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A FURTHER APPLICATION OF
THE deLEEUW-GLICKSTEIN THEOREM

W.J. ANDERSON AND N. WARD-ANDERSON

ABSTRACT. The theorem of Ionescu Tulcea and Mari-
nescu, a generalization of the ergodic theorem of Doeblin and
Fortet, is derived as a result of the deLeeuw-Glicksberg decom-
position. This complements recent work of Sine which derives
asymptotic periodicity results for constricted Markov oper-
ators from the deLeeuw-Glickstein decomposition. A weak
form of the Ionescu Tulcea and Marinescu theorem is obtained
from the deLeeuw-Glickstein decomposition.

1. Introduction. A discrete time parameter Markov chain with
stationary transition probabilities and state space E is specified by a
transition function P (x, A) on E ×E , where E is a σ-algebra of subsets
of E; or equivalently, the Markov operator P associated with P (x, A)
on some suitable function space X. A large portion of the theory of
Markov chains deals with the asymptotic behavior of the iterates Pn

of P as n → ∞. Over the years, the accumulated evidence has been
that, under certain not unrealistic general conditions, the iterates Pnf
approach a finite dimensional space which is either independent of f or,
if not, dependent in an obvious way; we will refer to this as asymptotic
periodicity. Asymptotic periodicity has been demonstrated in one
form or another for distance-diminishing operators [3], quasicompact
operators [2 and others since], uniform mean stable operators [16, 8,
17], and lately constricted operators [12, 9, 10].

A technique which is emerging as a useful tool is the deLeeuw-
Glicksberg decomposition [1], which will be described now for future
reference. Let X be a real or complex Banach space, let X ′ be the
dual space, the continuous linear functionals on X, and let [X] denote
the set of all bounded linear operators T : X → X. In addition to the
strong, i.e., norm, topology of X, we shall also be interested in the weak
topology in X. When X is considered with its strong topology, we shall
consider [X] with the strong operator topology; when X is considered
with its weak topology, we shall take [X] to be equipped with the weak
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operator topology. With this convention, it will be unnecessary in this
section to specify whether we are dealing with the weak or strong case.
Let S be a semigroup in [X]. S is said to be almost periodic if, for
every x ∈ X, the orbit Sx = {Tx | T ∈ S} of x is relatively compact
in X. It can then be shown that S is a compact semigroup in [X] and
so contains a closed nonempty ideal K. K is a group, and if U denotes
the unit of K, then K = US. The deLeeuw-Glickstein decomposition
is then derived from the projection U .

Theorem 1.1 (deLeeuw-Glicksberg). Let S be an Abelian almost
periodic semigroup in [X], where X is a Banach space. Then X can be
written as the direct sum

X = Xfl ⊕ Xrev,

where
(1.1)
Xfl = {x ∈ X | 0 ∈ Sx} and Xrev = {x ∈ X | y ∈ Sx ⇒ x ∈ Sy}.

Members of Xfl are called flight vectors, and those of Xrev reversible.
We shall also require the following properties in the rest of the paper:
if T ∈ S, then

(1) TXfl ⊂ Xfl and TXrev ⊂ Xrev.

(2) The map T : Xrev → Xrev is surjective.

(3) There is a V ∈ K such that T = V on Xrev. Hence the restriction
of S to Xrev is a group.

Our interest from now on will focus on the case where S is the cyclic
semigroup S = {I, T, T 2, . . . } generated by a member T of [X]. In that
case, we say T is almost periodic if S is. The following remarks will be
useful in the next section.

(4) Suppose that supn≥0 ‖Tn‖ = J < ∞. Then every S ∈ S,
including U , has ‖S‖ ≤ J .

(5) If T is almost periodic in the strong sense, then ‖Tnx‖ → 0 as
n → ∞ for every x ∈ Xfl.

When X is a complex Banach space, one last important remark is in
order. x ∈ X is said to be a unimodular eigenvector of T if x 	= 0 and
if there is a λ ∈ C with |λ| = 1 such that Tx = λx. Then
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(6) Xrev in the deLeeuw-Glicksberg decomposition is the closure of
the subspace spanned by all unimodular eigenvectors of T .

