8/(4C), (2m — v)/(4C)}. Assume that ||¢||.2 < e. If (Cy)
holds, it follows from the perturbation result that the equation

(5.3) y" + Asin (y + % + Yt — Tz)) =0

has a T-periodic solution y; satisfying

2

i(t) — 7 (t) +

i) — wo(t) +

T+

< Ol

The functions z;(t) = y;(t + 7;) + 277, /T are T-periodic solutions of
(4.1). In view of (5.1) and (5.2), they satisfy, i # 7,

|2:(0) — 2;(0)| > |zo(7i) — @wo(75)| — 2C|4|| 2
> B =204l >0,

< lzo(7i) — zo(75)| + 2C||Y|| 2
<y +20¢|L2 < 2.

|2:(0) — 2;(0)

As a consequence, all the solutions z;(t), i = 1,... ,2N are different.
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The Fourier expansion of z{’ is of the form

2nmt
zy (t) ~ Z iy, COS %
n>1

with infinitely many coeflicients «, different from zero. This fact
follows from Lemma 3.1. The function P, is the T-periodic function,
defined in Section 2, Py(t) = 2w (t/T — [t/T)). O

Lemma 5.2. Assume that ay # 0. Then, given ¢ > 0, there exists
¢ € L2(R/TZ) such that

(1) [[¢llze <€

(ii) Py + ¢ € C*(R/TZ)
and condition (Cy) of Lemma 5.1 holds with p = T/(8N), v =
(N7 /2)lan|v/2/T.

Proof. The function X(t) = (£/2)4/(2/T)cos(2Nwt/T) satisfies
X2 = €/2, Fx(t) = an(T/2)X(r), so that Fy has the zeros
5 = (i —1/2)T/(2N) and |Fy(7])| > Nw|lan|\/(2/T)||X||r2. Since
X + Py belongs to L?(R/TZ) there exists a sequence ¢, € L*(R/TZ)
such that ¢, € C*(R/TZ) and ¢, — X + Py in L2 The function
Yn = ¢, — Py converges to X in L?. From the definition of Fy one
deduces that Fy, — Fy in C*(R/TZ). In particular, the zeros of F,,
tend to the zeros of Fy and therefore i, satisfies (i), (ii) and (Cp)
when n is large. o

Proof of Theorem 1.1. Let N > 1 be such that ay # 0, and let
p and v be given as in the previous lemma. Select ¢ small enough
so that Lemma 5.1 applies. According to Lemmas 5.2 and 5.1, there
exists ¢ € L2(R/TZ) such that Py +¢ € C?(R/TZ) and (4.1) has 2N
T-periodic solutions. The equation (4.1) can be rewritten in the form

(5.4) y" + Asin(y + Py(t) + ¢(t)) = 0.

The change of variables © = y + Py(t) + 9(t) transforms T-periodic
solutions of (5.1) into T-periodic solutions of (1.1) with p = (Py + ¢)".
As a consequence, (1.1) will have 2N T-periodic solutions for such a p.
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It remains to prove that these periodic solutions are preserved by small
perturbations. Define p = (Py + )" and let ¢ € L*(R/TZ) be such

that fOT g =0and ||p — ¢q||z is small. Let @ be the unique T-periodic
solution of Q" = g with fOTQ = fDT(PO + 1) and define ¢ = Q — Py.
Then ||t — |2 is small and the pendulum equation

" + Asinz = g(t)
can be transformed into
y" + Asin(y + Po(t) + 9(t)) = 0.

Since Fy and F¢ are close in the C''-norm, we can apply Lemma 5.1 to
the new equation to conclude that it also has 2V T-periodic solutions.

6. Proof of the perturbation result. This section follows along
the lines of [5]. It is divided into several subsections.

I. A Hill’s equation. The equation
(6.1) 2" + [Acoszo(t)]z =0

is the linearization of the pendulum equation (3.1) at zo(t). Differ-
entiating (3.1), we deduce that p(t) = z{(t) is a positive T-periodic
solution of (6.1). It satisfies the initial conditions

(6.2) p(0) :=a >0, p'(0) = 0.

