ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 28, Number 2, Summer 1998

INCLUSION THEOREMS FOR CONVOLUTION
PRODUCT OF SECOND ORDER POLYLOGARITHMS
AND FUNCTIONS WITH THE DERIVATIVE
IN A HALFPLANE

S. PONNUSAMY

ABSTRACT. For 8 < 1 and real n, let R,(8) denote the
family of normalized analytic functions f defined in the unit
disc A such that Re[e?(f'(z) — B8)] > 0 for z € A. Given a
generalized second order polylogarithm function
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we place conditions on the parameters a, b and 8 to guarantee
that the Hadamard product of the power series G(a, b; z) * f(z)
will be univalent, starlike or convex. We also give conditions
on a and b to describe the geometric nature of the function
G(a,b;z). By taking f in the class of convex functions, we
also find a sufficient condition for G(a, b; z) * f(z) to belong to
the class Ro(3). Several open problems have been raised at
the end.

1. Introduction and main results. Let C denote the complex
plane, and let A = {z € C : |z|] < 1}. Denote by #H the linear space
of all functions f analytic in A, endowed with the usual topology of
uniform convergence on compact subsets and by A the subset of H with
the normalization f(0) = 0 = f’(0)—1. We say that the function f € A
is convez (denoted by f € K) if f maps A onto a convex domain. The
function f € A is said to be starlike (denoted by f € §*) if f maps
A onto a domain which is starlike with respect to the origin. Denote
by S, C(B), S*(B) and K(B), the subsets consisting of functions in A4,
which are, respectively, univalent, close-to-convex of order (3, starlike
(with respect to the origin) of order 8 and convex of order (3, where
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B8 < 1. It is well known that f(z) € K(8) if and only if zf'(z) € §*(5).
For 8 = 0, we usually set $*(0) = §* and K(0) = K. Further, for
B < 1, we introduce

R,(B) ={feA: Ine R st. Re[e”(f'(z) — B)] >0,z € A}.

It is well known that R,(8) C S for 0 < 8 < 1. If n = 0, then
we denote Ry(8) simply by R(8). A standard analytic definition for
close-to-convex functions states that the function f € A is said to be
close-to-convex of order B < 1 with respect to a fixed starlike function
g if and only if

(1.1) Re {ei”<'z§(’i§) — B)} >0, z€A,

for some real n € (—m/2,7/2). The family of close-to-convex functions
of order 3 with relative to g € S* is denoted by C,(8;9). If n = 0,
we simply denote it by C(83;g). Thus, we remark that the usual class
of all close-to-convex functions of order 3, denoted by C(8), is the set
{C,(B;g) : g € §*}. Clearly C,)(B;2) = Ry(B8) for B < 1. Set C(0) = C.
It is important to note that £(8) C S*(8) C C(B) C S for 0 < 5 < 1.
For general properties of these classes of functions, we refer to the book
by Pommerenke [27] and Goodman [11]. All of the inequalities in this
paper involving functions of z, such as (1.1), hold uniformly in A. The
condition “for all z € A” will be omitted in the remainder of the paper,
although it is understood to hold.

Let f(z) = 2+ Y00 yan2" and g(z) = 2+ Y.° , b,2" be formal
Maclaurin series. Then the Hadamard product, or convolution, of f
and g is defined by the power series (fxg)(z) = 2+ ., anb,2". The
modified Hadamard product, or integral convolution, is defined as

f®g=/oz(f Zarin"
= f(z) x g(z) * (= log(1 — 2)).

We shall use the notation A x B (A ® B), where A and B denote two
subsets of H, to denote the set of all functions of the form f*g (f ® g)
where f € A and g € B.
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Let a and b be two complex numbers such that both a and b assume
no negative integer values and

12) 4 Lot D+

MTIOT forn > 2.
n+a)(n+d)’ "=

We are concerned with certain properties of the function

oo

(1.3) G(a,b;z) = ZAnz",

n=1

where A; =1 and A, is defined by (1.2). If a or b equals —1, then we
have G(a,b; z) = z and therefore this case may be excluded. Clearly,

1—=z

G(0,1;2) =2 [1 + log(1 — z)] .

z

For an extensive list of the special cases of the function G(a,b; z), see
[12].

In this section, we discuss general problems involving the geometric
properties of the function G(a, b; z), and properties for the convolution
of G(a,b;z) and functions with the derivative in a halfplane. More
precisely, we find simple conditions on 8 and S’ under which if f €
R, (8) then the function G(a, b; z) * f(2) is in R,,(8'), C(8'; ), S*(B') or
K(B'). The key lemmas and their proofs will be presented in Section 2
and the proofs of the main results will be given in Section 3. In Section 4
we discuss some open problems related to the theory of convolution and
to certain integral transforms connected to the classes discussed in this
paper.

Now, we start discussing some facts which are needed in the sequel,
and in the main results of this paper. Suppose that f € A. Then it is
easy to verify that the function Hy(a,b; z) = G(a,b; z) * f(2) satisfies
the differential equation

(1.4) zQH}'(z) + (a+b+1)zH}(2) + abHs(2) = (a+1)(b+ 1) f(2).

Throughout the paper, the function G(a,b;z) denotes the function
defined by (1.3) and Hy(a,b;z) stands for the Hadamard product
G(a,b;z) * f(z). Using these notations and a simple calculation with
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the power series of f and G(a,b; z), we easily obtain that the function
Hy(a,b; z) for a # b has the integral representation

no+1) [*
Hy(a by 2) = % / 1911 — 99 f(t2) dt, if b+ a.
“a o
Now if we choose a = —a and b = 2 — « in the above formula, then we
have

Fo(2) = Hf(—a,2 — o5 2)

1.5 1—a)(3— 1
(15) = w/ t*(a+1)(1 _ tz)f(tz) dt,
2 0
an operator considered in [1, Corollary 1] with an additional assump-
tion that 0 < a < 1, see Corollary 1.18. In the limiting case b — oo,
the operator H(a, b; z) reduces to

1 z
H¢(a,00;2) = Bf(a;2) := a; /Otaflf(t)dta

(1.6)
Rea > —1,

which is the well-known Bernardi transform of f. Therefore, allowing
b — oo we see that the corresponding differential equation (1.4)
becomes

2B}(z) +aBjf(z) = (a + 1) f(2)
and the interaction of f and By(z) in terms of geometric function theory
has been studied on several occasions, see [6, 40, 25, 28, 29, 30, 9].

Let ®,(a;z) denote the well-known generalization of the Riemann
zeta and polylogarithm functions, or simply the pth order polyloga-
rithm function, given by

n

THORED e

where any term with n+ a = 0 is excluded, see Lerch [16] and also [4,
Sections 1.10 and 1.12]. Using the definition of the Gamma function
[4, p. 27] a simple transformation produces the integral formula

a

®p,(a;2) = ﬁ/o z(log1/t)P~* e

Rea > -1 and Rep>1,

dt,
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from which one gets the integral representation for the function
Hy¢(a,b;z) when a = b. Thus, we note that if we take ¢ = b in (1.3)

then we have
- a+1 o
G(a,a;2) gz (nta)?

which is equivalent to (a + 1)2®5(a; z). Further, if a = b = 0 in (1.3)
then we get the function G(0,0; z) which is the well-known dilogarithm
function Lis(z), defined by

1 [eS)
Lis(z) = /0 (l0g /1) ZZ_

and therefore, we easily have the integral representation

Lia(2) # f(2) = /0 %(log 1/6)f (t2) dt.

