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SOME PROPERTIES OF NONLINEAR
ADJOINT OPERATORS

VERA BURYSKOVA

0. Introduction. In many branches of modern science and en-
gineering nonlinear models more often are used. Nonlinear boundary
value problems are studied to describe more precisely phenomena, for
example, in the theory of plasticity, hydrodynamics, diffusion processes,
biology, etc. In functional analysis this trend evokes the development
of the nonlinear operator theory.

The present article is a slight contribution to this theory. Unlike the
authors in [1, 12-15, 17, 20, 21], we consider a rather special class
of operators from a Banach space into its dual involving nonlinearities
of the power type. These operators, called polynomial and homoge-
neous operators, have some properties similar to linear operators. For
example, for polynomial operators the continuity and the boundedness
are equivalent. We generalize in a natural way some important notions
known from linear analysis as the spectrum, numerical range, symme-
try, self-adjointness and the normality. We show a number of their
properties which can be useful for studying nonlinear operator equa-
tions, eigenvalue problems and other questions from nonlinear func-
tional analysis and its applications.

1. Notations and definitions. Throughout this paper, let X,Y
denote abstract (real or complex) Banach spaces and X*, Y* their dual
spaces. By the symbol (z*,z) we denote the value of a continuous
linear functional z* € X™* at a point € X. In case of Hilbert space X
we use the same symbol for the inner product.

For the norm or weak convergence of the sequence {z,} C X to a
point 2y € X we use the symbols z, — o or =, — gy, respectively.

Let R and C be the spaces of real and complex numbers, respectively.
Further, we denote S1(0) = {x € X : ||z|| = 1} the unit sphere in X.
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42 V. BURYSKOVA

Definition 1.1. We shall say that an operator F': X — Y is a

(a) positively homogeneous operator of the degree k if there is a
number k € R such that

F(tz) = t* . F(x)

forany x € X and any t € R, ¢ > 0.

(b) homogeneous operator of the degree k on a real (respectively
complex) space X if k is an integer and the equality

F(tz) = t* . F(x)

holds for any ¢ € R, respectively t € C, t # 0 and any z € X.

(c) For any continuous positively homogeneous operator F : X — Y
of the degree k > 0 we define the norm by

|F|l = sup [F(z)]|
z€S51(0)

Remark 1.2. It is easy to show that, for any continuous positively
homogeneous operator F' : X — Y and for arbitrary z € X, the
following estimation ||F(z)|| < ||F|.||z||* holds.

Definition 1.3. We shall say that a positive homogeneous operator
F:X — X*is
a) positive if, for any z € X, x # 0, it holds (Fz,z) > 0,

b) positively defined if there is a number ¢ € R, ¢ > 0 such that
inf Re,¢s, (o) (Fz, ) = ¢ > 0.

Definition 1.4. An operator F' : X — Y is called hemi-continuous
at zp € X if, for any sequence {t,} C R, t, — 0, and for any h € X,
it holds (F(zg + tnh) = F(z).

We shall say that Gateaux derivative F’ of a differentiable operator

F : X — X* is hemi-continuous at a point z € X if, for any sequence
{tn} C [0,400) such that ¢, — 0 and for arbitrary points h € X,y € X,
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the sequence {F'(z + t,h)y} C X* converges in the weak*-topology of
the space X* to the point F'(z)y € X*.

Definition 1.5. We shall say that a homogeneous operator P :
X — Y of the degree k > 1 is a homogeneous polynomial operator if
there is a k-linear symmetric operator P: X X X X --- x X — X i.e.,
P(z1,x2,... k) is linear in any variable z;, j = 1,2,...,k, and it
does not change its values under arbitrary permutation of all variables)
such that P(z,z,...,z) = P(z) for any z € X. Operator P is called
the polar operator to operator P.

For any continuous k-linear operator P we define the norm by

Pl = sup IP(x1,x2,- .. ,zk)]|
21€51(0),i=1,2,... k.

Definition 1.6 [8, Definition 3]. Let D C X be an open set which
is star-shaped with respect to the origin, i.e., for any z € D and all
t € (0,1), tz € D holds.