The method of reduction of order allows us to obtain a second solution
given by the formula

(6.3) a(t) = p(t) / p(d—)

It satisfies

(6.4) q(0)=0,  ¢'(0)=1/a.
As a consequence, the Wronskian W (p, q) satisfies W = 1 and
(6.5)

pt)=a>0, p'(t)=0, q¢T):=6>0, ¢(T)=1/a.
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Lemma 6.1. In the previous notations

(6.6) /0 q(t)p(t)?sinz(t) dt = —Pa.

Proof. Since x( is a primitive of p, integrating by parts
T T
I ::/ qp® sinzg = [—qpcos gL +/ (gp)’ cos zg.
0 0

From (6.2), (6.4) and (6.5), I = —Ba + fOT(qp' + pq') coszg. Since p
and ¢ are solutions of (6.1),

T
I = _Ba_/ A—l(q/pl/_l_p/qu)
0
T
= —Ba—/ A7 (p'q')
0
= —fa.
II. The linear nonhomogeneous equation. We first consider the equa-
tion
(6.7) 2" 4+ [Acoszo(t)](z + ¥(t)) =0,

where U € L?(R/TZ). The Fredholm alternative implies that (6.7)
has T-periodic solutions if and only if

(6.8) /0 Alcos zo(£)] T (H)p(t) dt = 0,

When (6.8) holds, the formula of variation of constants shows that there
exists a unique solution of (6.7) that is T-periodic and verifies z(0) = 0.
It is given by the formula

(6.9) hl(t)Z*%BQ(t)Jr/o [p(t)q(s) — p(s)q(t)] A coszo(s)¥(s) ds,
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where

T
(6.10) B:= /0 Alcos zo(£)]¥(t)q(t) dt.

Lemma 6.2. According to the previous notation, if (6.8) holds,

/0 Asinao(t)(h(t) + U (1))p*(t) dt = /0 P ()W (L) dt.

Proof. It is enough to prove the identity when V¥ is smooth, say
U € CYR/TZ). The general case follows by an approximation
argument.

T
/ Asinzo(hy + )p? = [—(hy + ¥)pAcos o]y
0

T
+/ [(h1 + ¥)p]) A cos zg
0

T T
:/ (h1+%)p' A cos zg +/ (h1+7)'pAcoszg
0 0

T T
= —/ Ryp' —/ (h1 +0)'p"
0 0
_ T 1N T 10
= (h1p") U'p
0 0
_/T\I/pl”‘
0

We now consider the more general equation
(6.11) 2+ alt)z+B()=0
where a € L*°(0,T), 8 € L*(0,T). u]

Lemma 6.3. Assume that ||a||p~ < A, ||B|lzr < k. Then there

exists K > 0, depending only on A and k, such that for each solution
of (6.11), the following estimate holds

2(8)] + [2'(8) < K[]2(0)| + 12'(0)| + 1], ¥t € [0, 7.
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The proof is elementary.
III. A quantitative version of the implicit function theorem. Let
F = F(z,y) be a function defined on

Q={(z,y) e RN xR:|z| < 1,|y| < 1}.

(i) Assume that F is C?, F(0,0) =0 and
Fy0,0)2u>0,  |FLIF,IFallFyl <M on g

Then there exist ¢, and C' (depending only on g and M) such that
the solutions of

F(z,y) =0, 1z <6, ly| <e

are of the form (x,¢(z)) where ¢ is a C! function defined on |z| < §
and such that [p(z)| < C|z|.
(i) Assume that N = 1 and F is C3, F(0,y) = 0, |y| < 1,
F,(0,0) =0 and
Fzy(070)2H>Oa ‘Fzz‘a‘Fzy‘a‘Fzzy|a|Fzyy|SM on .