The pth order polylogarithm function can be used to express many
sums of the reciprocal powers and to evaluate Dirichlet L’ series which
appears in number theory, see, for example, [12]. The basic reference is
Lewin’s book, [17], and we remark that the dilogarithm function, which
can also be obtained as a limiting case of the Gaussian hypergeometric
function

Fila,a:1:2) — 1
Lis(2) = lim 2 1(a,0:1;2)

a—0 a2 ’

has many interesting applications in mathematical physics. We men-
tion that among the special cases of the Gaussian hypergeometric series
(function)

> (a,n)
oF1(a,b;c;2) = E B
— (c,n)

with ¢ # —1,-2,..., (a,n) = a(a+1)---(a+n— 1) forn =1,2,...
and (a,0) = 1 for a # 0, are several generic classes of functions such
as Chebyshev, Legendre, Gegenbauer, and Jacobi polynomials, so that
results about 2Fj(a,b;c;z) lead to interesting conclusions concerning
these classes of functions, see [34, 35, 38]. In a recent paper, Jones [14]
discussed the valence property of ®,(0; z) for p < —1. In this paper we
focus our attention only for the generalized second order polylogarithm
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function defined by G(a,b; z) and study the properties of the function
G(a,b; z) and its various inclusion results for the Hadamard product
f(z) * G(a, b; z), particularly when f € R,(5). Further, we also show
that under our conditions on a and b, the function G(a,b;z) * f(2)
belongs to H°, the class of all bounded analytic functions in A, see
Proposition 1.8. Thus, the conclusion of our theorems of this paper
become stronger although we do not include this fact in the statement
of our main theorems.

We start with some auxiliary statements. However, later in Theo-
rem 1.20, we obtain a sufficient condition for H(a,b;z) to belong to
R(B) when f is in the class of convex functions.

Proposition 1.7. If Rea > —1 and Re b > —1, then we have
fek(CorS*) = H(a,b;z) € L(C orS*).

Proof. First we recall that the function

1
T8 o Rt Lat22))

oo

(14+a)®i(a;2) = Z

n=1

n-+a

is convex in A for Rea > —1, see, for example, [39], and therefore from
the fact [41] that S* ® S* C S§*, we deduce that the function G(a, b; z)
defined by (1.3) is convex for Rea > —1 and Reb > —1. The last fact
and the Pdlya-Schoenberg conjecture proved in [41] immediately yield
the required implication. ]

Proposition 1.8. Suppose that a,b are related by any one of the
following:

(1) Rea > —2 and Reb > -2,
(2) a € C is such that a assumes no negative integer values and b = a.
If f€Ry(B) or K, then the function Hy(a,b; z) is in H>.

Proof. Let f(z) = z+ > oo 5 anz™ € Ry(B). Then as in [20] we easily
find that
2(1 -
(1.9) lan| < 2(1 = B) cosn.

n
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First we assume that Rea > —2 and Reb > —2. Consider Hy(a, b; z) =
G(a, b; z) * f(2), where G is defined by (1.3). Applying (1.9) and (1.3)
we obtain

|anl|2]"

|Hy(a,b;2)| < |z| +|(a+1)(b+ 1) Z m

<142(1-p)cosn|(a+1)(b+ 1)

o0

1
',;n|(n+a)(n+b)|
< 00, |z2| <1; Rea > —2, Re b> —2.

The above observation shows that if f is in the class R,(8) then the
function Hy(a,b; z) is in H> whenever Rea > —2 and Reb > —2.

If f € K, then it is known that |a,| < 1 for n > 2 and therefore using
this estimate we have that the function Hy(a,b; 2) is in H* whenever
Rea > —2 and Reb > —2.

The second part follows similarly. ]

Now we state some results which give the geometric properties of the
function G(a,b; z).

Theorem 1.10. Let a,b satisfy either a,b > —1, or a,b € (—2,—1).
Let A,, be defined by (1.2). Then, for ab < 2, the function G(a,b;z) =
oo Apz™ is close-to-conver with respect to —log(1 — z).

Taking a = —a and b = 2 — « in Theorem 1.10 we easily have the
following result.

Corollary 1.11. For a € [-v/3+1,1), the function G(—a,2 — a; 2)
is close-to-convex with respect to —log(l — z).

We state our next result which gives a condition for G(a,b; z) to be
in S*NR(1/2).

Theorem 1.12. Let a,b satisfy either a,b > —1, or a,b € (—2,—1).
Let A,, be defined by (1.2). If a and b are such that ab < 6/(6+a+0),
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then the function G(a,b;z) =Y oo | Anz™ belongs to S* NR(1/2) and
is also close-to-convex with respect to —log(1l — z).

Taking a = 0 we see that if b > —2 then the function G(0,b; z) is in
S* NR(1/2) and is also close-to-convex with respect to —log(l — z).

Our next theorem considers the situation when a € C\{-1,-2,...}
and b = a.

Theorem 1.13. Fora € C\{-1,-2,...}, let

(1) If |a| < V2, then the function G(a,a;z) is close-to-convex with
respect to —log(1 — z).

(2) If |a] < 4/11/3 and |al?*(3+Rea) < 3, then the function G(a, a; )
belongs to R(1/2).

(3) If |a| < V2 and |a|?(3 + Rea) < 3, then the function G(a,a;z)
belongs to S* N R(1/2).

Definition 1.14. Let Iy be an operator acting on the function f.
Suppose that F; and F; are two subclasses of .A. We say that a class
F1 is Fa-admissible with respect to the operator Zy if

fer = I;ek.

If F, is Fi-admissible then we call Z¢, a class preserving operator.

There are several theorems which are related to Definition 1.14, and
most of them deal with certain well-known operators in geometric
function theory, for example, the Bernardi operator defined by (1.6) and
its various generalizations [25]. We consider the so-called Alexander
transform Ay of f defined by

1
(1.15) As(2) = /0 @ dt = f x (—log(1 — 2)).
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Note also that Liz(2z) = Af(2), f(2) = z[2F1(1,1;2; 2)]. The Alexander
transform, which is the starting point for the study of many other
general operators in the theory of univalent functions, gives a one-to-
one correspondence between the families $*(y) and (7). Now we state
our next result.

Theorem 1.16. For f < 1, let R,(B) be S*(v)-admissible for
the Alezander transform Ay defined by (1.15). Let f € R,(8), B =
B[2 —2log2] + 2log2 — 1 and H(a,b; z) = f(z) * G(a, b; 2).

(1) Let a and b satisfy either a,b > —1 or a,b € (-2,-1). If
ab < 6/(6+a+b), then the function H(a,b;z) is in S*(y) N Ry(5').

(2) If a € C is such that |a| < v/2 and |a|?(3 + Rea) < 3, then the
function Hy(a,a; z) is in S*(v) N R, (8').

Corollary 1.17. Suppose that 8; and 6;, 7 =0,1,2, satisfy any one
of the following relations:

(i) Bo = (1 —21log2)/(2 —2log2) ~ —0.629 and B), =71 = 0;

(i) B1 = —(2 — V3)(21log2 — 1)/(2 — (2 — V/3)(2log2 — 1)) ~ —0.054
with 1 ~ 0.409 and 8] = f1]2 — 21log2] + 2log 2 — 1 ~ 0.353;

(iii) B2 = —(2log2 —1)/(3 — 2log 2) =~ —0.239 with 2 ~ 0.083 and
B% = Ba[2 —2log2] +2log2 — 1 = —B5 ~ 0.239.