The proof of this last remark, as well as an elegant development of
deLeeuw-Glickstein theory, can be found in [11, pp. 103–112].

Rosenblatt [14, 15], followed by Jamison and Sine [7] showed how the
deLeeuw-Glicksberg decomposition could be used to obtain asymptotic
periodicity for an almost periodic Markov operator. Sine [18], after
remarking that “This deLeeuw-Glicksberg decomposition is one of the
most useful results of algebraic analysis,” showed how the asymptotic
periodicity results for strongly constricted operators [12] and weakly
constricted operators [9] can be derived from the deLeeuw-Glicksberg
decomposition. The purpose of this paper is to show in Section 2 that
the theorem of Ionescu Tulcea and Marinescu [5], which is a Banach
space generalization of the Doeblin-Fortet theorem, can also be derived
from the strong form of the deLeeuw-Glicksberg decomposition. This
places the deLeeuw-Glickstein decomposition in a central role in the
asymptotic periodicity of Markov chains, very much like the role played
by the renewal theorem in classical Markov chain theory. Finally, in
Section 3, we show how the weak form of the deLeeuw-Glicksberg
decomposition can be used to derive a weak form of the theorem of
Ionescu Tulcea and Marinescu.

2. The theorem of Ionescu Tulcea and Marinescu. Let X
and Y be complex Banach spaces with norms ‖ · ‖X and ‖ · ‖Y , and
assume that X ⊂ Y . Note that we can also consider X as a normed
linear space with the norm ‖ · ‖Y inherited from Y . We shall assume
the following compatibility condition is satisfied:

Compatibility condition. If {xn, n ≥ 1} ⊂ X, supn≥1 ‖xn‖X = c <
∞, and limn→∞ ‖xn − x‖Y = 0 for some x ∈ Y , then x ∈ X and
‖x‖X ≤ c.

Let Lk(X, Y ) denote the set of all linear operators T : X → X such
that

(1) T is bounded with respect to both the norms ‖ · ‖X and ‖ · ‖Y .

(2) supn≥0 ‖Tn‖Y = H < ∞.

(3) There are constants r < 1 and R < ∞ such that ‖T kx‖X ≤
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r‖x‖X + R‖x‖Y for all x ∈ X.

Proposition 2.1. Suppose that T ∈ Lk(X, Y ). Then

(1) ‖T kmx‖X ≤ rm‖x‖X + R′‖x‖Y , m ≥ 1, x ∈ X, where R′ =
RH/(1 − r).

(2) supn≥0 ‖Tn‖X = J < ∞.

Proof. (1) It is an easy matter to show inductively that

‖T kmx‖X ≤ rm‖x‖X + R

m−1∑

i=0

ri‖T (m−1−i)kx‖Y .

The required inequality then follows from the fact that

m−1∑

i=0

ri‖T (m−1−i)kx‖Y ≤
∞∑

i=0

riH‖x‖Y = H‖x‖Y /(1 − r).

(2) Part (1), together with the principle of uniform boundedness,
implies that d

def= supm≥0 ‖T km‖X < ∞. Writing n = km + j,
we have ‖Tn‖X = ‖T kmT j‖X ≤ d‖T‖j

X , and so supn≥0 ‖Tn‖X ≤
d sup0≤j≤k−1{‖T‖j

X}.

Lemma 2.2. Suppose that k = 1 and that TA has compact closure
in (Y, ‖ · ‖Y ) whenever A is a bounded subset of (X, ‖ · ‖X). Let x ∈ X,
y ∈ Y , and suppose that {ni, i ≥ 1} is such that ‖Tnix − y‖Y → 0 as
i → ∞. Then y ∈ X and ‖Tnix − y‖X → 0 as i → ∞.