Let the operator F': D C X — X* have Gateauz-derivative F'(z) at
any point x € D, and let F satisfy the following conditions:

(1) F(0) =0,

(2) The function (F'(tx)h, z) of the variable ¢ € [0, 1] is integrable for
arbitrary (but fixed) points z € D, h € X.

Let us suppose, further, that for any = € D there exists a unique
point z*(z) € X* such that, for all h € X, the following holds

(2" (), h) = /0 (F'(tz)h, o) d.

Then the operator F* : D C X — X* defined for x € D by
F*(z) = z*(z) is called the adjoint operator to the operator F.

Remark 1.7. In the case of a real Banach space X, the adjoint
operator F'* from Definition 1.6 can be written in the form

P@=Awmwm%
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where [F'(tz)]* denotes the adjoint operator to the continuous linear
operator F'(tz).

According to [9, Theorem 2.6], there exists the adjoint operator
F* to a nonlinear operator F if it satisfies the conditions (1) and
(2) from Definition 1.6 and, moreover, F has at any point z € X a
hemi-continuous Gateaux-derivative. Then F' and F* are both hemi-
continuous and the following estimation holds

1
[1F* (@)l < IIQJH/0 |F'(te)|| dt, =€ X.

Theorem 1.8. Let X be a Banach space, and let F' : X — X* satisfy
the conditions (1) and (2) from Definition 1.6. Suppose, further, that
F has on X a hemi-continuous Gateauz-derivative F'. Then there are
operators R, H : X — X* with the following properties:

(i) F(z) = H(z) + R(z) for any z € X.

(ii) Operator H is a potential operator, H = grady, where the
functional ¢ : X — R is defined by

o(z) = /0 (F(tz),z)dt for any xz € X.

(iii) The operator R : X — X* is defined by

R(z) = /0 {FI(tz)(tz) — [F1(tz)]*(tz)} dt

for any x € X.
Proof. 1t follows from [8, Theorem 2] and [9, Theorem 2.13]. u]

Corollary 1.9. Let X be a real Banach space. Let the operator
F : X — X* satisfy all assumptions of Theorem 1.8. Then, for any
z € X, the following hold.

(1) (F(z),z) = (F*(z),z) = (H(x),z). (Here H is the operator
defined in Theorem 1.8.)
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(2) The operator F is positive (positively defined, coercive) if and only
if the adjoint operator F* is positive (positively defined, coercive).

(3) F is a potential operator if and only if F = F*.

Proof. Let x € X be an arbitrary point. According to Remark 1.7,
we have

@) = { [ P @ )
= [ @F @),

1 1
- / (z, F'(tz)(z)) dt = <x / [F(tm)]’dt>
0 0
= (z,F(z)) = (F(z),z).
Applying the assertion (i) of Theorem 1.8, we obtain
(F(z),z) = (H(z),z) + (R(z), 7).
Now, due to the assertion (iii) of Theorem 1.8, the following holds

(R(z),2) = ( /0 ' P(t) k) dt,z) — /0 I (t)]* (t2) dt, =)
_ /0 () (). 1) (b F (1) ()} dt = O,
z) = (

so that (F(x), H(z),z) = (F*(z),z) and the assertion (1) is

proven. u]

The assertion (2) is a direct consequence of the assertion (1) and
Definition 1.3. The assertion (3) follows from [8, Theorem 5.

Applying the above results to the case of a homogeneous operator,
we obtain the following proposition, see [8, 9].

Proposition 1.10. Let F : X — X* be a homogeneous operator
of the degree k > 1 having a hemi-continuous Gateauz-derivative F'.
Then, for any x € X, the following assertions hold

& F(@) = L [F'@)'s,
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where F* is the adjoint operator to the operator F and [F'(z)]* is the
adjoint operator to the continuous linear operator F'(zx).

(2) F(z) = H(z) + R(z).

Here H/R : X — X* are hemi-continuous operators which can be
written as

H(w) = 5 [F(@) + KF" (@),
R(z) = T [F (@)~ F*()]

(3) H is a potential operator, H = grad ¢, where

1

o(z) = k+1

(F(z),)

and the operator R fulfills the equality

(R@), ) = 2 m {(F(z), )}
(1) IF* (@)l < 717/ (2)]| .