Suppose that a < 1 satisfies the condition
3 2
a® —6a”+8a+8 >0,

and the function F, is defined by (1.5). Then we have
(a) f € Ry(Bo) = Fo € S*NR,(0),
(b) f € R(B1) = Fa € S*(11) NR(BY),
(c) f € R(B2) = Fa € §*(72) N R(B3).

We include the following result, which applies only to the case
0 < a < 1, obtained by Ali and Singh [1].
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Corollary 1.18 [1, Corollary 1]. Let 0 < a < 1 and B, be defined by
Ba—1/2  (1-a)B3—a) /1 1t
0

1-Ba 2 P dt.
Then, for f € Ry(B), the function Fy(z) defined by (1.5) is convex if
B > Ba-. For B < Ba, Fy need not be conver.

We compare the above two corollaries. For example, if we choose
a = 0 in Corollary 1.18 then, after some computation, we get that the
function Fj is convex if 8 > 5y = (4 — 61log2)/(5 — 6log2) ~ —0.188.
For 8 < By =~ —0.188, we see from Corollary 1.18 that the function Fy
need not be convex. On the other hand, Corollary 1.17 (a) shows that
if 8> (1-2log2)/(2—2log2) ~ —0.629 then the function Fy not only
is starlike but also is in R, (0). We remark that a convex function need
not be in R,,(0) and conversely. Further, in the starlike case, the range
for a can be extended as is clear from Corollary 1.17.

By taking a = b = 0 in Theorem 1.16, we have the following example
which is related to the dilogarithm function Liz(z). The proof of this
example follows from the idea of the proof of Corollary 1.17.

Example 1.19. For 3 < 1, let R, (5) be S*(y)-admissible for the
Alexander transform A defined by (1.15). Then, for f € R,(5), the
function Liz(z) * f(z) is in §*(y) N R, (8’). In particular, we have the
following:

(a) f € Ry(Bo) = Liz(2) x f(2) € §* NRy(0),

(b) f € R(B1) = Liz(z) = f(2) € S*(11) NR(BY),

(c) f € R(B2) = Liz(2) * f(2) € S*(y2) NR(BY),
where f;, B; and v;, 7 =0,1,2, are as in Corollary 1.17.

We note that in Corollary 1.17 and in Example 1.19, the constants
Bis ,6;- and v; are all independent of the choice of the parameter .
Here it is interesting to make the following remark. Clearly X ¢ R(0)
as the convex function z/(1 — z) demonstrates. However, it is well
known that the inclusion K(1/2) C R(1/2) holds while the converse is

not true. In fact, MacGregor [21, Theorem 2] has shown that the best
possible radius of convexity for functions in R(1/2) is 1/v/2. Further,

if Ref/(z) > 0 in A then f is convex in |z| < r for r < V/v2 -1
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and not in any larger disc, see [20, Theorem 2| and [42]. Because
of these observations, we let f € I and determine a simple condition
on the parameters so that Hy(a,b; z) will be in R(f5), compare with
Proposition 1.7, as in

Theorem 1.20. Suppose that a,b and 3 are related by any one of
the following conditions:

(i) a,b satisfy either a,b > —1, or a,b € (=2,—1), and

Bil‘l‘ 6 —ab(a+b+6)
2 (24a)(2+0b)(3+a)(3+Db)
such that ab < 24/(9+4 a +b),

(i) @ € C\{-1,-2,...}, b = @ such that |a|] < 1/26/3, |a|?(9 +
2Rea) < 24 and

<1

B:1+672|a|2(3+ a)

2 T era)BraE ~

Then for f € K we have Hy(a,b; z) belongs to R(f).

Corollary 1.21. Let f € K. Then we have Lix(z) * f(2) €
K(1/2) NR(2/3). More generally, if b € (—1,00) then we have

Hp(0,b;2) € K(1/2) NR(Bo), with By = % + m-

Proof. Let f € K. On taking a = b = 0 in Theorem 1.20, we have
Lis(z) * f(2) € R(2/3). As the function —log(1 — z) is convex of order
1/2 and since the inclusion K * K(1/2) C K(1/2) holds, we deduce that
Lis(z) = (—log(1l — 2)) * (—log(1l — 2)) € K(1/2). Finally, because
f € K, the conclusion follows by applying the last inclusion once again.

The general result for b € (—1,00) follows similarly and so we omit
the details of the proof. a

We recall that the function Hy(a,b; z) satisfies second order differ-
ential equation (1.4) and therefore we can make use of the method of
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differential subordination as a tool in the study of analytic properties
of the function Hy(a,b;z). For instance, since K ¢ R,(0), it will be of
interest to find a general condition on a and b so that, for f € R, (5),
the function Hy(a,b; z) will be at least in R,,(0) as in the following

Theorem 1.22. Suppose that a,b > —1, § < 1 and f € A satisfies
the condition

(1.23) Re {ei" (@ - 51> } >0

where
(1-6)(a+b+2)

2(1 + a)(1 +b)

Let the function G(a,b;z) be defined by (1.2) and Hy(a,b;z) = f(z) *
G(a,b;z). Then we have

o2}

feR,(61)) == Hy(a,b;z) € Ry(0).

5 =6—

or, equivalently,

Taking a = —a and b = 2 — « in Theorem 1.22, we have the following

Example 1.24. Let a < 1,0 <1, f € R,(61) with

and let F,, be defined by (1.5). Then, by Theorem 1.22, we see that the
function F,,(2) = H¢(—a,2 — a; 2) is in R,(0). In particular, if a < 1
and (' is defined by

2-0a)

(129 M (e
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then for f € R,(B’') the function F, defined by (1.5) satisfies
Re (eF!(2)) > 0 in A, and hence F,(z) is univalent in A. This
example, in particular, shows that we have a simple condition which
ensures the univalence of F,(z) in A for any « such that @ < 1. Fur-
ther, a simple calculation shows that (3, defined in Corollary 1.18 is
such that 8, > ', where ' is defined by (1.25). Therefore, the range
of a is enlarged and, since 3, > /', the close-to-convexity, with respect
to g(z) = z, of F, follows under a much weaker hypothesis.

Corollary 1.26. Leta > -1, < (1 —a)/2,6 =2/(5—-48) <1,

_ s ([1=6)@1-p)
(1.27) o1=0 (14a)(1—a—28)

and let f € A satisfy the condition

Re {e”’ <@ - 51> } > 0.
z
Then we have

Re{em(Hf(a, —2—2/3%) B 5—24,8)} -

Proof. The proof of this corollary follows from Theorem 1.22 by
choosing a + b= —23 and § = 2/(5 — 45). O

Our next result improves Corollary 1.26 under an additional condition
on 3 and a.

Theorem 1.28. For a > —1, let 8 < (1 — a)/2 satisfy the condition
(1.29) 46% + B(4a — 3) +2a* +1 > 0,

and let 61 be defined by (1.27) with § = 2/(5 —48) < 1. If f € A

satisfies the condition

ef(12-4)
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then we have Hy(a,—a — 20;z) € S*(B) and

Re{ein(Hf(a’ _Z_ 2f; 2) - —24,8)} > 0.

The following theorem deals with the case when the parameter a is a
complex number and b = @, the complex conjugate of a.

Theorem 1.30. Let a € C be such that Re a > —1, § <1 and

(1 - 6)(1+ Rea)

(1.31) =0 D

If f € A satisfies the condition

(1.32) Re {e"’? <@ - 51>} > 0,

then we have = ~
Re {ein (M _ 5)} >0,
z

feR,(61) == Hy(a,a;2) € Ry(0).

or equivalently,

Example 1.33. Let § > —1 and f € R,(5). Then the function

H;(0,0; 2) = Lig () % f(2) = /0 %(logl/t)f(tz) dt

is in R,(0), and hence the function Liy(z) * f(z) is univalent, see
Corollary 1.21.