Proof. The compatibility condition implies that y ∈ X. Suppose that
Tnix does not converge to y; then there is a subsequence {nij

, j ≥ 1}
of {ni, i ≥ 1} and an ε > 0 such that ‖Tnij x − y‖X ≥ ε for all j ≥ 1.
Let m ≥ 1 be such that 2rm‖x‖XJ < ε/2, and let j∗ be such that
nij

> m for all j ≥ j∗. Because of part (2) of Proposition 2.1, the set
A = {Tnij

−m−1x | j ≥ j∗} is bounded in ‖ · ‖X and so TA is relatively
compact in (Y, ‖·‖Y ). Hence there is a subsequence {nijk

, k ≥ 1} and a
w ∈ Y such that ‖Tnijk

−m
x−w‖Y → 0 as k → ∞. By the compatibility
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condition, we have w ∈ X. Also, we have T
nijk x

s→ Tmw in (Y, ‖ · ‖Y )
as k → ∞, and so Tmw = y. By part (1) of Proposition 2.1,

‖Tnijk x − y‖X = ‖Tm(Tnijk
−m

x − w)‖X

≤ rm‖Tnijk
−m

x − w‖X + R′‖Tnijk
−m

x − w‖Y

≤ 2rm‖x‖XJ + R′‖Tnijk
−m

x − w‖Y

≤ ε/2 + R′‖Tnijk
−m

x − w‖Y ,

and letting k → ∞ gives

lim sup
k→∞

‖Tnijk x − y‖X ≤ ε/2,

a contradiction.

Theorem 2.3 (Ionescu Tulcea and Marinescu [5]). Suppose
there is an integer k ≥ 1 such that T ∈ Lk(X, Y ) and T kA has compact
closure in (Y, ‖ · ‖Y ) whenever A is a bounded subset of (X, ‖ · ‖X).
Then

(1) the set G of eigenvalues of T of modulus 1 is finite, and if λ ∈ G,
the eigenspace D(λ) = {x ∈ X | Tx = λx} is finite dimensional.

(2) for each n ≥ 1, we have the representation

(2.1) Tn =
∑

λ∈G

λnTλ + V n,

where Tλ : X → X, λ ∈ G are compact operators such that

(a) ‖Tλ‖X < ∞ for each λ ∈ G,

(b) T 2
λ = Tλ for all λ ∈ G and TλTλ′ = 0 if λ, λ′ ∈ G with λ 	= λ′,

and where the operator V satisfies ‖V ‖X < ∞ and V Tλ = TλV = 0 for
all λ ∈ G.

(3) ‖Tn − ∑
λ∈G λnTλ‖X → 0 as n → ∞.

(4) T : (X, ‖ · ‖X) → (X, ‖ · ‖X) is quasi-compact.

Note. An operator T : X → X on a Banach space X is quasi-
compact if there is a sequence {Tn, n ≥ 1} of compact operators on X
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such that ‖Tn − Tn‖ → 0 as n → ∞. It can be shown [13, p. 180] that
T is quasi-compact if and only if there is an n0 ≥ 1 and a compact
operator T ′ such that ‖Tn0 − T ′‖ < 1.

Proof. First we will show that T is almost periodic as an operator
on X, so that the deLeeuw-Glickstein decomposition applies. Let us
assume first that k = 1. Let x ∈ X, and consider the sequence
A = {Tnx, n ≥ 0}. A is bounded in (X, ‖ · ‖X), and so TA is relatively
compact in (Y, ‖ · ‖Y ). Hence there is an {ni, i ≥ 1} and a y ∈ Y such
that ‖Tnix − y‖Y → 0 as i → ∞. By the lemma, we have y ∈ X and
‖Tnix−y‖X → 0 as i → ∞. Hence {Tnx, n ≥ 0} is relatively compact,
so T is almost periodic. If k > 1, the above proof shows that T k is
almost periodic, which obviously implies that T is almost periodic.

We therefore have a deLeeuw-Glickstein decomposition X = Xfl ⊕
Xrev of X. Let U denote the deLeeuw-Glickstein projection. Note that
‖U‖X ≤ J by Remark 4 of Section 1.