(5) If S,T : X — X* are homogeneous operators with their adjoint
operators S*, T*, then for any A € C the following holds

(S — AT)* = §* — AT*.

Proof. Tt is obvious that the Gateaux derivative F’ of a homogeneous
operator F' of the degree k > 1 is also a homogeneous operator of the
degree k — 1 because, for any x,h € X and t € C, t # 0, the following
holds

F/(tz)h = lim F(tx + 7z) — F(tz)

70 T
i g P (/OB - Fl@)
/t—0 T/t

= tF=1LF'(2)h.
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Now, using Remark 1.7 and Definition 1.1, we obtain

1
(o) = [ 1) =) d
- /0 H=1[F (2)]* () dt

and the assertion (1) is proven.
The assertion (2) follows easily from Theorem 1.8.

Indeed, according to (ii) from Theorem 1.8, we have

and (iii) implies that

R(z) = /0 F'(tz)(ta) dt — /0 [F' (k)" (tz) dt
- /0 o () () di / )] () d

0
: L P (@) ().

= ——F'(z)(z) ~ Pl

Due to the definition of Gateaux derivatives, the following equation
holds

t—0 t
1+t -1
= lim (1+%) F(z)
t—0 t
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Using this and the assertion (1), we obtain

R(z) = kL—i—lF(x) — kL—i—lF*(I)
k *
= K P @) - P

Further, for any h € X, the following holds

(H(z),h) = (grad p(z), h)
1

Hence,

and using (i) of Theorem 1.8 and the assertion (2) we obtain (3).

The assertion (4) follows immediately from Remark 1.7 and (5) is a
consequence of the definition of the adjoint operator. o

Proposition 1.11. Let F : X — X* be a homogeneous operator of
the degree k > 1 having a continuous Gateauz-derivative F'. Then the
adjoint operator F* is also homogeneous of the degree k and for the
norms the following estimation holds:

|
max (|| F[l, [ £7]]) < - 1£7]]-

Proof. According to Proposition 1.10 (1), the operator F* is ho-
mogeneous of the degree k. Further, for a differentiable homogeneous
operator F, F(z) = (1/k)F’'(x)(z) holds for any # € X, see the proof
of Proposition 1.10.

Using this and Definition 1.1 (c¢) and the relation

1

F!(2)(¢) = F(2),
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see proof of Proposition 1.10, we obtain

|F|l = sup [F(z)]
z€S51(0)

1
= sup | F'(z)(z)l
z€S51(0)

1
7 sup ([F(@)l|-lll))
1651(0)

IN

IN

1
—||F'|.
IIF|

Now, according to Theorem 1.10 (4), we have

[F*] = sup ||F"(2)]|
z€S51(0)
< 5 sup [[F(@)] ||
x€S51(0)
1
< —||F'].
<P
Hence, max([|F|, [[F*[]) < (1/R)[|F"]].  ©
Unlike the linear case, the equality ||F|| = ||F*|| does not hold

generally as the following example shows.

Example 1.12. Let E; be a two-dimensional Euclidean space.
Define for any z = (£1,&2) € E; a homogeneous operator F : Ey — Es
of the degree 3 by

F(z) = (f1, f2) = (5375?)-

Then the linear operators F’(z) and [F’(z)]* can be written as matrices

2
Fl(m) = <32% 3§2> )

@l = (g0 %)
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According to Remark 1.7, we have
1
F*(2) = / [F'(t2)]"x dt
0

1

- / 32(¢265, €163) dt
0

= (£762,6169).

Using differential calculus, we obtain the norms of F' and F*:

|Fl|= sup [|F(z)]]
1651(0)

Lnax VAR

[l = sup |F*(z)]l
z€S51(0)

4 ¢+2 4 2
= +
zg}s%)((o) §1€5 + €567

It shows that ||F|| # || F™*||-

2. Numerical range and spectrum of the adjoint operator.
In this section some properties of the numerical range and spectrum of
a couple of adjoint homogeneous operators are studied. For this reason
we recall the necessary definitions which were introduced in [7, 11].

