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ON BOUNDED VECTOR FIELDS

ANNA CIMA, FRANCESC MANOSAS AND JORDI VILLADELPRAT

ABSTRACT. We introduce the notion of a strongly bounded
vector field, which is closely related to the usual notion of
a bounded vector field, and we prove that any C! strongly
bounded vector field in r™ with finitely many critical points
satisfies that the sum of the indices of the vector field at these
critical points is equal to (—1)™. In the planar case we im-
prove this result since we prove it for C! bounded vector fields.
Moreover, when n > 3, we present examples of C*° bounded
vector fields in r™, being obviously not strongly bounded, not
satisfying that the sum of the indices at the critical points is

(-1)".

1. Introduction. Let X : U — R™ be a C! vector field where
U is an open set of R™, and let £ = X (z) be the differential system
associated to X. Consider ¢(z,t), the integral curve of X such that
¢o(x,0) = z, and let I, be its maximal interval of definition. We say
that X is a bounded wvector field if for each x € U there exists some
compact set K C U such that ¢(z,t) € K for all ¢t € I, N (0, +00).

It is a well-known fact, see [10], that if X is a bounded vector field,
then the integral curve of any point is defined for all positive time and
that the w-limit of any point z, w(x), is not empty and compact.

Bounded vector fields are interesting from the theoretical and prac-
tical point of view. Thus we can mention, for instance, previous ap-
proaches in [2, 3] and [7]. Given a vector field, it may be very difficult
to know if it is bounded or not. In this setting it is interesting to give
necessary and sufficient conditions in order to assure that a vector field
is bounded. The goal of this paper is to generalize, as far as possible, a
property which is satisfied by certain families of bounded vector fields.
This property takes into account the index of the vector field at its
critical points.

In what follows we will say that X is a strongly bounded vector field
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if it is a bounded vector field and the set

wR") = (J wlo)

zeR™

is bounded. Considering, for example, a planar global center, notice
that a bounded vector field may not be strongly bounded.

Let ¢ € R™ be an isolated critical point of X. Then the function
X (u)/]|X (u)|| maps a small sphere centered at g into the unit (n — 1)-
sphere. The topological degree of this mapping is called the indez of
X at q and it is denoted by ix(q).

Our main results, proved in Sections 2 and 3, respectively, are the
following theorems:

Theorem A. Let X : R™ — R™ be a C! strongly bounded vector field
with finitely many critical points py,p2,... ,pr. Then

ZiX(pj) =(-"

Theorem B. Let X : R? — R? be a C' bounded vector field having
finitely many critical points p1,p2, ... ,pk- Then

k
ZiX(pj) =1

The conclusion of Theorem A is proved in [2] for a family of bounded
polynomial vector fields satisfying an algebraic condition, see Theo-
rem 11 in Section 4 for more details. In [2] the authors use completely
different tools than the ones here since they compactify the polynomial
vector field, and this is not possible in the C' case. In Section 4 we
give a dynamical consequence of this required condition and a different
proof of their result. In the same paper they also prove Theorem B for
bounded polynomial vector fields.
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Lastly we show that the condition in Theorem A that requires X to be
a strongly bounded vector field cannot be relaxed when n > 3. To this
end, we give in Section 5 an example of a bounded vector field, being
obviously not strongly bounded, that does not satisfy the conclusion of
Theorem A. In brief, we construct a C* bounded vector field X in R®
that has finitely many critical points and that satisfies that the sum
of the indices of X at all its critical points is equal to zero. In fact,
by using an idea of Erle, see [4], given any integer k it is possible to
construct a C*° bounded vector field in R™, n > 4, in such a way that
the sum of the indices of its critical points is equal to k. When n = 3,
there are only examples with £ > —1.

In what follows, the closure, interior, boundary and complement of
S C R" are written S, Int .S, 05 and S¢, respectively. For any r > 0
and any ¢ € R", the set {x € R" : ||z — ¢|| < r} will be denoted by
B:(q).

2. Strongly bounded vector fields. In order to prove Theorem A
we need some previous results. The first one is obvious but it will be
used frequently.

Lemma 1. Let X : R® — R" be a C* strongly bounded vector field.
Let r > 0 be such that B.(0) D w(R™). Then, for each x € R", there
exists T(x) > 0 such that p(x,7(x)) € B.(0).

