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HIGHER ORDER FLATNESS
OF IMMERSED MANIFOLDS

JEFFREY LUTGEN

ABSTRACT. We prove that if a manifold M can be im-
mersed into Euclidean space of codimension one, then the rth-
order jet bundle Jet” (T'M) is flat for some r > 0. This is false
if the codimension is greater than one: we give an example of
a 4-manifold M* that immerses in R® but for which none of
the bundles Jet™ (M*) is flat.

1. Introduction. The purpose of this note is to point out
an interesting difference between manifolds that can be immersed in
Euclidean space of codimension one and those that cannot. We show
that manifolds that admit codimension one Euclidean immersions must
satisfy a “higher-order flatness” condition not necessarily satisfied by
other manifolds. The best way to describe this condition is in terms of
the Andreotti invariant, which is defined as follows. Let M = M™ be
a C' real manifold of dimension m. The Andreotti invariant A(M)
is the smallest nonnegative integer r (if one exists) such that the rth
order jet bundle

Jet" (M) := Jet"(TM)=TM ® S"(TM & 1),

where S” is the rth symmetric power operator, admits a flat structure
(i.e., admits an affine connection having curvature identically zero). If
no such r exists, then we put A(M) = co. The manifold M is said to
be rth-order flat if Jet" (M) is flat.

The Andreotti invariant and a similar invariant, the alpha invariant,
of manifolds of constant positive curvature have been studied exten-
sively using K-theory (see [1, 4, 7, 8]). These studies were motivated
by earlier work, [2, 3] of Fredricks on the relationship between partial
differential equations and higher-order differential geometry.
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Let us establish some notation and terminology. Let Vect(M™) be
the set of isomorphism classes of real vector bundles over M™. The
rank, or fiber dimension, of E € Vect(M™) is denoted by rk(E), and
[E] is the class of E in KO(M) (see [6] for the definitions of the various
K-rings). The trivial line bundle is denoted by 1, and for n > 1 the
trivial vector bundle of rank 7 is denoted by 1,,. An n-fold direct sum
E® --- @ F will be written as n - E. We say that E is in the stable
range if tk(E) > m. We can cancel in the stable range: if £y and E» are
in the stable range and F; ® E = E5® E for some F, then F; = Ej.
It will be convenient to let p(r,m) =tk S"(TM™ @& 1) = (™'"); then,
for example, rk Jet" (M) = mp(r,m). Of fundamental importance for
us is the fact that Jet” (M) is in the stable range if 7 > 1.

A vector bundle E is stably trivial if E® 1, is trivial for some n.
Similarly, if E® 1,, is flat for some n, then F is stably flat.

Flatness is preserved by the standard operations on vector bundles:
direct sums, tensor products, symmetric powers and pullbacks of flat
vector bundles are flat.

2. Codimension one. Much information about vector bundles on
a manifold M™ immersed in Euclidean space R™*! can be obtained by
studying vector bundles over real projective spaces; for our purposes,
the following result on the Andreotti invariant of RP™ will be sufficient:

Lemma [8, Theorem 3]. Let m > 1. Then A(RP™) = s, where s is
the smallest integer such that

(m + 1)p(s,m) > |[KO(RP™)|.
Moreover, Jet" (RP™) is flat for all r > s.
A well known result (see [6], for example) tells us that the order of
KO(RP™) is

{ 2[m/2l  ifm=6,7,8 mod 8,
2[m/2l+1  gtherwise,

from which it follows that A(RP™) is finite for all m and that
A(RP™) — 0o as m — 00.
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We wish to study A(M™) in the case where M™ can be immersed
into R™*1, If M is orientable, then the next theorem shows that M is
either flat or first-order flat.

Theorem 1. If M™ is orientable and can be immersed into R™*1,
then A(M) < 1.

Proof. Choose an immersion of M™ into R™T! and let V be the
normal line bundle of this immersion. Then TM @ V is trivial, because
TM @V is isomorphic to the restriction of T(R™*1) to the image of
M. Therefore V is itself orientable, but an orientable line bundle is
trivial. Hence,

Jet'(M)@ 11 = (TM @ (TM 1)) @ Ln
= (TM ®1lmi1) @ It
=(m+1)- (TMa1l)

= Lmy1)2,

so Jet' (M) is stably trivial. But Jet'(M) is in the stable range, so
Jet' (M) is trivial, hence flat. o

The result for nonorientable M is derived from the fact that the real
projective spaces are the classifying spaces for real line bundles:

Theorem 2. If M™ immerses in R™ 1, then

A(M) < max{1, A(RP™)}.