Definition 2.1. Let S,7 : X — X* be positively homogeneous
operators of the degree k. A numerical range W(S,T) of the couple
(S,T) is defined as the set of complex numbers

(Sz,x)

et o€ $1(0),(Ta) £ 0},

wsT) - {

It is evident that if X is a Hilbert space, S is linear continuous and
T is the identity operator, then we obtain Hausdorff’s and Toeplitz
definition of the numerical range.
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Proposition 2.2 [11, Proposition 3.14]. Let S,T : X — X*
be positively homogeneous operators. Let S be continuous and T be
positively defined. Then the following assertions hold:

(1) W(S,T) is a bounded set, and for any A € W(S,T), the following
holds
S]] :
Al — h = f Re{(T .
A < . Wherec 936%11(0) e{(Tz,z)}

(2) If, in addition, S and T are polynomial operators, then W (S, T)
18 a convezx set, a generalization of Hausdorff and Toeplitz theorems on
the convexity of the numerical range.

Definition 2.3. Let S,7 : X — Y be positively homogeneous
operators. By the approzimative spectrum (briefly spectrum) of the
couple (S,T), we understand the set o(S,T) of complex numbers
defined as follows

oS, T)={r € C: inf |Sz—ATz| =0}
z€S51(0)

Definition 2.4. We shall say that \g € C is the eigenvalue of a
couple (S,T) of positively homogeneous operators S,7 : X — Y if
there is a point z¢ € S1(0) C X such that Szog— ATz = 0. The point
xg is called the eigenvector of the couple (S,T) related to Ap.

The set of all eigenvalues of the couple (S,T") we denote by A(S,T).

Relationship between numerical ranges and between sets of eigen-
values of couples of operators and their adjoint shows the following
theorem.

Theorem 2.5. Let S,T : X — X* be homogeneous operators with
their adjoint operators S*,T*, and let T be positive. Then the following
assertions hold:

(1) If X € W(S,T), then A € W(S*,T*).
(2) If A € A(S,T), then X € A(S*,T*).
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Proof. According to Corollary 1.9 (2) the operator T* is positive and
thus the numerical range W (S*,T*) is not empty. The positivity of T
implies that Im (T'z, z) = 0 for any z € X so that, due to Corollary 1.9
(1), (T*z,z) = (T'z,z) holds. Further, from Proposition 1.10 (1) and
its proof, we obtain

(5%2,2) = (£18' @2, 7) = £ {2, 8'(@)2)

- %(x,kS(m)) — (S2.3) = (Sz, z) — 2i.Im (Sz, ).

Hence

(S'@,a) _ (Sma) . { (Saz,w)}'

(T*z,z) (Tx,z) (Tz,x)

Let A € W(S,T). Then we can choose a point y € S1(0) such that
A= {(Sy,y)/(Ty,y). The following holds

(S*y,y)
(T*y,y)

Hence A € W(S*,T*) and the assertion (1) is proven.

=A—2iIm{\} =\

To prove the assertion (2) we take A € A(S,T) and find an eigenvector
z1 € S1(0) such that Szy — ATz; = 0. Now, according to Proposition
1.10 (5), it follows that

(Sil?l - )\Tﬂ?l)* = S*LL‘l - S\T*l‘l = 0,
hence A € A(S*,T™).

Similarly, as in the theory of linear operators, it is possible to define
the spectral radius and the numerical radius of a couple of homogeneous
operators. O

Definition 2.6. Let S,7 : X — X* be positively homogeneous
operators. Supposing the sets ¢(5,T) and W (S, T') are nonempty and
bounded, we define the number r, (s ) = sup ¢, (s,1) |\| as the spectral
radius of the couple (S,T) and the number

Tw(s,r) = sup ||
AEW (S,T)
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as the numerical radius of the couple (S, T).