Proof. Assume it is false for 7 > 0. Then there is an Z € R"™ such
that ¢(Z,t) ¢ Br(0) for all t > 0. Since X is a bounded vector field,
there exists a compact set K such that ¢(Z,t) € K for all t > 0. Then,
since K\ Br(0) is a compact set and ¢(Z,t) € K\Bz(0) for all ¢t > 0,
the w-limit set of Z, w(Z), is not in B7(0). But this is a contradiction
because w(R™) C Bx(0). O

The following result and Lemma 1 show that, for a strongly bounded
vector field, the positive trajectory of any bounded set is a bounded
set.

Lemma 2. Let X : R® — R" be a C! vector field. Assume that
r > 0 is such that, for all z € R", there exists T(x) > 0 such that
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o(xz,7(z)) € Br(0). Then there exists R > r such that, if v € B,(0),
then ¢(z,t) € Br(0) for all t > 0.

Proof. Tt is clear that it is enough to prove it for all z € 9B,.(0). For
each z € 0B,.(0), define

T(z) =inf{t > 0: p(z,t) € B.(0)}.

Then T(z) > 0, ¢(z,T(x)) € 0B,(0) and p(z,t) ¢ B,(0) for all
t € [0,7(z)]. Define d(z) = sup{[lp(z,?)|| : 0 < ¢t < T(x)}. Then
d(z) = ||¢(z,t(z))| with t(z) € [0,T(z)] and r» < d(z) < oo for all
x € 0B,(0). Define R = sup{d(z) : z € 0B,(0)}.

In order to finish the proof we have to show that R < co. Suppose
that R = co. Then there exists a sequence (z, )neN, with z,, € 0B,.(0),
such that d(z,) — oo as n — co. Since B, (0) is a compact set, there
exists (zn, ) and yo € 0B,(0) such that z,, — yo as k — oo (and also
d(zy, ) = 0o as k — 00). Notice that d(yg) < oo. From (1), there exists
t > T(yo) such that p(yo,t) € B,.(0) for all t € (T'(yo),t]. Now let € > 0
be such that B.(¢(yo,%)) C B,(0). Due to continuity with respect to
initial conditions, there exists § > 0 such that if x € Bj(yg), then
lo(z,t) — @(yo,t)|| < € for all ¢ € [0,%]. It follows that if = € Bs(yo),
then o(z,f) € B,(0). So if z € (0B,.(0)) N Bs(yo), then T(z) < t.
Therefore, if d(z) = |¢(x,f(x))||, then #(z) < t. It follows that, if
z € (0B,(0)) N Bs(yo), then d(xz) < d(yo) + ¢. Due to x,, — yo as
k — oo, there exists ko such that z,, € Bs(yo) for all k£ > k. Then
d(zn,) < d(yo) + € for all k > ko. But this is a contradiction to the

fact that d(z,,) — oo as k — oo. O

Proposition 3. Let X : R® — R" be a C! strongly bounded vector
field. Then, for each r > 0 such that B,(0) D w(R"), there exists a
bounded positively invariant set M with B,.(0) C M.

Proof. Let r > 0 be such that B,(0) contains w(R"™). We define
M= |J {e(t),t>0}
z€B,(0)

Then B,(0) C M by construction and, due to Lemmas 1 and 2, M is
bounded. On the other hand, that M is a positively invariant set is
obvious because it is the union of positive semi-paths. ]



ON BOUNDED VECTOR FIELDS 477

When n = 2, the set M can be constructed in such a way that it is
possible to describe it completely. In fact, it is not difficult to prove
the following result:

Let X be a C' bounded planar vector field having all its critical points
in a compact set. Then, for any r > 0 such that B,(0) contains
all the critical points of X, there exists a C* Jordan curve -y, with
B,.(0) C Int~, such that M = Int~y is positively invariant.

Then Theorem B would easily follow from this result, see for instance
[1], but, since the construction of such a Jordan curve is quite tedious,
we will prove Theorem B using different techniques in Section 3.

Proposition 4. Let X : R® — R be a C' strongly bounded vector
field. Then there exists an r > 0 with w(R™) C B,.(0) such that, if
R > r, then there exists T = T(R) > 0 such that p(z,T) € B,.(0) for
all x € 0BR(0).