(1) Because of Remark 6, it will suffice to show that Xrev is finite
dimensional, and for this, that the unit ball in Xrev is compact. By
Remarks 3 and 4 of Section 1, the restriction of S to Xrev is a group
whose members are bounded in norm by J . It follows that

(2.2) ‖T−nx‖X ≤ J‖x‖X , n ≥ 0, x ∈ Xrev,

and from the inequality in part (1) of Proposition 2.1, we get

‖x‖X = ‖T−kmT kmx‖X ≤ J‖T kmx‖X ≤ Jrm‖x‖X + JR′‖x‖Y ,

m ≥ 1, x ∈ Xrev.

Letting m → ∞ shows that

(2.3) ‖x‖X ≤ JR′‖x‖Y , x ∈ Xrev.

Combining (2.2) and (2.3), we have

(2.4) ‖x‖X = ‖T−kT kx‖X ≤ J‖T kx‖X ≤ J2R′‖T kx‖Y , x ∈ Xrev.

Now suppose that {xn, n ≥ 1} ⊂ B(Xrev)X (the closed unit ball in
Xrev in the ‖ · ‖X -norm). By the compactness condition, there is a
subsequence {ni, i ≥ 1} such that {T kxni

, i ≥ 1} converges in ‖ · ‖Y .
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{T kxni
, i ≥ 1} is therefore a Cauchy sequence in ‖ · ‖Y . From (2.4),

we have ‖xni
− xnj

‖X ≤ J2R′‖T kxni
− T kxnj

‖Y → 0 as i, j → ∞.
Hence {xni

, i ≥ 1} is a Cauchy sequence in the norm ‖ · ‖X and, since
(X, ‖ · ‖X) is complete and Xrev is closed in it, converges to a point in
Xrev.

(2) From part (1), Xrev is finite-dimensional. Since T maps Xrev

into itself, the restriction Trev of T to Xrev is well defined, and it is
easy to verify that σ(Trev), the set of eigenvalues of Trev, coincides with
G. Hence, we can use Proposition 4.1 of the Appendix to obtain the
spectral representation

Tn
rev =

∑

λ∈G

λnE(λ), n ≥ 0,

of Trev, where the projection operators E(λ), λ ∈ G, have the properties
specified there. By multiplying both sides from the right by U , using
the fact that TrevU = TU (and therefore Tn

revU = TnU), and setting
Tλ = E(λ)U for λ ∈ G, we get

TnU =
∑

λ∈G

λnTλ, n ≥ 0.

Each Tλ is a compact operator since it has a finite dimensional range.
Moreover, we have

(a) ‖Tλ‖X ≤ ‖E(λ)‖X‖U‖X < ∞,

(b) T 2
λ = E(λ)UE(λ)U = E(λ)2U = E(λ)U = Tλ and TλTλ′ =

E(λ)UE(λ′)U = E(λ)E(λ′)U = 0 if λ 	= λ′ (since UE(λ) = E(λ) on
Xrev),

as required. Define

V = T − TU = T −
∑

λ∈G

λTλ,

so that (2.1) holds for n = 1. Then

V Tλ = TTλ −
∑

λ′∈G

λ′Tλ′Tλ = TTλ − λT 2
λ

= TTλ − λTλ = (T − λI)Tλ

= (T − λI)E(λ)U = 0,



54 W.J. ANDERSON AND N. WARD-ANDERSON

and similarly TλV = 0. Next, since U is a projection, then (I −U)n =
I−U for any n ≥ 0; since U and T commute, then V n = [T (I−U)]n =
Tn(I−U)n = Tn(I−U) = Tn−TnU for all n ≥ 0, thus verifying (2.1)
for all n ≥ 1.

(3) First note that, since V k = T k(I − U), then V satisfies the same
compactness condition that T does. Also, from Remark (5), we have
‖V nx‖X → 0 as n → ∞ for all x ∈ X. We will need these facts in the
argument to follow.