Proof. As in the preceding proof, TM &V = 1,11, where V is the
normal line bundle with respect to a chosen immersion. Choose a map
f: M™ — RP™ such that V = f*(L), where L is the canonical line
bundle over RP™.

We need to write [Jet”(M)] in terms of [V] and [1]. If E is any vector
bundle and F' is a line bundle, then

[S"(E)) =[S"(E®F)] - [S" " (E® F)] - [F],
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SO

[S"(TM ©1)] = [S"(Lnt2)] — [S" ' (Lms2)] - [V]
=p(r,m+ 1)[1] —p(r — 1,m+1)[V].

Since V@V =1, we get

[Jet”(M)] = [(TM &1)® S"(TM & 1)] — [S"(TM &1)]
= All] - B[V],

where

A=(m+ Dp(r,m+1)+p(r—1,m+1),
B=(m+1p(r—1,m+1)+p(r,m+1).

Let ¢ be the order of KO(RP™). Since f induces a ring homomorphism
in K-theory, it follows that ¢[V] = ¢[1]. Let s = max{1l, A(RP™)}.

In order to prove that Jet®(M) is flat, it suffices to find an integer a
such that

(%) {aEA mod ¢

0 < a <rkJet®(M) = mp(s,m).

Indeed, suppose a satisfies (x). Then, since c[V] = ¢[1], we can write
[Jet*(M)] = a[1] + b[V] = [(a-1) @ (b- V)]

with b = mp(s,m) —a > 0. Since Jet’(M) is in the stable range, it

follows that Jet®(M) is isomorphic to the flat vector bundle a-1®b- V.

If m < 7, then s = 1 and mp(s,m) > ¢, so (x) obviously has a solution
and A(M) < s. Henceforth, assume m > 7. Then A(RP™) > 1, so
s = A(RP™). Since (*) has a solution if mp(s,m) > ¢, it suffices by
the Lemma to consider

(%) mp(s,m) < ¢ < (m+ 1)p(s, m).
We now claim that a = A—cis a solution of (x). The second inequality

in (x+) implies A — ¢ > 0, so it remains to show that A — ¢ < mp(s, m).
It suffices by the first inequality in (xx) to show that A < 2mp(s,m).
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Straightforward manipulations show that this inequality is valid if and
only if s <m — 2.

But

(m+1)P(m—2,m)=(m+l)(m+1.m+2...m+(m_2)>

1 2 m—2

Z 4 - 2m—2 Z 2(m/2)+1 Z c,

so s < m — 2 by the Lemma. o

3. Higher codimension. Theorem 2 fails spectacularly if the
codimension of the immersion is greater than one:

Theorem 3. The connected sum of complex projective planes
M* = CP*#CP*#CP*#(-CP?

can be immersed in RS, and A(M*) = co. (The minus sign indicates
opposite orientation.)

Proof. The signature of CP? is 1, so M* has signature o(M?) =
3 —1 = 2, so by Thom’s signature formula for closed four-manifolds
[10],

p1(TM*) = 30(M*) = 6.
We prove in [7] that the rational Pontryagin classes of a manifold with

finite Andreotti invariant must vanish in positive degrees; it follows
that A(M*?) = oo.

A fundamental result of Hirsch [5] is that a smooth closed orientable
four-manifold N can be immersed in RS if and only if there exists
r € H?(N;Z) with

T2y = wz(T'N) and z? = —p(TN),

where z(y) is the reduction modulo 2 of z and wy; € H?(N;Zs) is the
second Stiefel-Whitney class.
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By Wu’s formula [9, p. 136] the second Stiefel-Whitney class of a
smooth closed connected oriented four-manifold N is characterized by
the property that wyx = 22 for all x € H%(N; Zz). From this it follows
that

wy(TM*) = (1,1,1,1) € H*(M*Zy) = Zo ® Zo ® Zy © Zy.
Put z = (1,1,1,3) € H*(M* Z). Then z(2) = wy(T'M*) and
P =124+174+12-32= -6 = —p, (TM?),
so M* can be immersed in RS, O
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