Proof. Let 7 > 0 be such that Bz(0) O w(R™). By Proposition 3,
let M be a bounded positively invariant set with Bz(0) C M. Choose
any r > 0 such that M C B,(0) and any R > r. Given z € 0Br(0),
by Lemma 1 there exists 7(z) > 0 such that ¢(z,7(x)) € B#(0). Let
gz > 0 be such that B (¢(z,7(x))) C Br(0), and let ; > 0 be such
that, if y € Bs_ (), then ¢(y,7(x)) € Be,(p(z,7(x))). Since 0Bg(0) is

compact, there exist x1, 2, ... ,2r € 0Bg(0) such that
k
0Br(0) C | ] Bs,, (x:).
i=1

Define T' = max{7(x;);7 = 1,2,...,k}. Since Bz(0) C M C B,(0)
and M is positively invariant, it follows that ¢(z,T) € B,.(0) for all
x € 0Bg(0). Hence, Proposition 4 is proved. O

In order to prove Theorem A we need another definition and two
technical results:

Let M be a compact manifold with boundary M, and let X be a
continuous tangent vector field on M vanishing nowhere on @M. The
topological index of X, see [5] or [6], I(X), is an integer such that if X
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has finitely many critical points p1, po,... ,pk, then
k
I(X) = ix(p))-
j=1

In this context we can state the following well-known result, see [6]
or [8].

Lemma 5. Let X and Y be continuous tangent vector fields on a
compact manifold M vanishing nowhere on OM. Assume that X and
Y are homotopic on the boundary OM, that is, there is an H, with
s € [0,1], a continuous family of tangent vector fields on M, such that
Hy=X, H =Y and Hs(z) # 0 for all x € OM and for all s € [0,1].
Then I(X) =I(Y).

Lemma 6. Let X be a continuous vector field on B,.(0) C R"”
vanishing nowhere on 0B,.(0) such that there does not exist x € 0B, (0)

with X (z) pointing in the outward normal direction to 0B, (0). Then
I(X) = (=1)".

Proof. We define Hy(z) = (1 — s)X(z) — sz, s € [0,1], a family
of continuous vector fields on B,(0). Since there does not exist any
z € 0B,(0) such that X (z) points in the outward normal direction to
0B,.(0) it is easy to see that H, is a continuous homotopy on 9B,.(0)
between Hy = X and Hy = —Id. Then I(X) = I(—Id) from Lemma 5.
Since —Id has z = 0 as a unique critical point and i_r4(0) = (-1)",
the result follows. o

Proof of Theorem A. Let r > 0 with w(R™) C B,(0) be defined in
Proposition 4. Let R > r and T' > 0 be such that ¢(z,T) € B,(0) for
all z € 0BR(0). Define H, with s € [0,T], a family of vector fields on
Bpr(0) to be
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Then

= X(ple,1)|_ = X(@).

We claim that 0 ¢ H,(0Bgr(0)) for all s € [0,T]. This is obvious when
s = 0 since Hyo(z) = X(z) and X has no critical points on 0Bg(0).
Assume now that there exists some Z € dBgr(0) and 5 € (0,7 such
that Hs(z) = 0. It follows then that ¢(z,5) = Z for § # 0. Hence, Z
belongs to a periodic orbit. But this is impossible since w(R"™) C B,.(0)
and R > r. Thus the claim is proved.

Therefore we have shown that Hy = X |m and Hyp are homotopic
on dBg(0).

Now consider Hr. Since ¢(z,T) € B,(0) for all z € 0Bg(0) and
r < R, it follows that

oz, T)—z

HT(CL') = T

never points in the outward normal direction to dBg(0) for any = €
0Bgr(0). Then, by Lemmas 5 and 6,

k
Y ix(py) = I(X|g5) = I(Hr) = (-1)",
j=1
and Theorem A follows. O

As in Section 1, we can define a concept of boundedness taking into
account now the negative semi-orbits of the trajectories defined by the
vector field X. Thus, denoting by I, the maximal interval of definition
of the integral curve of X with ¢(z,0) = x, we say that X is a negatively
bounded vector field if, for each = € R™ there exists some compact set
K such that ¢(z,t) € K for allt € I,N(—00,0). Then it is obvious that
the a-limit of any point z, a(z), is not empty and compact, see [10].
Clearly we have in this case an analogous result to Theorem A. That
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is, if X is a C! negatively bounded vector field in R™ having finitely
many critical points and satisfying that

a(R") = U a(z)

zeR™

is a bounded set, then the sum of the indices of X at all its critical
points is equal to 1. To see this, notice that in this situation —X is a
strongly bounded vector field and that if zg € R" is a critical point of
X, then ix(mo) = (—1)ni_x($0).