We are to prove that ‖V n‖X → 0. It suffices to show that there
is an n ≥ 1 such that ‖V kn‖X < 1. Suppose there is no such n.
Then for every n, we can find xn ∈ X such that ‖xn‖X = 1 and
‖V knxn‖X ≥ ε > 0. By the compactness condition, there is an x ∈ Y
and a subsequence {ni, i ≥ 1} such that ‖V kxni

− x‖Y → 0 as i → ∞.
By the compatibility condition, we have x ∈ X also. Then

‖V kmxni
− V k(m−1)x‖X = ‖V k(m−1)(V kxni

− x)‖X

= ‖T k(m−1)[I − U ](V kxni
− x)‖X

≤ ‖I − U‖X‖T k(m−1)(V kxni
− x)‖X

≤ ‖I − U‖X [rm−1‖V kxni
− x‖X

+ R′‖V kxni
− x‖Y ] −→ 0

as m, i → ∞. In particular, we have ‖V knixni
− V k(ni−1)x‖X → 0 as

i → ∞, and then

‖V knixni
‖X ≤ ‖V knixni

− V k(ni−1)x‖X + ‖V k(ni−1)x‖X −→ 0

as i → ∞, contradicting the choice of the xn’s.

(4) Since each Tλ is a compact operator, then so is
∑

λ∈G λnTλ for
each n. There is an n large enough that ‖Tn − ∑

λ∈G λnTλ‖X =
‖V n‖X < 1 so that T is quasi-compact by the note preceding this
proof.

For an appreciation of the theorem of Ionescu Tulcea and Marinescu,
see Iosifescu [6]. Therein, it is pointed out that applications of the
ITM theorem go beyond the Doeblin-Fortet theorem, which will now
be stated for completeness.
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Application. The Doeblin-Fortet theorem. Let (E, d) be a compact
metric space. Let C(E) be the set of all continuous f : E → C, and
define ‖f‖ = supy∈E |f(y)| for f ∈ C(E). If f ∈ C(E), define

s(f) = sup
y1,y2∈E
y1 �=y2

f(y1) − f(y2)
d(y1, y2)

,

and let L(E) = {f ∈ C(E) | s(f) < ∞} be the set of all Lipschitz
continuous functions on E. If f ∈ L(E), we define ‖f‖L = ‖f‖ + s(f).
We are going to apply the Ionescu Tulcea and Marinescu theorem with
X = (L(E), ‖ · ‖L) and Y = (C(E), ‖ · ‖). It is easily shown that the
compatibility condition holds.

Theorem 2.4 (Doeblin-Fortet). Let T : L(E) → L(E) be a linear
operator satisfying

(1) ‖Tf‖ ≤ ‖f‖ for all f ∈ L(E),

(2) there exist r, R > 0 with r < 1 such that ‖Tf‖L ≤ r‖f‖L +R‖f‖,
f ∈ L(E). Then

(a) the set G of eigenvalues of T of modulus 1 is finite, and if λ ∈ G,
the eigenspace D(λ) = {x ∈ X | Tx = λx} is finite dimensional.

(b) For each n ≥ 1, we have the representation

Tn =
∑

λ∈G

λnTλ + V n,

where Tλ : L(E) → L(E), λ ∈ G are compact operators such that

(i) ‖Tλ‖L < ∞ for each λ ∈ G,

(ii) T 2
λ = Tλ for all λ ∈ G and TλTλ′ = 0 if λ, λ′ ∈ G with λ 	= λ′,

and where the operator V satisfies ‖V ‖L < ∞ and V Tλ = TλV = 0 for
all λ ∈ G.

(iii) ‖Tn − ∑
λ∈G λnTλ‖L → 0 as n → ∞.

Proof. There are just three small details to take care of. First, since
‖f‖ ≤ ‖f‖L for every f ∈ L(E), then

‖Tf‖L ≤ r‖f‖L + R‖f‖ ≤ (r + R)‖f‖L, f ∈ L(E),
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and therefore ‖T‖L < ∞. Secondly, the H in condition (2) of the
definition of Lk(X, Y ) in this case is 1. Lastly, if A is a bounded
subset of (L(E), ‖ · ‖L), then so is TA. But a bounded subset of
(L(E), ‖ · ‖L) is bounded (since ‖f‖ ≤ ‖f‖L) and equicontinuous in
(C(E), ‖ · ‖), and therefore (by the Ascoli-Arzelà theorem) relatively
compact in (C(E), ‖ · ‖).