We next improve Theorem 1.30 for certain values of a and §.

Theorem 1.34. Let a € C be such that Rea > —1/2 and satisfy the
condition

(1.35) V1+16(Ima)? < 3+ 4Rea.
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Let f € A, § =2/(5 + 4Rea), and

(1 - 6)(1+ Rea)
11+ al?

wf(2- )}

we have Hf(a,a; z) € S*(—Rea) and
Re {eiﬂ (M — 5)} > 0.
z

Next we formulate some of the interesting special cases of our results
in the form of examples.

0p=0—

Then for

Examples 1.36. (1) If a = 0 and 8 < 1/2, then we see that the
condition (1.29) is obviously satisfied and therefore, from Theorem 1.28,
we obtain that

H(0,-20;2) € K(B) N R, (2/(5 —4P))
if
1 [(28 — 3/4)% + 7/16] cosn
(5-4p)(1-2p)
In particular, for f € R, (8) with 8 > —1/5, the function

Re {e"f'(2)} > -

H(0,0; z) = Liz(2) * f(2) :/0 %(log 1/t)f(tz) dt

is convex and also belongs to R,(2/5), compare Example 1.33 and
Corollary 1.21.

(2) Taking 8 = 1/2 in Theorem 1.28, we find that if a € (—1,0), then
we have
(2a +1)%cosn

6a(a+1)
=  Hyf(a,—a—1;2) € K(1/2) N R, (2/3).

Re{e"f'(2)} >
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(3) Taking 8 = —1/2 in Theorem 1.28 we obtain that if

si=2___ 15
U7 ul+a)(2-a)

then
FER,(5) = Hp(a,2— a;z) € K(—1/2) N Ry(2/7),
or equivalently,
FERYB) = Hi(—a,2—a;2) € K(-1/2) N Ry(2/7),

whenever 8 > (2/7) — 15/[14(1 — a)(2 4+ «)] and —2 < a < 1. Here
K(—1/2) denotes the family of convex functions of order —1/2 and we
remark that [37] any function in (—1/2) is close-to-convex of order
1/2.

(4) Applying Theorem 1.34 with Ima = 0 (or by considering Theo-
rem 1.28 with a = —f3), we obtain, on replacing f(z) by zf'(z), the

following result which deals with the second order polylogarithm func-
tions: if a > —1/2 and § = —(2a + 1)/[(1 + a)(5 + 4a)], then

feR,(0) = Hjs(a,a;2) € K(—a)NRy(2/(5+ 4a)).

(5) Choose Rea = 1/2 and replace f(z) by zf'(z) in Theorem 1.34.
Then we see that if [Ima| < 1/3/2 and
2 30

=7~ 709 + 4(Im a)?)

then
feR,(61) = Hy(1/2+ima,1/2 —ilma;z)
€ K(-1/2) N R,(2/7).

2. Preliminaries and key lemmas. Our results rely heavily on
the following lemmas.

Lemma 2.1 [8]. Ifa, > 0, {na,} and {na, — (n + 1)an41} both
are nonincreasing, i.e., {na,} is monotone of order 2, then f(z) =
24 Y0 5 an2" s in S*.
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An important subclass of A is described in the following classical
result of Fejér [8] which we state as a lemma.

Lemma 2.2 [8, 40]. Assume a; = 1, and a, > 0 for n > 2, such
that {a,} is a convexr decreasing sequence, i.e.,

0>apt2—apy1 > Qi1 — Gn, for alln € N.

Then
> 1
n—1 - A.
Re { nE_l anz } > 2 forall z €

The next lemma gives a sufficient condition for f € A to be in
C(0; —log(1 — 2)).

Lemma 2.3 [26, Corollary 7]. Suppose that

(2.4) 1>2a3 > 2na, >--->0
or
(2.5) 1<2a3<---<na, <---<2.

Then f(z) = z+Y 5 anz™ is close-to-convex with respect to —log(1—

We recall that if f € K C 8*(1/2) then Re (f(z)/z) > 1/2in A, but
the converse is not true, not even if the coefficients of f are real and
positive [21]. On the other hand, functions in A with Re (f(z)/z) > 1/2
have a nice property with respect to convolutions, as described in the
following lemma.

Lemma 2.6. Ifp is analytic in A, p(0) = 1, and Rep(2) > 1/2 in A
then for any function F, analytic in A, the function p x F takes values
in the convex hull of F(A).

The conclusion of Lemma 2.6 readily follows by using the Herglotz’
representation for p, and it can also be regarded as a special case of a
general convolution result [40, Theorem 2.4].
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A function f analytic in A is said to be subordinate to an analytic
function g, written f < g, or f(z) < g(2), if f(2) = g(w(z)) for some
function w analytic in A, satisfying |w(z)| < |z|. If g is univalent in A,
then f < g if and only if f(0) = ¢g(0) and f(A) C g(A), see [27].

Lemma 2.7 [23,24]. Let Q C C, and let q be analytic and univalent
on A except for those ( € OA for which lim,_,¢ q(z) = co. Suppose
that ¢ : C® x A = C satisfies the condition

(2.8) ¥(r, s, t;2) ¢ Q,

when v = q(¢) is finite, s = m{q'(¢), Re(l +t/s) > mRe(l +
¢q"(€)/d'(€)), and z € A, for m > 1 and |{| = 1. If p is analytic
in A, with p(0) = q(0), and if p satisfies

Y(p(2), 20 (2), 2°p"(2);2) €Q, 2 € A,

then p(z) < q(z) in A.

Suppose that p € H with p(z) = € +pyz +---, [y < m/2, and

e+ e Mz

q(z) = ——

Then it is easy to see that the condition (2.8) reduces to
(2.9) Yiz,y,u +iv;z) ¢ Q
when z is real, y < —|e" +iz|?)/(2cosn) and y +u < 0. We use this

special case for the proofs of Theorems 1.22, 1.28, 1.30 and 1.34.

From a general result, the authors [29, 30, 9, 34] obtained as a
special case the following result which gives the order of starlikeness of
the Alexander transform.

Corollary 2.10. Let f € A and Ay be the Alexander transform as
n (1.15).
(i) If Bo = (1—2log2)/(2—2log2) ~ —0.629, then R,(5o) is
S* N R,(0)-admissible for Ag(z).
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() If 6 = —(2—V3)(2log2— 1)/2— (2~ V3)(2log2 — 1)) ~
—0.054 and ;1 = 0.409, then R(B1) is S*(y1) N R(B})-admissible for
Af(z), where B = 12 — 2log 2] + 2log2 — 1.

(iil) If B2 = —(2log2—1)/(3 — 2log2) ~ —0.239 and v» =~ 0.083,
then R(B2) is S*(y2) N R(B5)-admissible for As(z), where 85 = (2[2 —
2log2] +2log2 — 1.

(iv) If By and 7 are related by

_ 3[Bo + (1 - Bo)(2log2 — 1)]
650 + (1 — Bo)7? ’

where 0 < v < 1/2, then Ry(Bo) is S*(v) N Ry(5y)-admissible for
A (z), where B) = Bo[2 — 2log2] + 2log2 — 1.