We note that there exist vector fields being simultaneously bounded
and negatively bounded. The simplest example of this behavior is
a planar global center. In even dimensions we have the obvious
generalization of this situation. In these examples the whole R" is
foliated by periodic orbits. In Section 5 we present examples of vector
fields in dimension greater than two being simultaneously bounded and
negatively bounded and having more complicated dynamics.

The next proposition shows that a strongly bounded vector field
cannot be negatively bounded. In other words, if X is a C! strongly
bounded vector field, then there exists at least one point zg € R™ such
that, for each compact set K there is a 7 < 0 with ¢(zo,7) ¢ K.

Proposition 7. Let X : R® — R™ be a C' vector field. If X is
a bounded and negatively bounded vector field, then neither w(R™) nor
a(R™) are bounded sets.

Proof. We will prove by contradiction that w(R"™) is an unbounded
set, the same fact can be proved for a(R™) similarly. So assume that
w(R™) is a bounded set. Hence X is a C! strongly bounded vector
field. Taking any r > 0 such that w(R"™) C B,(0), by Lemmas 1 and
2, there exists R > r such that, if € B,(0) then ¢(z,t) € Bg(0)
for all ¢ > 0. Consider any o ¢ Bg(0). Since X is a negatively
bounded vector field, a(zy) # @. Consider yo € a(xg). On account
of w(R™) C B,(0), there exists a t; > 0 such that ¢(yo,t1) € B,(0).
Take £ > 0 small enough such that B.(¢(yo,t1)) C Br(0). Due to
continuity with respect to initial conditions, take § > 0 such that,
if © € Bs(yo), then ¢(z,t1) € Be(p(yo,t1)). Now consider to > tg
such that ¢(xg,—t2) € Bs(yo), and set zo = @(¢(xo, —t2),t1). Then
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20 € Be(p(yo,t1)) C Br(0), but ¢(z0,t2 — t1) = zo ¢ Br(0) with
to — t1 > 0 contradicts the choice of R. O

Finally we prove a technical result that will be used in Section 4.
Lemma 8 gives a sufficient condition for a bounded vector field to be
strongly bounded.

Lemma 8. Let X : R® — R" be a C' bounded vector field. Denoting
the scalar product by ( , ), if the set T = {x € R" : (X(z),z) = 0} is
bounded, then X 1s a strongly bounded vector field.

Proof. We will show that if X is not strongly bounded then 7T is not
bounded. So assume that w(R"™) is not bounded. Then there exists
(k) ken such that the set

U waw)

keEN

is not bounded. Since X is a bounded vector field, the w-limit of
any point is a compact set and hence there exists (yx)ren such that
lluell = sup{|lyll : v € w(xk)}. It is obvious that ||yx|| — +oo as
k — +oo. We claim that (X (yx),yx) = 0 for all k € N. It is clear that,
if the claim is true, then Lemma 8 will follow.

We will prove the claim by contradiction. So assume that there exists
some k € N such that (X (yz),yz) # 0. Then y; is not a critical point,
and by the tubular flow theorem, see, for instance, [10], there exists
t; # 0 small enough such that

(Y ti) & By, (0)-

But, since y; € w(z;) and the w-limits are invariant by the flow,

Py tp) € wlzg).  Then [lo(yg, i)l > [lygll contradicts |lyzll =
sup{||y|| : ¥ € w(x})}, and the claim is proved. O

3. Bounded planar vector fields.

Lemma 9. Let X : R?2 = R? be a C' bounded vector field with all its
critical points in a compact set. Then, for each r > 0 such that B,.(0)
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contains all the critical points of X, either there exists a periodic orbit
v with B, (0) C Int~y or for each x € R? there exists 7(z) > 0 such that

¢(z,7(z)) € Br(0).

