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GENERALIZED HOLDER-LIKE INEQUALITIES
FATHI SAIDI AND RAHMAN YOUNIS

ABSTRACT. Let n > 2 be a fixed integer, and let M be a
one-to-one function. For a real number «a, we define

Rom = {X: (z1,22,... ,@n) : 21 >0,

(z;/z1) € Domain (M), =2,...,n and
[a — ZH:M(zl/wl)} € Range (M)}
i=2

For x € Rqum we define @, py(x) = x M1
[a— ?:2 M(xi/xl)]. Several inequalities are presented
for ®, ar. As special cases, these inequalities recover many
known “Hélder-like” inequalities.

1. Introduction. Let n > 2 be a fixed integer, and let R denote
the set of all real numbers. Let a;,b; € R, ¢ =1,2,...,n, be such that
a? => " ,a?>0and b? — Y ,b? > 0. Then in [1] it was shown that

(2

n 1/2 n 1/2 n
(1].) <af — Zaf) <b% — Zb?) S a1b1 — Zaibi.
=2 =2

=2

Inequality (1.1) was generalized by Popoviciu in [8] and by Bellman
in [3] as follows. Let p > 1, (1/p)+(1/q) = 1, a;,b; > 0,1 =1,2,... ,n,
with af — Y7 ,a? >0, and b¢ — Y7 , b7 > 0. Then

n 1/p n 1/q n
(1.2) (a117 — Zaf) <b‘f — Zbg) S a1b1 — Zaibi.
=2 =2 =2

This is the “Holder-like” generalization of (1.1). In [9] there is a very
simple proof of (1.2) for p > 1 and the inverse inequality for p < 1 is
given. Also, Chapter 5 in [7] contains generalizations of (1.2).
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In [4], Bjelica showed that if af — Y7 ,a? > 0 and 8] — 37" , 0¥ >0,
then, for 0 < p < 2,

n 1/p n 1/p n
(13) ( - Za§> <b’1’ - be> <anbi Y abe
=2 =2 =2

For a fixed integer n > 2, the authors in [6] introduced the following
definition. For a nonzero number p € R, let

n 1/p
Pp(x) = (m’f—fo) , XER,,
i=2

where

n
R, = {x: (z1,T2,. .- ,Tp) t2; > 000 =1,2,... ,n),z} > xf}

and

R, = {x- (x1,T2,... ,@p) 1 x; >0 =1,2,... ,n),z} >Zazf}
i=2
ifp<0.

There they presented three inequalities for ¢, from which they deduced,
among other things, the inequalities (1.1), (1.2) and (1.3).

Throughout this paper we use the following notations. Let M be a
one-to-one function whose domain is a subset of the set of real numbers
R. For a € R, we define

x = (z1,%2,... ,25) : 21 > 0, (z;/21) € Domain (M)
Ra,M: (7’:2a7n)
and [a — Y, M(z;/z1)] € Range (M)

and, for x € R, p, we define

Bopr(x) = 2 M [a - z: M<z—1>]
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In Section 2 we present an inequality involving Orlicz functions, The-
orem 1, from which we deduce Popoviciu’s theorem [8]. In Section 3,
we give a general inequality, Theorem 3, which can be used to obtain
several known inequalities in [6]. In Section 4 we present a compar-
ison theorem that generalizes Theorem 1 in [6], and we also give a
generalization of Bjelica’s result in [4].

2. Orlicz functions. The introduction of Orlicz functions has been
inspired by the obvious role played by the functions ¢P in the definition
of the [, spaces.

An Orlicz function M is a continuous strictly increasing and con-
vex function defined on [0,00) such that lim; ,o+(M(¢)/¢t) = 0 and
lim; ,oo(M(t)/t) = oo. For an Orlicz function M, the function
M*(s) = Supgoicooist — M(t)}, 0 < s < o0, is called the function
complementary to M. For example, if M(t) = (t?/p), p > 1, then
M*(s) = (s/q), where (1/p)+(1/q) = 1. It is clear from the definition
of M* that, for any ¢,s > 0, we have the so-called Young’s inequality,
namely,

(2.1) ts < M(t) + M*(s),

where equality holds if and only if s = M/ (t), M/ being the right
derivative of M. Convenient references for Orlicz functions and Orlicz
spaces can be found in [2, Chapter 8] and [5, Chapter 4].

Our first theorem is a generalization of the inequality (1.2).

Theorem 1. Let M be an Orlicz function, and let a and (B be
positive real numbers. Then for x = (x1,%2,...,%,) € Rom and
Y= (y1,Y2,..- ,Yn) € Rg m+ we have

o, (%) @00 (¥) < (@ + B)eryy — Y @iy
i—2

Proof. By applying Young’s inequality (2.1) with ¢t = (®q m(x)/21)



1494 F. SAIDI AND R. YOUNIS

and s = (®4.10- (¥)/y1), we get that
Do, v (%) ®p,0- (y)
<ounfo-300(3)] o [p-3r (32)]
= (a+ B)11y1 — Ty zn: (M(%) +M* <y—>>

i=2 4

Since again, by Young’s inequality (2.1) we have

() (2) - 22
x Y1 T1Y1

then we obtain
Do M (X) g0+ (y) < (4 B)zays — Z TiYi
i=2

as required. This completes the proof of Theorem 1. ]

The following corollary is Popoviciu’s theorem [8], which is inequality
(1.2).