3. A weak form of the theorem of Ionescu Tulcea and
Marinescu. Assume the same conditions as in Section 2, except that
(3) in the definition of Lk(X, Y ) is replaced by (3′); there is an R < ∞
and for each x′ ∈ X ′ an rx′ < 1 such that

(3.1) |x′(T kx)| ≤ rx′ |x′(x)| + R‖x‖Y , x ∈ X.

Then, just as in part (1) of Proposition 2.1, we find that there is an
R′ < ∞ such that

(3.2) |x′(T kmx)| ≤ rm
x′ |x′(x)| + R′‖x‖Y , x′ ∈ X ′, x ∈ X, m ≥ 1.

By taking the supremum over all x′ ∈ X ′ with ‖x′‖X′ ≤ 1, we find that
‖T kmx‖X ≤ ‖x‖X + R′‖x‖Y for all x ∈ X and m ≥ 1, and hence that
part (2) of Proposition 2.1 also holds as is.

Lemma 3.1. Suppose that k = 1, that x ∈ X, y ∈ Y and that
Tnix

s→ y in (Y, ‖ · ‖Y ) as i → ∞. Then y ∈ X and Tnix
w→ y in

(X, ‖ · ‖X) as i → ∞.

Proof. The compatibility condition implies that y ∈ X. Suppose
that Tnix does not converge weakly to y; then there is an x′ ∈ X ′, a
subsequence {nij

, j ≥ 1}, and an ε > 0 such that |x′(Tnij x − y)| ≥ ε
for all j ≥ 1. Let m ≥ 1 be such that 2rm

x′‖x′‖X′J < ε/2, and let j∗

be such that nij
> m for all j ≥ j∗. The set A = {Tnij

−m−1x|j ≥ j∗}
is bounded in ‖ · ‖X and so TA is relatively compact in (Y, ‖ · ‖Y ).
Hence there is a subsequence {nijk

, k ≥ 1} and a w ∈ Y such that
‖Tnijk

−m
x − w‖Y → 0 as k → ∞. By the compatibility condition, we

have w ∈ X. Also, we have T
nijk x

s→ Tmw in (Y, ‖ · ‖Y ) as k → ∞,
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and so Tmw = y. By (3.1),

|x′(Tnijk x − y)| = |x′[Tm(Tnijk
−m

x − w)]|
≤ rm

x′ |x′(Tnijk
−m

x − w)|
+ R′‖Tnijk

−m
x − w‖Y

≤ 2rm
x′‖x′‖X′J + R′‖Tnijk

−m
x − w‖Y

≤ ε/2 + R′‖Tnijk
−m

x − w‖Y ,

and letting k → ∞ gives

lim sup
k→∞

|x′(Tnijk x − y)| ≤ ε/2,

a contradiction.

In the following theorem, we obtain weak versions of some of the
parts of Theorem 2.3.

Theorem 3.2. There exists a weak deLeeuw-Glickstein decomposi-
tion X = Xfl ⊕ Xrev, where Xrev is weakly compact in (X, ‖ · ‖), and
therefore reflexive. If, moreover, ‖T‖Y ≤ 1, then Tnx

w→ 0 in (X, ‖·‖X)
for every x ∈ Xfl.

Proof. First we will show that T is weakly almost periodic as an
operator on X, so that the deLeeuw-Glickstein decomposition applies.
Let us assume first that k = 1. Let x ∈ X, and consider the sequence
A = {Tnx, n ≥ 0}. A is bounded in (X, ‖ · ‖X) because of part (2) of
Proposition 2.1, and so TA is relatively compact in (Y, ‖ · ‖Y ). Hence
there is an {ni, i ≥ 1} and a y ∈ Y such that ‖Tnix − y‖Y → 0
as i → ∞. By the lemma, we have y ∈ X and Tnix

w→ y. Hence,
{Tnx, n ≥ 0} is weakly relatively compact, and so T is weakly almost
periodic. If k > 1, the above proof shows that T k is weakly almost
periodic, which obviously implies that T is weakly almost periodic. We
therefore have a deLeeuw-Glickstein decomposition X = Xfl ⊕ Xrev of
X.