(2.11)

Proof. From [29, Lemma B], see also [32, Lemma 1], we obtain that
for the Alexander transform Af(z) of f defined by (1.15) we have

(2.12) FER,(B) = As(2) € Ry(B),

where 8/ = B[2 — 2log2] + 2log2 — 1. This implication shows that
the class R, (8) is R,(B')-admissible with respect to the Alexander
transform Af(z). Further, the conclusion that R,(5;), j = 0,1,2, is
S*(v;)-admissible (j = 0, 1,2) follows from the results of [9, Corollary
1], [30, Corollary 3] and [29, Corollary 3], respectively. Part (iv) follows
from [34, Corollary 1.13]. As noticed in [34], part (iv) is sharp only
for v defined by (2.11) equals zero and By ~ —0.629 whereas a simple
computation shows that (i) and (iii) improve (iv). On the other hand,
the part (iv) gives information for 0 < v < 1/2, see [34, 35]. o

The following lemmas play a key role in the proof of some of our main
results.

Lemma 2.13. Let a,b satisfy either a,b > —1, or a,b € (—2,-1).
Suppose that A, is defined by (1.2). If a and b are related by the
condition

(2.14) ab<6/(6+a-+b)

then {nA,} is a convezr decreasing sequence for n > 1.
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Proof. Let A, be defined by (1.2) for n > 1. Suppose that a, b satisfy
either a,b > —1, or a,b € (=2, —1). Therefore, the conditions on a and
b imply that A; =1 and A,, > 0 for n > 2. According to Lemma 2.2,
we need to show that the hypotheses imply that

(2.15) (n+1)Ani1 > (n+2)A,12, foralln>1,
and
(2.16) nA, —2(n+1)Apt1+(n+2)442>0, foralln>1.

For convenience, we define B, = nA, — (n +1)A,+1. By (1.2), it is a
simple exercise to see that

2

1
2.17 B,.1=(1 1+0b X(n),
(2.17) n=[1+a(l+ )Ll:[l(n+k+a)(n+k+b) (n)
where
X(n) =n®+3n+2 — ab.
Clearly

X(n)>5n+1—ab>6—ab, foralln>1.

By (2.14) we notice that 6 — ab > 0 and therefore, X (n) > 0 for n > 1.
From the last fact and (2.17), we deduce that the inequality (2.15)
holds. Next we show that (2.16) also holds. To this end, we show that
the sequence {B,,} is nonincreasing. On replacing n by n —1in (2.17),
we find, after some computation, that

1

(2.18) B, = (a+1)(b+1){H (n+k+a)1(n+k+b)
k=0

](n2+nab).

Further, by an elementary calculation, (2.18) and (2.17), we can easily
obtain that

2

kl;[[) n+k+a Y(n+Ek+0b)

(2.19) B, — Bny1 = 2(a+1)(b+1) { ]U(n),

where

(2.20) U(n) = n®+3n® +n(2 — 3ab) — ab(3 +a +b).
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Therefore, the fact that
n®>3n?2-3n+1, foralln>1,
and (2.20) yield
U(n) > 6n® — (1+3ab)n+ 1 —ab(3 +a +b) := V(n).
Since the inequality n? > 2n — 1 holds for all n > 1, we deduce that
V(n) > (11 — 3ab)n — 5 — ab(3 + a + b) := W (n).

It is easy to verify that the condition (2.14), in particular, implies that
3ab < 11 and therefore the coefficient of n in W(n) is nonnegative.
This observation immediately gives that

W(n)>W(1)=6—ab(6+a+0b), foralln>1.

However, the condition (2.14) is equivalent to W (1) > 0. Thus, we
proved a chain of inequalities

U(n) >V(n)>W(n)>W(1) >0, forn>1.

Equation (2.19) and the last inequalities imply that {B,}, i.e., {nA4,, —
(n + 1)A,41}, is a nonincreasing sequence. We have already shown
that the sequence {nA,} is nonincreasing. Hence, {nA,} is a convex
decreasing sequence for n > 1. O

Lemma 2.21. Fora € C\{-1,-2,...}, let

B la + 1)?
~n+al®’

n>1.

n

If la] < \/11/3 and |a|?>(3 + Rea) < 3, then {nA,} is a convexr
decreasing sequence for n > 1.

Proof. Follows easily from the proof of Lemma 2.13. u]

Lemma 2.22. Suppose that a,b and 8 are related by either (i) or
(ii) of Theorem 1.20. Then we have G(a,b; z) € R(B).
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Proof. We first consider the case when a, b satisfy either a,b > —1 or
a,b € (=2,—1). Suppose that the condition (i) of Theorem 1.20 holds.
Since the second part follows similarly, we give the details only for the
first part.

The function G(a, b; z) belongs to R(S) if and only if Re G'(a, b; z) >
(3, or equivalently

1 > 1 1
Re(l—l—mZnAnz >>§

n=2
where A,, is defined by (1.2). Define C; =1 and

(a+1)(b+1)n

O =50 Bt a)(nt b

for n > 2.

Therefore, to prove G(a,b; z) € R(B), in view of Lemma 2.2, it suffices
to show that {C),} is a convex decreasing sequence for n > 1. As in
the proof of Lemma 2.13, it is easy to see that the inequality

Cnt1 > Crga

holds for all n > 1, because by hypothesis we have ab < 6. Therefore,
we need only to show that the hypotheses imply that

(223) Cn — 2Cn+1 + Cn+2 >0, foralln>1.
It can be easily seen that the condition

1 6 — ab(a+ b+ 6)
= Er 0+ BB D)

where 8 < 1, is equivalent to Cy — 2C3 + C3 = 0 and therefore it
suffices to verify the inequality (2.23) for n > 2. From the proof of
Lemma 2.13, it is clear that the inequality (2.23) holds for all n > 2
provided U(n) > 0 for all n > 2, where

U(n) = n® +3n® + n(2 — 3ab) — ab(3 + a +b).
Using the inequalities

nd>6n—12n+8 and n?>4n—4
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which is true for n > 2, and the method of proof of Lemma 2.13,
we easily deduce that U(n) > 0 for all n > 2. Hence, under the
hypothesis, {C,,} is a convex decreasing sequence for n > 1. There-
fore, by Lemma 2.2, we obtain that the function G(a,b;z) satisfies
ReG'(a,b;z) > B in A. o

A simple version of the following lemma has been used in [28] to
study the starlikeness of the Bernardi operator and the proof of this
lemma follows by using the same method as in the proof of [32] or [36].
However, for the sake of completeness, we give the details.

Lemma 2.24. For f < 1, let R, (B) be S*(7)-admissible for the
Alezander transform Ay defined by (1.15). Suppose that f € R, (B1)
and g € R(B2), where 1 <1 and B2 < 1 are such that

(2.25) 1—8=2(1-pB1)(1-Ba).
Then the function f*g is in S*(7) "Ry (5'), where 5" = B[2—2log 2]+
2log2 — 1.

Proof. 1f f(z) = z+ > 0" 5 an2™ belongs to R, (B1), then we have

ein ad

1
14 o n2" < :
+2(lfﬂ1)cosnn¥2na : 1-2

Similarly, for g(z) = 2 + Y oo by2™ € R(B2), we have

1 > 1
1+ ———— nbnz"_1 < .
2(1 — f) nz::z 1—2

Direct application of Lemma 2.6 gives

oo

1
2 n—1
nbn e
(1—51)(1—,62)cosnn222” B e

e

Ll(z):1—|—4

It
1

1-2’

Ly(2) =1 —4(1 = B1)(1 = B2) +4(1 = B1)(1 = BB2)
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then, by (2.25), we have
ReLs(z) >1—-2(1— B1)(1 - B2) = 6.
Since Re L1 (z) > 1/2, on applying Lemma 2.6 once again, we find that
Re(Ly * Lo)(2) > B
which is equivalent to

(2.26) Ree[(f * g)'(2) + 2(f * 9)"(2)] > Boosn.