Proof. Consider r > 0 such that B,.(0) contains all the critical points
of X and assume that there is no periodic orbit v with B,.(0) C Int .

By contradiction, suppose that there is some Z € R? such that
©(Z,t) ¢ B,.(0) for all ¢ > 0. From the hypothesis, X is a bounded
vector field, so there exists a compact set K such that ¢(z,t) € K for
all t > 0. Let @ be defined by K\B,(0). Then @ is a compact set
and ¢(z,t) € Q for all ¢ > 0. It follows that the w-limit of Z, w(Z),
satisfies w(Z) # @ and w(Z) C Q. Since there are no critical points of X
in @, by the Poincaré-Bendixson theorem, see [10], w(Z) is a periodic
orbit, say -y, contained in @. Since every periodic orbit in the plane
has a critical point in its interior, then it follows that B,(0) C Int-,
otherwise there would be at least one critical point not in B,.(0). But
this contradicts the assumption. Hence, Lemma 9 is proved. u]

Theorem 10. Let X : R? — R? be a C' bounded vector field with all
its critical points in a compact set. Then either X is strongly bounded
or, for each r > 0 such that B,.(0) contains all the critical points of X,
there exists a periodic orbit v with B,(0) C Int~y.

Proof. By contradiction, assume that X is not strongly bounded and
that there exists some 7 > 0 with B;(0) containing all the critical points
such that there does not exist any periodic orbit v with B-(0) C Int~.
Then, due to Lemma 9, we can apply Lemma 2 and assert that there
exists R > 7 such that, if z € B7(0), then ¢(z,t) € Bg(0) for all ¢t > 0.

Since X is not strongly bounded, there exists an Z ¢ Bgr(0) with
T € w(y) for some § € R2. Since 7 is not a critical point and does not
belong to a periodic orbit, it must belong to a cycle of separatrices,
see, for instance, [10]. Then its a-limit is a critical point. Since all
the critical points of X are in B;(0), there exists a ¢ < 0 such that
©(Z,t) € Br(0). But this contradicts Lemma 2 since ¢ Bg(0). O

Proof of Theorem B. If X is strongly bounded it follows from The-
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orem A. Otherwise, applying Theorem 10, there is a periodic orbit ~
with p; € Inty for all j =1,2,... ,k. Then, using that the sum of the
indices at the critical points contained in the interior of any periodic
orbit is equal to one, see, for instance, [1], Theorem B follows again.
mi

As has been noted, in [2] Cima and Llibre proved Theorem B for
bounded polynomial vector fields with finitely many critical points.
Using the index formula of Bendixson they showed that the infinite
critical point of the stereographic compactification of the vector field
has index equal to one. Then the result follows from the Poincaré-Hopf
theorem.

4. Bounded polynomial vector fields. We shall say that
X = (PY,...,P") belongs to A, if X is a polynomial vector field
with degree (P?) = m for all i = 1,2,...,n. Fori = 1,2,...,n, we
denote the homogeneous part of P¢ of degree k by P,i, k=0,1,... ,m.
Finally we will say that X € A,, satisfies condition * if the system

P (z1,...,2,) = 0 for i = 1,2,... ,n, has only the trivial solution
1 = x2 = -+ = &, = 0. In this sense we can state Theorem D of [2]
as follows:

Theorem 11. Let X € A, be a bounded polynomial vector field
in R™ satisfying condition x and having finitely many critical points
P1,DP2,-- - s Pk- If the Poincaré compactification of X has all the critical
points at infinity isolated, then

k
S ix(ps) = (-1

In the first part of this section we give a proof of Theorem 11 different
to the one in [2], but first we need the following result that gives a
dynamical consequence of condition .

Lemma 12. If X € A,, is a bounded polynomial vector field
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satisfying condition *, then

N ={z € R" : X(x) points in the outward
normal direction to 0B ;) (0)}

is a bounded set.

Proof. Tt is clear that € A if and only if X (z) = (X(z), s)s with
(X (x),s) >0, where (, ) denotes the scalar product and s = z/||z||.

We will prove that if N is not bounded, then X is not a bounded
vector field. So assume that there exists (zy)ren, with zp € N for
all k, such that ||zg|| - 400 as k — 4o0. Define ry = ||zx| and
sy € S"1 = {z € R" : ||z|]| = 1} to be such that z} = rgsk. Since
S"~1 is compact we can assume without loss of generality that s, — §
as k — oo for some § € S™L.