Then there exist €, and C, depending only on g and M, such that the
solutions of
Flz,y) =0,  [z[<4, [yl <e

are of one of the following forms (0,y) or (z,¢(z)) where ¢ is a C!
function on [—4, ] with |p(z)| < C|z|.

IV. Proof of Proposition 4.1. From now on we consider the equation

2mrt
(6.12) y" + Asin (y + % + E\Il(t)> =0

where ¢ is a real parameter and ¥ € L?(R/TZ) satisfies

T
1P g2 =1, / zy ()Y (t)dt =0,
(6.13) 0
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It will be sufficient to prove the existence of a T-periodic solution of
(6.12), y(t,e) with |e| < &g, such that

y(t,6) = wo(t) ~ - + O(e),

2
T

(6.14)

y/(t,(‘:) = Ii)(t) o + 0(5)5 € — Oa

where ¢ > 0 and the previous asymptotic expansions are uniform with

respect to U satisfying (6.13).
Let y(t;&,7n,¢) be the solution of (6.12) with initial conditions

y(0)=¢ Y (0)=n+oa
(o is given by (6.2)). Define

F(£7 n, 5) = y(Ta f, n, 6) - €7
G(&a UB 5) = y,(T; &, 5) —a—=1.
The solutions of F' = G = 0 correspond in an obvious way to the initial

conditions of the T-periodic solutions of (6.12). Since {y.(t)}cer is a
continuum of T-periodic solutions for € = 0, we obtain

(6.15) F(ye(0), y(0) — ,0) = G(ye(0), ye(0) — @,0) = 0

and, in particular, F = G =0 at (0,0, 0).

As a first step in the proof we shall compute the derivatives of F' and
G at the origin and obtain

Fe=0, Ge=0, F,—=aB, G,

(6.16)
F, =aB, G: =0, at (6577’5):(0’070)'

(a, B and B are defined by (6.2), (6.5) and (6.10)).

Once these derivatives are computed and, since F, > 0, we apply the
implicit function theorem to solve F' = 0 with respect to n = H(&,¢)
to obtain

F(§ H(¢ €),e) = 0.

It follows from (6.16) that

(6.17) He =0, Haz—g at (£¢) = (0,0).
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Next we define J(§,¢) = G(§, H(&,€),¢). The uniqueness in the implicit
function theorem reduces F' = G = 0 to J = 0 (in a neighborhood of
the origin). Applying (6.15), we obtain

H(y.(0),0) :yg(o) -G, J(y:(0),0) =0

so that J(£,0) =0 for all £. Also J¢ = J. = 0 at (0, 0) thanks to (6.16)
and (6.17). We are now in the position of the classical bifurcation
theorem as soon as J¢.(0,0) # 0. In fact, we shall prove

1 T
1 E _ "y
(6.15) Ie0.0) = oz [ 0w,

so that Je. > (1/a®)v thanks to (6.13). As a consequence, there
exists a function £ = ¢(e), |e| < eg such that J(p(e),e) = 0 and
©(e) = O(g). The solutions y(t, ) = y(t; 0(e), H(p(e),€),€) are T-
periodic and satisfy

(6.19) y(t,e) = yo(t) + O(e), y'(t,e) = yo(t) + O(e), & —0.

This asymptotic expansion is justified using the theorem of differentia-
bility with respect to initial conditions and parameters together with
the bounds

(6.20) p(e) =0(e),  H(p(e),e) =O(e).

Even if we assume that (6.16) and (6.18) have already been checked,
the proof is not concluded. It remains to show the uniformity of ¢g
and (6.19) with respect to ¥. For this purpose, we shall apply the
quantitative versions of the implicit function theorem given in III. First
we apply III.1 to deduce that the domain of definition of H is uniform
in ¥. This is done by obtaining uniform bounds of F¢, F;), F., Fy,, Fey,
F,, for all (¢, n,¢) € R3. Notice that F,(0,0,0) = af3 is independent
of ¥. Next we apply III.2 to J after obtaining uniform bounds of J,,
Jee, Jecey Jeee on some neighborhood of (0,0) independent of ¥. This
proves the uniformity of g and (6.20). Finally, we deduce that (6.19)
is also uniform because there are uniform bounds in C*[0, 7 of y¢, y,
and y..
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Proof of (6.16). The functions ye(¢;0,0,0), y,(¢;0,0,0) are solutions
of (6.1) with certain initial conditions that imply

ye=a"'p,  y,=oaq

On the other hand, y.(¢;0,0,0) is a solution of (6.7) with trivial initial
conditions. From (6.13),