Since R,,(B) is S*(y)-admissible for the Alexander transform A ¢ defined
by (1.15), we have f % g is in S*(y). By (2.12), the inequality
(2.26) implies that the convolution f % g is in R,(8’) where ' =
B[2 — 2log 2] + 2log 2 — 1. The proof is complete. O

Using Corollary 2.10 (i) we obtain the following result. We remark
that if we use part (ii)—(iv) of Corollary 2.10 we have a stronger
conclusion but under a stronger condition.

Corollary 2.27. For By = (1 —2log2)/(2 —2log2) =~ —0.629, we

have

R(1/2) * Ryy(Bo) C S* MR, (0).

Proof. The result follows from part (i) of Corollary 2.10 on taking
Bo = (1 —2log2)/(2 — 2log2) = —0.629 -, B = By and B2 = 1/2 in
Lemma 2.24. O

3. Proofs of the main theorems.

3.1.  Proof of Theorem 1.10. Let a,b be such that a,b > —1 or
a,b € (—2,—1) and satisfy the inequality ab < 2. Cousider the function
G(a,b;z) = > 2 Apz"™, where A, is defined by (1.2). From the
condition on a,b and (1.2), we see that A, is positive for each n > 2
and A; = 1. By Lemma 2.3, see Equation (2.4), we need to show that
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the sequence {nA,} is decreasing. We recall, from (2.18), that

(3.2) nA,—(n+1)A,11
1

—(a+1)(b+1)[H(

k=0

1
n+k+a)(n+k+0b)

X(n),

where
X (n) =n®+n — ab.

To show that the sequence {nA4,} is decreasing, from (3.2), it suffices
to prove that X(n) > 0 for all n > 1 which is clearly true, since X (n)
is an increasing function of n so that X(n) > X(1) =2 —ab > 0, as
ab < 2. Hence, the sequence {nA,} is decreasing and by Lemma 2.3
we obtain that the function G(a, b; 2) is close-to-convex with respect to
—log(1 — 2). O

3.3. Proof of Theorem 1.12. Let a,b > —1 or a,b € (—2,-1), and
let A,, be defined by (1.2). Then, from the proof of Theorem 1.10, we
note that the condition ab < 6/(6 4+ a + b) implies that the sequence
{nA,} is nonincreasing while from the proof of Lemma 2.13 we obtain
that the sequence {nA,, —(n+1)A, +1} is nonincreasing. Therefore, by
Lemma 2.1, the function G(a, b; z) = Y.~ | Anz" is starlike in A and by
Lemma 2.3, the function G(a, b; 2) is close-to-convex with respect to the
convex function —log(1—z). By Lemma 2.13, we see that the sequence
{nA,} is also convex decreasing and therefore using Lemma 2.2 we have
ReG'(a,b;z) > 1/2 in A. The desired conclusion follows. O

3.4. Proof of Theorem 1.13. (1) From the proof of Theorem 1.10, it
follows that if |a| < v/2 then the function G(a,;z) is close-to-convex
with respect to the convex function —log(1 — z).

(2) Proof follows from Lemmas 2.21 and 2.2.
(3) Follows from the proof of Lemmas 2.13 and 2.1. o

3.5. Proof of Theorem 1.16. (1) Let a,b > —1 or a,b € (-2, -1).
Suppose that ab < 6/(6 + a + b). Then from Theorem 1.12, we
have G(a,b;z) € R(1/2). Since f € R,(B), by the hypothesis, the
desired conclusion follows upon substituting 82 = 1/2 and 8; = 8 in
Lemma 2.24.
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(2) Let a € C be such that a assumes no negative integer values
and satisfy the condition |a|] < /2 and |a|?(3 + Rea) < 3. Then
from Lemmas 2.21 and 2.2, we see that G(a,a;z) € R(1/2) and the
conclusion follows similarly, as an application of Lemma 2.24. ]

3.6. Proof of Corollary 1.17. Follows from Corollary 2.10 and by
taking a = —a and b = 2 —  in Theorem 1.16. u]

3.7. Proof of Theorem 1.20. Let f € K. From the hypothesis and
Lemma 2.22, we see that the function G(a, b; z) belongs to R(S). From
a result in [33], we have

K« R(B8) C R(B).

The conclusion now follows from the above inclusion. O

3.8. Proof of Theorem 1.22. Let G(a,b;z) be defined by (1.2) and
H¢(a,b;2) = f(2) * G(a,b;z). For convenience, we let H¢(a,b;z) =
H(z). Define

(3.9) P(z) = e <H (2) 5) 1

z

1-6"

Then P is analytic in A, P(0) = €', and Re P(0) = cosn > 0, since
|n| < 7/2. Suppose that f satisfies the condition (1.23). Therefore, to
prove that the function H satisfies the condition Re {¢(H (z)/z—d)} >
0 in A, it suffices to show that Re P(z) > 0 in A. Writing (3.9) as

eMH(2) = 2[6¢" + (1 - 6)P(2)],

and then by differentiating the above equation, we easily find that the
differential equation (1.4), that is

zH"(2)+ (a+ b+ 1)H'(2) + ab(@) =(a+1)(b+1) <@>
is equivalent to

(310)  $(P(2),2P'(2), 2 P"(2)) = (M - 5) e
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where

zp(r,s,t):r+[t+(a+b+3)s]<m).

If we let

Q:{’IUGC:RG’U}>W},

2(1+a)(1+0)
then, by (3.10), we note that the condition (1.23) is equivalent to

Y(P(2),2P'(2),2°P"(2)) € Q.

We now use it and apply Lemma 2.7 to conclude that Re P(z) > 0 in
A. For this, according to Lemma 2.7, see Equation (2.9), we need to
show that

(3.11) Y(iz,y,u+iv) ¢ Q

when z is real, y < —|e + iz|?>/(2cosn) and y +u < 0. For real
T, y,u,v such that y < —|e" + iz|?/(2cosn) and y + u < 0, we have

1
(a+1)(b+1)
(a+b+2)y
T (a+1)(b+1)
(a+b+2) [1+2zsingy+ x?
(a+1)(b+1) 2cosn
(a+b+2)

e

Rey(iz,y, u +iv) < [(u+y)+ (a+b+2)yl
(since a,b > —1)

which, by the definition of the choice of €2, shows that the condition
(3.11) holds. Therefore, by Lemma 2.7, we infer that the function P
defined by (3.10) satisfies Re P(z) > 0 in A. Thus we have,

rede(10 5)) o0 = mefon(PB) ),

where 47 is defined by (1.27). The second equivalent assertion, that is

feERH(61) = Hys(a,b;z) € Ry(9),
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follows upon replacing f by zf’ and from the fact that
zH}(a,b;2) = 2f'(2) * G(a,b; 2) = H.f:(a,b; 2).
This completes the proof. a
3.12. Proof of Theorem 1.28. For the sake of convenience, we assume
b= —a— 26 and H(z) = Hf(a,b;z). From Theorem 1.22 and the

condition on f, we see that the function H(z)/z does not vanish in the
unit disc A. Define

zH'(z) 1
(3.13) w0 = (- 8) s

Then p is analytic in A and p(0) = 1. Therefore, to show that the
function H is starlike of order 8, it suffices to prove that Rep(z) > 0
in A. We write (3.13) as

(3.14) zH'(z) = H(2)[8 + (1 = B)p(2)].