For k = 0,1,...,m, define X}, = (P},...,P"). Then X = X, +
Xy 4 4 X

For any = € R™\{0}, where r = ||z|| and s = z/||z||, it follows that

(2) X(z)=Xo+rXi(s)+- -+ X 1(s) + ™ X, (s)-
Applying (2) and the bilinearity of the scalar product, we have

(X(2),5) = (Xo,8) +7(X1(5),8) + -+ + ™ Xm—1(s), 5)

3) +7r™( X (s), s).

Since for z € N with z = ||z||s we have that X (z) = (X(z), s)s,
applying (2) and (3) we can assert that, for any z € N with z = rs,
where r = ||z, the following holds

(Xo,8)s +7r(X1(s),8)s+ -+ 1" HX,,_1(5),s)s

r™(Xm(s),8)s  Xo+rXi(s)+---+ rm 11X, 1(s)

,r.m T.m

Xm(s) =

+

Evaluating (zj)kren in the above expression and making & — oo
afterward, we get
Xm(3) = (X,(3), 8)3.
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Since (X (zk),sk) > 0 for all k& € N, we have (X,,(5),5) > 0.
Then, due to condition * and noting that § € S™!, we finally get
(Xm(3),3) > 0.

Thus we have proved that if AV is not bounded, then there exists
§ € 5™ ! such that X,,(5) = A§ with A > 0.

Using P(X), the Poincaré compactification of X, see [2] for more
details, it follows that § is an infinite critical point and that the linear
part of P(X) at § has —\ as eigenvalue in the finite direction. Then
there exists some orbit of P(X) lying in the finite part of R™ whose
w-limit is 5. Hence, X is not a bounded vector field and Lemma 12
follows. O

Proof of Theorem 11. Due to Lemma 12 we can assert that N is a
bounded set. Then there exists R > 0 large enough such that Bg(0)
contains all the critical points of X and such that, for all z € dBr(0),
X (z) is not pointing in the outward normal direction to 0Bg(0). Then,
by Lemma 6, it follows that

k
Z;iX(Pj) = I(X|gmy) = (D"

and Theorem 11 is proved. ]

Finally we give an algebraic condition that is sufficient for a bounded
polynomial vector field to be strongly bounded:

Proposition 13. Let X = (PY,...,P") € A,, be a bounded
polynomial vector field. Denote X,, = (PL,...,P"). If the system
(Xm(z),z) = 0 has only the trivial solution x = 0, then X is a strongly
bounded vector field.

Proof. By Lemma 8 we must only show that the set 7 = {z € R":
(X (x),x) = 0} is bounded. We will prove that, if 7 is not a bounded
set, then there exists § # 0 such that (X,,(5),8) = 0. So assume that
there is an (zx)kenN, with ||zg]| = +00 as k — 400, such that zx € T
for all kK € N.
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Define r;, = |lzx|| and s € S™1 = {z € R" : ||z|| = 1} to be
such that x, = 7s,. Since S"~! is compact, we can assume without
loss of generality that s, — § as k — +oo for some § € S"~1L.
For k = 0,1,...,m, denote X3 = (P},...,P?). Then, since X =
Xo+ X1+ -+ X, we get

<X(£Ek), xk> = Tk<X0, 8k> + -+ T?<Xm_1(sk), Sk>
+ rzlel(Xm(sk), Sk)-
Hence it follows that

(X (z), Tk)

m—+1
Tk

— (Xn(58),8) as k— 4oo.

Since z, € T for all k € N, we get (X,,(5),5) =0 with § € S"71, and
Proposition 13 follows. O

5. Examples of bounded vector fields not satisfying the
conclusion of Theorem A. By using an idea of Erle, see [4], we
construct a C*° bounded vector field X in R? satisfying that the sum
of the indices of X at all its critical points is equal to zero. This vector
field will also be negatively bounded.