T T T
0= / zy' ¥ = / P’ = —/ {Acoszo}p¥,
0 0 0

and therefore (6.8) holds. From (6.9), y. can be expressed in the form
Ye = h1 + (aB/B)q(t). The derivatives of F' and G at the origin are

ngyg(T)—l, ngyé(T),
Fy = y,(T), G":y'n(T)—l
aB aB

Fo = yelT) = In(T) + °Fatt) = “Za(),
G. = y.(T) = Hy(T) + %q'm ~0

and we use (6.5) to deduce (6.16). u]

Proof of (6.18). From the chain rule, we obtain
Jee = Gee + GenHe + G He + Gy H . He + G He,
and (6.16) and (6.17) lead to
Jee = Gee — ang at (0,0).
To compute Gg¢, and G¢. we notice that y¢, and ye. are solutions
of certain equations of the kind (6.11) with & = Acoszg and 8 =

—A(sinzo)yeyn or B = —A(sinzo)ye (y + ¥). Solving these equations
and using (6.5), one obtains

1 T
Gey = yén(T) = 5/0 A(sinzo)p’q,

ot aB
Gee = yéE(T) = ﬁ/o A(smmo)p2{h1 + ?q%— ‘If},
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and Lemmas 6.1 and 6.2 lead to

1 T
G§77 = —A[‘)’, G§£ = —AB + ?/ p”,‘If. [m}
0

Uniform bounds of F¢, Fy, ..., Fyy, Jee, .., Jeee. We use the notation

olel

O = Bemonaens

a = (ag,as,a3).

First we prove that 9%y(t; £,7,¢) is bounded in C*[0,T] if 1 < |a| < 3,
a # (0,0,3) and this bound is independent of &,7,¢ and ¥ with
@]z = 1. When |a] = 1, 0%y is the solution of an equation of
the kind (6.11) with a(t) = Acos(y(t; €, n,€) + 2nt/T + €¥(¢t)) and
|B(t)] < A|¥(t)|*¢. We apply Lemma 6.3 to deduce that 0%y is bounded
in C1. In the same way, we obtain the bound for || = 2 and finally
for |a] = 3, a3 # 3. As a consequence, we deduce that 0*F, 9*G with
|a| < 3, az # 3 are uniformly bounded. When |[, ], |¢| are small, the
solution y(t; €, 7, €) is close to yo(t) in C*[0, T] uniformly with respect to
U, ||¥|[z2 = 1. This follows from a variant of the theorem of continuous
dependence or from Gronwall’s inequality. The derivative y,(¢;&,7,€)
is the solution of

27t
2" + Acos (y(t; & n,e)+ % + E‘I’(t))z =0,

z(0) =0, 2'(0) =1,

and, if |€], |n|, |e| are small, this linear equation is close in (0,T) to
(6.1) in the L%-sense. The continuous dependence theorem and (6.16)
allow us to assume that
of
Fn(ga m, 5) = yn(T; 6; m, 5) > 7
in a neighborhood of the origin that may be small but independent of
V. From the previous estimates and implicit differentiation, it is easy

to obtain bounds on 0°H, 8 = (B1,82), |8] < 3, B2 < 3. The bounds
on the derivative of J follow by the chain rule.
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Remark. 1t is possible to obtain another proof of Proposition 4.1
using the alternative method and the ideas in [4, p. 290]. In some sense
that approach is simpler because it works directly with the equation
instead of studying the Poincaré map. The counterpart is the need of
a functional setting of infinite dimensions.
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