By differentiating (3.14) with respect to z and by an easy calculation,
we obtain

2H"(z2) = (

H(z)

)86 - DB+ (1 ) + 2/ 2)]

Using the above equation, (3.13) and (3.14), it is easy to see that the
differential equation (1.4) is equivalent to

z

(3.15) w@wwm¢@:a(ﬂﬁ>

where ¢ := ¢(r, s; z) is given by

inH(2) [(1=B)s+(1-B)*r’
P 1+ a)(l+0)
N (1—5)(26+a+b)r+ﬂ(a+b+1)—i—ab]
(I+a)(1+0) '

Yv=e

We remark that our case in this theorem concerns the situation when
a is real and b = —a — 2. Further, the condition on a and (3 of the
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hypotheses implies that the factor (1+ a)(1+ b) is positive. Therefore,
the function (r, s; z) simplifies to v (r, s; z), where

inH(2) [(1—B)s+ (1—B)*r* + B(1 —28) — a(2B + a)
z (1+a)(1—a—-2p) '

Let 61 be defined by (1.27), and set

Pi(r,s32) =e

Q={we C:Rew > § cosn}.

Suppose that f € R,(61), where 0, is defined by (1.27). Then, by
(3.15), we note that the condition f € R, (1) is equivalent to

Y1(p(z2), 2p'(2); 2) € Q

and therefore, from Theorem 1.22, we have

- Hy(a,b; 2
Re{emw} > §cosn, with §= 548 > 0.

Next we use this inequality and apply Lemma 2.7 to conclude that
Rep(z) > 0 in A. By Lemma 2.7, see Equation (2.9), we only need
to show that v, (iz,y; z) ¢ Q whenever z is real and y < —(1 + z2)/2.
Now, for real z and y, we have

- H 1
Re ) (iz,y;2) = Re (e”’ M(z,y),

(2)
z >(1+a)(1—a—25)

where
M(z,y) = (1 - B)y — (1 - B)*z* + B(1 - 28) — a(28 + a).
For real = and y < —(1 + z2)/2, we note that
M(z,y) < —%[462 + B(4a —3) +1+24% <0,

by (1.29). Using this inequality we deduce that for real z and y <

—(1+$2)/2,
S i H(2) [48% 4 B(4a — 3) + 1 4 24°
Relﬁl(zx,yaz)S—Re(@ > >[ 2(1+a)(1 —a—2p) }
462+6(4a3)+1+2a2]
21+ a)(1—a—25)

IN

Jcosn[

= §1 cos 7).



724 S. PONNUSAMY

The above inequality, by the definition of 2, shows that ¥ (iz, y; z) ¢ Q.
Therefore, by Lemma 2.7, we get that the function p defined by (3.5)
satisfies Re p(z) > 0in A which is equivalent to saying that the function
H¢(a, —a—2p; z) is starlike of order 3 and the conclusion follows. |

3.16. Proof of Theorem 1.30. Proof of this theorem follows the same
lines as the proof of Theorem 1.22 and so we just sketch it. Choose
a € C such that Rea > —1 and b = a. Let d; be defined by (1.31).
Consider P(z) exactly as in (3.9), where the function H(z) now takes
the form Hy(a, b;z) = Hf(a,a; 2). Then P is analytic in A, P(0) = e,
and it is easy to see that the condition (1.32) is equivalent to

W(P(2), 2P (2), 22P"(2)) € Q = {w € C:Rew > —% cosn}

where the function ¢(r, s,t) in our present notation takes the form

W, 5,8) =7 + {t—i—s—i—?(Rea—}-l)s]

1+ af?

Therefore, for all real x,y,u such that y < —|e?” + iz|*)/(2cosn) and
¥+ u < 0, we have

2(R 1
Rey(iz,y,u + iv) < W
~ 2(Rea+1) (cosn
- 1+ al? 2 )

that is, ¥ (iz, y,u+1iv) ¢ Q. Thus, by Lemma 2.7, we have Re P(z) >0
in A, or equivalently to

R%JW(M—&)} >0

and the conclusion follows. O

3.17. Proof of Theorem 1.34. Since the proof of this theorem follows
the same lines as the proof of Theorem 1.28, we include the necessary
details only. Let Rea > —1/2 satisfy the condition (1.35) and let p be
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exactly as in Theorem 1.28 with § = —Rea, and because b = a, in the
present case Hy(a,b;z) = Hy(a,a;z). Then, after some computation
and by the proof of Theorem 1.34, we see that the condition f € R,(d1)
is equivalent to

P(p(2),2p'(2);2) € Q= {w € C: Rew > §; cosn},
where §; is defined as in Theorem 1.34 and the function ¥ (r, s;z) in
this case is

in H¢(a,a;2)

P(r,s;2) =€ 1 +a? [(1+Rea)s + (1 + Rea)?r?

— (1+2Rea)Rea + |a|?].

We now use this relation and apply Lemma 2.7 to conclude that
Rep(z) > 0in A.

For real = and y such that y < —(1 + z2)/2, we find

1

N

- Hela.a:
Re(iz,y;2) < Re <em 7(a,a; z)>
z
where
N(z,y) = (1 +Rea)y — (1 + Rea)?z® — (1 4+ 2Re a)Rea + |a|*.

By Theorem 1.30, we deduce that

- Hela.a:
fERL(6H) = Re{emm}>
(3.18) *
2cosn

§cosn = ——2081
SN = S iRea

For real x and y such that y < —(1 + 2?2)/2, we note that
1
N(z,y) < -5 [4(Re a)?+3Re a+1— 2|a|2] <0,
by (1.35). Using this observation and the implication (3.18), we obtain

. 1 2cosn
R 2 < —
et (iz,y;2) < 1+ af? <5+4Rea

>[4(Re a)? +3Rea + 1 —2|al?]
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which, after some elementary computation, is seen to be equivalent to
Re(iz,y; z) < 1 cos7y.

In other words, for real z and y such that y < —(1 + z?)/2 we obtain
that ¥ (iz,y;z) € Q. Therefore, by Lemma 2.7, we have Rep(z) > 0
and hence the function Hy(a, @; 2) is starlike of order 8 with 8 = —Rea,
which completes the proof. u]

4. Concluding remarks. In this section we give a brief his-
tory of the problems which we shall state below. In [15] Krzyz and
Lewandowski constructed a counterexample to the Biernacki conjec-
ture that the Alexander transform Ay belongs to S for each f € S.
Therefore, it follows that the inclusion S ® L C S is not true. This
provides another counterexample to the Mandelbrojt-Schiffer conjec-
ture, namely S ® § C S. Previous counterexamples constructed in
[13, 7, 19] show that f ® g need not be locally univalent if f and g
are in §. In all these constructions, the corresponding functions have
complex coefficients. Bshouty [5] showed that f ® g need not be uni-
valent even if f and g are functions in S with real coefficients. This
answers the problem raised by Krzyz, see [2]. In [40], Ruscheweyh
illustrates that Mandelbrojt-Schiffer conjecture is incorrect, even in a
weaker form. However, if f € C then the Alexander transform Ay de-
fined by (1.15) belongs to C [22]. On the other hand, the author in [29,
30] determined conditions on § > 0 and 0 < v < 1 and proved that

Ref'(z) > -8 = A;yeS*(v).