Next we will show that the unit ball (Xrev)X
1 in Xrev is weakly

compact, which will imply that Xrev is reflexive. Recall that the
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restriction of S to Xrev is a group whose members are bounded in norm
by J . Let {xn, n ≥ 0} ⊂ (Xrev)X

1 . Since {T−kxn, n ≥ 1} is bounded in
(X, ‖ · ‖X), there is a sequence {n0

i , i ≥ 1} ⊂ Z+ such that {xn0
i
, i ≥ 1}

converges in (Y, ‖ · ‖Y ). By the same token, since {T 2kxn0
i
, i ≥ 1} is

bounded in (X, ‖ ·‖X), there is a subsequence {n1
i , i ≥ 1} of {n0

i , i ≥ 1}
such that {T−kxn1

i
, i ≥ 1} converges in (Y, ‖ · ‖Y ). Repeating this

procedure, and using the diagonalization argument, one can find a
sequence {nd

i , i ≥ 1} such that {T−kmxnd
i
, i ≥ 1} converges in (Y, ‖·‖Y ),

say to ym, for every m ≥ 0. By the compatibility condition, ym ∈ X
for every m. It is easy to see that T kmym is independent of m; let
z = T kmym ∈ X. Now let x′ ∈ X ′, and let ε > 0. Let m be such that
2rm

x′‖x′‖X′J < ε; then

|x′(xnd
i
) − x′(z)| = |x′[T km(T−kmxnd

i
− ym)]

≤ rm
x′ |x′(T−kmxnd

i
− ym)|

+ R′|(T−kmxnd
i
− ym)‖Y

≤ ε + R′|(T−kmxnd
i
− ym)‖Y ,

from which we find that |x′(xnd
i
)−x′(z)| → 0 as i → ∞. Hence xnd

i

w→ z
as i → ∞, so Xrev is weakly compact.

Finally, assume that ‖T‖Y ≤ 1, and let x ∈ Xfl. Then there is
an {ni, i ≥ 1} such that Tnix

w→ 0 in (X, ‖ · ‖X). The sequence
{Tnix, i ≥ 1} is bounded in (X, ‖ · ‖X), so there is a subsequence
{nij

, j ≥ 1} and y ∈ Y such that Tnij x
s→ y in (Y, ‖ · ‖Y ) as j → ∞.

By the lemma we must have y = 0, so ‖Tnij x‖Y → 0 as j → ∞.
Finally, since ‖T‖Y ≤ 1, we obtain ‖Tnx‖Y → 0, so again by the
lemma, we get Tnx

w→ 0 in (X, ‖ · ‖X).

Appendix

A proof of the following can be found in Dunford and Schwartz [4,
pp. 556 559].

Proposition 4.1. Let T be a linear operator on a finite-dimensional
vector space X. Let σ(T ) = {λ1, . . . , λr} denote the spectrum of T ,
i.e., the set of eigenvalues of T . For any i ≥ 1 and λ ∈ σ(T ), let
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N i
λ = ker[(T − λI)i]. Finally, let ν(λ) be the index of λ; that is, the

smallest value of i such that N i
λ = N i+1

λ . Then X can be written

X = N ν(λ1)
λ1

⊕ · · · ⊕ N ν(λr)
λr

.

For any λ ∈ σ(T ), let E(λ) denote the projection of X onto N ν(λ)
λ .

Then the operators E(λ), λ ∈ σ(T ) on X satisfy

(1) E(λ)2 = E(λ) for all λ ∈ σ(T ) and E(λ)E(λ′) = 0 for all
λ, λ′ ∈ σ(T ) such that λ 	= λ′.

(2)
∑

λ∈σ(T ) E(λ) = I, the identity mapping.

(3)
∑

λ∈σ(T ) λnE(λ) = Tn, n ≥ 0.
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