Proposition 2.7. If S,T) : X — X* are homogeneous operators,
then the following inequality holds

To(5,1) < TW(s,T) < TW(s*,T*)-

If, moreover, S is a continuous and T a positively defined operator,

then
1Sl

TW(s,T) < o

where

— inf Re{(Tz,z)}.
c zel.SI'll(O) e{(Tz,x)}

Proof. The proof follows easily from Theorem 2.5 and Proposition
2.2. |

It is well known that, for normal linear operator S and the identity
operator I on a Hilbert space, the following important equality holds

Tw(s,1) = ||S||

(See, for example, [18, Theorem 6.2-E].) It also holds for some nonlinear
operators, see [11, Example 3.18].

Further, results in [3] imply that the above equality also holds for
a special class of homogeneous operators called symmetric polynomial
operators. It will be natural to generalize the notions of normality and
symmetry on the class of nonlinear operators.

Definition 2.8. Let an operator F' : X — X* have Gateaux
derivative F'(z¢) at a given point zyp € X. We shall say that the
operator F'is normal at the point x if, for any h € X the equality

1" (o) || = [I[F" (o) Rl

holds.
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Here [F'(x)]* is the adjoint to the linear continuous operator F'(xg).

We shall say that F' is a normal operator on an open set D C X if it
is normal at any point z € D.

Remark 2.9. If X is a Hilbert space and F' : X — X is a Gateaux-
differentiable operator. Then F' is normal at a point z if and only if
the linear operators F’(x¢) at [F'(zo)]* are mutually commuting. (See
[18, Theorem 6.2-D].)

Lemma 2.10. Let F : X — X* be a homogeneous operator of the
degree k > 1 having hemi-continuous Gateaux-derivative, and let F' be
normal at a point xg € X. Then F and its adjoint operator F* satisfy
the following equality

1 (zo)l| = [[E™ (o)

Proof. According to Proposition 1.10 the following holds

F* (o) = 1 [F(20)]" 0.

El

Further, F(xzo) = (1/k)F'(xo)xo, see the proof of Proposition 1.10,
because F' is homogeneous of the degree k£ and Gateaux-differentiable.
Now the normality of F' at zy implies that the equality

1EGo)ll = LIF (eo)zoll = LIF (o))" oll = 1 (zo)

holds. |

Corollary 2.11. Let F : X — X* be a normal homogeneous operator
on X with its adjoint operator F*. Then ||F| = ||F*|.

On the contrary, a homogeneous operator satisfying the last equality
need not be normal as the next example shows.

Example 2.12. Let us consider a homogeneous polynomial operator
F : E5 — Fs of the degree 2 on a two-dimensional Euclidean space E5
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defined for any = = (x1,x2) € E5 by the equality
F(z) = (z122,0).

Then
’ _ [ T2 T1
Fi(z) = < 0 0 )

and

Far = (7).

Using Proposition 1.10 (1) we obtain the adjoint operator F* to F in
the form

P (@) = 5[F'(t)]'z = J (arzs,23).

Now we easily find that

IF|l=sup [[F(z)]= sup /ziz}
z€S1(0) z€S51(0)
1
= sup |[zi@o| = 5
x€S51(0)
* * 1
[F*[| = sup [[F*(z)] =5 sup 4/ afz]+af
z€S1(0) 2 zes,(0)
oal = 5
== sup |z1]==.
2 z€S51(0) 2
Hence, | F|| = ||F*|| but the operator F' is not normal on Ey. Indeed,

it is not normal at a point = (21, z3) € E3 such that z; # 0 because,
for arbitrary points © = (z1,22) € Eo and h = (hy, hs) € Ea, we have

Fl(.l')h = (xzh + xz1ho, 0),
[F'(x)]*h = (z2h1, 21h1),

so that ,
|F'(z)h|| = |z2hy + z1ha|,

IF" (@)]" k]| = [ [|]
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For the normality of the operator F the equality || F'(z)h|| = ||[F’(z)]*R]|
should be fulfilled, see Definition 2.8. But, if 27 # 0, then this equality
cannot be satisfied for all h € E;, because, putting h = (0, 1), we obtain
a contradiction.

Proposition 2.13. Let 5,7 : X — X* be Gateauz-differentiable
homogeneous operators with their adjoint operators S*,T*. Let S and
T be normal on X. Then the following assertions hold:

(1) A number X belongs to spectrum o(S,T) if and only if the conju-
gate number \ belongs to spectrum o(S*,T*).