Let T be a three-dimensional solid torus, and let » > 0 be such that
T C B,(0) ={z € R®: ||z]| < r}. Let G be a C* vector field defined
in a neighborhood of B,(0), tangent to 07 and with finitely many
critical points, all of them contained in B,(0)\0T. Let p1,po,... Dk
(respectively, q1,¢a, - .- ,qx) be the critical points of G inside of Int T
(respectively, B,.(0)\T). Let D; and D3 be two sets diffeomorphic to
closed balls satisfying:

(1) Dy C Int T and py,po, ... ,px € Int D;.
(2) T C Int Dy, Dy C BT(O) and q1,q2,.-- , Qg ¢ Ds.

Let ¢ be a diffeomorphism that carries Dy to B2(0) and D, to Bq(0).
For any point p € B3(0), define F(p) as

(DpoGop™")(p).

Then F' is a C* vector field on B3(0) that is tangent to ¢(9T), and it
is clear that it has finitely many critical points, all contained in B (0).
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Let Ty be the three-dimensional solid torus with 0Ty = ¢(0T). It is
clear that B;(0) C Int Ty and that 8Ty C B2(0)\B1(0).

Take £ > 0 small enough such that 0Ty C By -(0)\Bi14.(0). Consider
a C® map p1 : [1,2] — [1, 2] satisfying p1(r) = r forall 7 € [1,2—¢] and
pi(r) =2for all r € [2 —¢/2,2]. Consider a C* map ps : [1,2] — [1, 2]
satisfying p2(r) = r for all r € [1 +¢,2 — ¢] and p2(r) = 2 for all
re[l,1+¢/2]U[2—¢/2,2]. For a point p with 1 < ||p|| < 2, define

r = (200, s s = (2200,

7] 2l

Then F; and F, are C* nonvanishing vector fields on By(0)\B1(0)
satisfying

(a) For all p with ||p|| € [1,1 +¢/2] U[2 — €/2, 2] the value of F; at p
depends only on p/||p|.

(b) For all p with ||p|| € [2 —¢/2,2] the value of F; at p depends only
on p/||p|| and it is equal to Fa(p).

(c) Fx(p) = F(p) for all p with ||p|| € [1 +¢,2 — €]

(d) Fi(p) = F(p) for all p with [|p|| € [1,2 —¢].
Notice that, due to (¢) and (d), F1 and F» are tangent to 0Tp.

We use F; and F, to define a vector field X on R? as follows:

F(p) if [|pl| < 1,
X(p) =14 Fi(p) if 1 <|p|l <2,
Fy(27mp) if 2" < ||p|| < 2", n € N.

It is clear that X is well defined and that it has finitely many critical
points, all contained in B;(0). Moreover, by using properties (a), (b)
and (d), notice that X is a C* vector field.

For n € N, define T,, to be the image of Ty under the map p — 2"p.
It is clear that T3, is a three-dimensional solid torus, and it follows from
property (c) that X is tangent to 0T, for all n € N. Hence, for all
n € N, T, is invariant under the flow defined by X. This implies that
X is a bounded vector field since Ban(0) C T, for all n € N. Notice
that in fact X is also a negatively bounded vector field.

On the other hand, X has finitely many critical points, all of them
contained in Tj. Since X is tangent to 07y, by the Poincaré-Hopf
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theorem, see [9] for instance, we can assert that the sum of their indices
is equal to zero, the Euler characteristic of Tj.

Notice that X is obviously not strongly bounded. For all n € N,
x € 0T, implies w(x) C 0T, and by construction dist (0T;,,0) — 400
as n — +00.

Remarks. (a) Choosing the initial vector field G vanishing nowhere
in the solid torus T, it is possible to construct a C*° bounded vector
field in R3 without critical points.

(b) As has been noted in Section 1, given any integer k, respectively
k > —1, when n > 4, respectively n = 3, it is possible to construct
similarly a C* bounded vector field in R" satisfying the sum of the
indices at all its critical points is equal to k. It is enough to take initially,
instead of the three-dimensional solid torus, an n-dimensional compact
differentiable manifold M with connected boundary M, satisfying that
its Euler characteristic is (—1)™k, when n = 3 there are only examples
of such manifolds with £ > —1. Furthermore the original vector field G
defined in a neighborhood of M must point inward at all the boundary
points.

(c) In order to get examples of vector fields being simultaneously
bounded and negatively bounded, we must take the original vector
field G nonvanishing and tangent to M. To this end, M must have
Euler characteristic equal to zero.
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