The best possible value of § for the case ¥ = 0 has been obtained
recently in [9, Corollary 1]. We remark that the results of [29, 30] are
connected to R(3) and give applications to the theory of differential
subordination, see [28, 32, 36]. We observe that one can extend the
results of [28, 29, 30] to become applicable for R, (/) as was considered
in [9, Corollary 1] for the case when v = 0. We deal with this general
situation elsewhere which extends parts (b) and (c) of Corollary 1.17.
However, the correct order of starlikeness remains unknown. Thus we
raise the following

Problem 4.1. For a given 8 > [y ~ —0.629 and f € R,(B),
determine the correct order of starlikeness, as a function of 8 and a,
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for Bernardi transform

Bj(z) = <Z iiiz") x f(z), Rea>—1,

n=1

and in particular to the Alexzander transform Ay(z) of f defined by
(1.15).

Some of the recent results have been used to derive some new
information on convolution theory, see [30, 31, 1, 9, 34, 35, 36|,
and the results obtained in these papers, in particular, establish the
existence of a family of functions containing nonunivalent functions
which is transformed into S*(v) under certain integral transforms, in
particular to the Alexander transform (see Corollary 2.10). Some of
these observations give rise to the following question:

Problem 4.2. Define a modified integral convolution by

— by .,
f®pgzz+z » <
n=2

n

where p is a real number such that p > 0. The interesting problem is
to determine sup{p : S®,S C S}.

It is not difficult to find a p > 1 so that the modified integral
convolution is in & whenever f,g € S. Clearly SxS=85®pS ¢ S and
SRS =85®1S ¢ S. From the Pélya-Schoenberg conjecture proved in
[41], namely the inclusion §* ® §* C §*, we have

z

f®p(m> € 8* whenever f € S*,
or equivalently,

f®p<i> € K whenever f € K,

1—=2

forallp > 0. If p < 1, we see that S®,S ¢ S, otherwise it would violate
the de Branges theorem: f € S = |a,| < n. Lewis [18] showed that if
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each of f and g equals the convex function z/(1—z), then in this special
case f®pg € K for all p > 0. Again, the order of convexity (in terms of
p) for f®,g remains unknown even for the case f(z) = g(z) = z/(1-=z).
In general, it will be interesting to know the order of convexity for the
pth order polylogarithm functions defined in the introduction.

Next, we briefly give details for our next problem. For this, we first
note that the admissibility questions have not been considered for other
subclasses of functions unlike Corollary 2.10 stating the admissible
properties relating to the classes R, (3) and S*(y). In this respect,
it is interesting to mention the classical result of Frideman. According
to Frideman [10], there exist only nine functions of the class S whose
coefficients are rational integers. These are

z z z z

43 .
(43) P Ttz 122 (1£2)?2 1xz+22

It is easy to see from the analytic characterization for starlike functions
that each of these functions maps the disc A onto a starlike domain.
Furthermore, each of these functions plays an important role in function
theory since they together with rotations are extremal for well-known
sub families of S. We recall that if we set the starlike function g to be
the identity function z, then the class C,(8;g) coincides with R, (5).
The class R, (8) and its various generalizations have been well studied
in the recent years, see for details [1, 9, 34, 35, 31, 32, 36]. The
above reasoning motivates us to pose the following

Problem 4.4. Let 8 < 1 and f € C,(8;9g) where g(z) is given by
any of the nine functions described in (4.3). Find a condition on 8 < 1
so that C,(8;g) is S*-admissible, S*(y)-admissible, C(v)-admissible,
etc., with respect to the Hy(a, b; 2) and, in particular, to the Bernardi
operator defined by (1.6) which is the limiting case of H(a,b;z) as
b — oo.

A partial answer to Problem 4.4 is available in [35] only when g(z)
is the identity function.

Many authors have studied the appropriate minimum radii for the
operator By on various subclasses of S and the sharpness of the various
radii follow by using the standard extremal functions for the specific
subclasses, see the work of Barnard and Kellog [3]. Therefore, if
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Rea > —1 and Reb > —1, an interesting problem is to know the
interaction of f(z) and Hy(a,b; z) among the special classes and to
study the corresponding radii problems for the operator Hy(a, b; z).

Problem 4.5. Suppose that f € K(8), S*(8), C(B), respectively,
Rea > —1 and Reb > —1. Find the exact order of convexity, starlike-
ness, close-to-convexity, respectively, for the operator H¢(a,b; z).

When discussing the interaction between f(z) and Hj(a,b; 2) it is
natural to consider the Ruscheweyh’s convolution operator [39, 40]

defined by
5 —

By assuming M;(8) = {f € A : Re(D%*'f(t)/D°f(t)) > B,z € A},
Ruscheweyh proved among other results the inclusion M,,41(1/2) C
M,(1/2) for n € N U {0}, and the various generalizations of this
inclusion appear in the literature. The work in [39] motivates one to
look for the properties of Hy(a, b; z) in association with the class M;(3)
and, in particular, it will be interesting to consider the following

z

Problem 4.6. Suppose that f € Ms(8), where § > —1 and 8 < 1
are fixed real numbers. Determine the exact relationship between the
parameters a,b and 8’ such that Hy(a,b; z) € Ms(8').

Again we remark that the solution to Problems 4.5 and 4.6 are known
only for the limiting case b — oo, see [3, 11].

For convenience, we let C; = {f € A: Re [(1 - 2)f'(2)] > 0,z € A}
and we conclude the paper by listing the values of @ and b for which
the properties of G' and Hy are known:

(i) If Rea > —1 and Reb > —1, then G is convex in A but not
necessarily in R(1/2).
(ii) If ab < 2 and either a,b > —1, or a,b € (—2,—1), or a € C with
b =a, then G € Cy, see Theorems 1.10 and 1.13.
(iii) If ab < 2, ab(6+a+b) < 6 and either a,b > —1, or a,b € (-2, —1),
or a € C with b = @, then G belongs to S*NR(1/2) NCy, see Theorems
1.12 and 1.13.
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(iv) Define
M (a,b) = max{a®b*+3ab(a+b)+ab+6(a+b)*+30(a+b), —2ab(a+b+9)}.

If M(a,b) > —48 and either a,b > —1, or a,b € (—2,—1) hold, then
G € R(0), and more over f € K implies H¢(a,b; z) € R(0), see Lemma
2.22 and Theorem 1.20 (i).

(v) Suppose that a € C\{-1,-2,---}, |a| < 1/26/3 and M(a,a) >
—48. Then G(a,d;z) € R(0), and f € K implies H¢(a,a;z) € R(0),
see Lemma 2.22 and Theorem 1.20 (ii).

(vi)Ifa,b> -1, 8= —(a+b+2)/(2(1+a)(1+D)), and if f € R,(5)
then we have Hy(a,b; z) € R,(0), see Theorem 1.22.

(vii) If Rea > —1, then
feR,(—(1+Rea)/|l +al*) = Hy(a,a;z) € R,(0)

holds, see Theorem 1.30.

(viii) If @ € (=1,1), 8 = —(1 + 2a?)/(5(1 — a?)) and if f € R, (B)
then we have
Hy(a,—a;2) € Ry(2/5)NK,

see Theorem 1.28.

(ix) I a € (—1,2), B = 2/7—15/(14(1 + a)(2 —a)), and if f € R,(B)
then we have Hy(a,1—a;2) € R,(2/7)NK(-1/2) C R,(2/7)NC(1/2),
see Theorem 1.28.

Therefore, an open problem is to obtain the properties of G(a, b; 2)
and Hy(a,b; z) for other values of a and b for which nothing is known
in the literature.
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