(2) If Ao is an eigenvalue of the couple (S,T) with an eigenvector
zo € S1(0), then the number X\ is an eigenvalue of the couple (S*,T*)
with the same eigenvector xg.

Proof. Let A € 0(S,T). Then, according to Definition 2.3 there exists
a sequence {z,} C S1(0) such that || Sz, — A\T'z,| — 0.

It follows from properties of the adjoint operator, Proposition 1.10
(5), that the adjoint to operator (S — AT') is the operator (S* — AT™).
Using Lemma 2.10 we obtain

|8z, — ANTz,|| = [|S*Tr — NT*20]|,
so that
|S*z, — AT*z,|| — 0 and thus X € o(S*,T).

This proves the assertion (1). The assertion (2) follows from Proposi-
tion 1.10 (5) and Lemma 2.10 analogously. O

Proposition 2.14. Let S,T : X — X* be homogeneous operators
of the degree k > 1. Let S have hemi-continuous Gateauz-derivative
and T be a positive operator. Suppose Ag is an eigenvalue of the couple
(S,T) with an eigenvector xy. Then

<H$0a $0>

Re )y =
€A <T£I?0,LL‘0>,

where H 1is the potential operator from Theorem 1.8.
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Proof. According to Theorem 1.8, S(z) = H(z) + R(z) holds, where
H is the potential operator and R is the operator satisfying, according
to Proposition 1.10 (3), the following relation

2ke

(Rz,z) = Pl

Im {(Sz,z)}.

Then, for an eigenvalue \g, we obtain

Ao (Szo,0)  (Hzo,x0) | (Ro, T0)
0= =
<T£L‘0,$0> <T$0,l‘0> <T$0,l‘0>
_ (Hzg, o) 2ki Im (Szo, o)

- <T.Z'0,I0> k+1 <T$0,$0>

Both expressions (T'zg, zo) and (Hxg, zo) are real because T is positive
and H is potential. Hence, Re \g = (Hxq, zo) /(T o, Tp)- O

Definition 2.15. Let w : (0,+00) — (0,+00) be a continuous
increasing function and such that w(0) = 0, lim;, o w(t) = +oo.
Then the mapping J : X — 2% defined on a real Banach space X by
J(0) =0,

J(z) = {a" € X7 : (&, 2%) = w(||z]]). =[], [z"|| = w([[]]),z # 0}
is called the duality mapping on X with the gauge function w.

Proposition 2.16. Let X be a rotund Banach space, and let
S : X — X* be a homogeneous polynomial operator of the degree k > 1.
Suppose J : X — X* is a duality mapping with the gauge function
w(t) = ctk where ¢ > 0. Consider eigenvalues A\1,\2 € A(S,J) of
the couple (S, J) with eigenvectors x1,xo € S1(0). Then the following
inequality is satisfied

IS+ kIS8T
c ||.Z'1 I2

A1 — A2] < Il-

(Here S is the polar k-linear operator to operator P from Defini-
tion 1.5).
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Proof. According to the above assumptions, we have Sz; = A;Jx;,
j = 1,2. Using this and Definition 2.15 of the duality mapping, we
obtain

(Szy,21)  (Sz2,22)
<JI1,£E1> <JI2,£E2>

AL =] =

1

E|<S$1,$1 — .Z'2> + <S$1 — S$2,$2>|.

Using Definition 1.5 and the properties of k-linear polar operator S, we
obtain the following equality

k
S(x1) — S(z2) = ZS(wl — o, @l ahTT),
j=1
where the symbol §(z1—x2, x{fl, ngj) denotes that the point z; recurs
(j — 1)-times and the point x5 recurs (k — j)-times. Finally, triangular
inequality and properties of duality mapping, see Definition 2.15, imply
the following estimation

1
A1 — Aol < E{HSII-leHk-Ilﬂcl — xa| + [[Szy — Sxof-flz2 I}

k
1 o
< LIS =l + | o sten e af 270 |
]:
S|+ k. ||S
< Mﬂxl —x2|| for z1,x2 € S1(0). o
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