Corollary 2. Let p,q € (1,00), (1/p)+(1/q) =1, and let z;,y; > 0,
i=1,2,...,n, witha! = > " ,a? >0 and y{ — Y1 ,y! > 0. Then

1= K2

n 1/p n 1/q n
(-2a) " (st-Xut) e - o

=2

Proof. Let M(t) = (t*/p), t € [0,00). Then M*(t) = (t7/q),
t € [0,00). The assumptions imply that (z1,z2,... ,2,) € R /p) m and
(Y1,Y25-++ ,Un) € R(1/q),m+- Now we apply Theorem 1 with a = (1/p)
and 8 = (1/q) to get the required inequality. This completes the proof
of Corollary 2. o
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3. Inequalities involving monotonic functions. In this section
we present general inequalities involving one-to-one functions. These
inequalities can be used to recover many known inequalities.

Theorem 3. Let My, Ms,...,M,, be one-to-one real-valued func-
tions defined in R, and let 01,09,... ,0m, be fized real numbers. Then
we have

(i) If
(31) t1t2 . 'tm S 0’1M1(t1) + 0'2M2(t2) +-- 4 O'mMm(tm)

for all t, € Domain (My,), k=1,2,... ,m, then

m
H Do, m, (Xk) < (0101 + 0202 + -+ - + OO T11 - Tt
k=1
(3:2) \
- Z(wu e Ti)
1=2

for all o, € R satisfying Ra, v, 7# @ and all xi, € Roy m,, k =
1,...,m.

(i) If
(3.3) tity - tm > o1 My (t1) + 02 Mo (t2) + -+ - + o My ()

for all ty, € Domain (M), k=1,2,... ,m, then
H @, M, (Xk) > (0100 + 0202 + - 4+ Oy )T11 - T
(3.4) .
_ Z(I“ e Ei)
i=2

for all o, € R satisfying Ra, v, 7# @ and all xi, € Roy m,, k =
1,...,m.
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Proof. First let us prove part (i). Using (3.1), we get

I ENTAES )
= (o) T oo - o0 (5]
< (Mmoo for - 2o (22)]}
= (L) [ 2o 3o ()
< (L) [ 2T ()]
- (S [T =2 ([T o)

This completes the proof of part (i). Similarly we obtain the proof of
part (ii). O

Before we give some consequences of Theorem 1, we first mention the
following lemma. The referee brought to our attention that this lemma
recently appeared in [10].

Lemma 4. Let p1,ps,...,pm be real numbers such that (1/p1) +
(1/p2) +---+ (1/pm) =1, m > 2. Then

oo .
(35) tltgtmzp—l+p—2++p— fO’I’ allt,->0, 221,... ,m,
m

if and only if all p;’s are negative except for exactly one of them.

Proof. Suppose that all p;’s are negative except for exactly one of
them, say p,, > 0. Let z; = (1/tf™), ¢ = 1,2,...,m — 1, and let
Zm = tYmth™ - tPm . Also, let ¢; = |pi|/pm, ¢ = 1,2,... ,m — 1 and



GENERALIZED HOLDER-LIKE INEQUALITIES 1497

gm = (1/pm). Then all the ¢;’s are positive and

Hence we may apply the well-known inequality

i xdm )
(36) wlmequ—++q—, xiZOa 7/:1,2,...,7')’1,,
1 m

to get that z129 -+ 2z, < (27" /q1) + -+ + (2% /). This gives

thm < ,p_mtll’l . Pm tfnm:ll + Dmtita -t
D1 Pm—1

Therefore after rearranging and dividing by p,,, we get that

Pt {Pm
titg -ty > a oy m
p1 Pm

Conversely, suppose that (3.5) holds. Then by (3.6) at least one
of the p;’s must be negative. Since Y ;* (1/p;) = 1, then clearly
one of the p;’s is positive. Suppose that there exist at least two
positive p;’s and at least one negative p;, say pi,p2,...,pr > 0 and
Pitlye-- 3sPm < 0, where 2 < k < m. Let A(tl,... ,tm) = tito -t
and B(t1,... ,tm) = (81" /p1) + -+ + (t2™ /py). For r > 0, we have

A(rk_l, , ,1, //1\ , ,1):
r r
and
(k-+1)st term
B<rk_1,%,---,%, /1\ ,...’1)
pp1(k=1) 1

p1 parP? Pk+1 Pm
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as 1 — oo because lim,_, o (rP*(*~1) /p;) = co. Thus, for 7 large enough,
we have

1 1 1 1
A(”‘kla_a"' 7_717"'71> <B<7‘k17_7"' 7_717"'71>'
r r r r

This contradiction with (3.5) completes the proof of the lemma.

The following result appears in Corollary 1 in [6].

Corollary 5. Let p1,pa,... ,Dm be real numbers such that (1/p1) +

(i) If all p;’s are negative except for exactly one of them, then we
have

H Dy pon (X)) > @1 (X1X2 -+ X))
k=1
for all x;, € Ry v, k=1,2,... ,m.
(i) If all p;’s are positive, then

H Dy sk (xx) < ¢'Lt(x1)(2 o Xy)
k=1

for all X, € Ry v, k=1,2,... ,m, where

X1X2 .. X = (T11 -+ - Ty - s Tin - - - T )-

Proof. (i) Suppose that all p;’s are negative except for exactly one
of them. Then inequality (3.5) holds. For each k € {1,...,m}, let
ar = 1, o, = (1/pg), and let My(t) = tP*, t € (0,00). Then (3.3)
becomes (3.5) and consequently (3.3) holds. Now applying Theorem 3
(ii) we get

H Dy yon (x1) > Prp(X1X2 - Xp)
k=1
for all x; € Ry e, k=1,2,...,m.
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(ii) Suppose that all p;’s are positive. Then (3.6) holds. For each k €
{1,...,m}, let ap =1, o, = (1/px), and let My (t) = tP*, t € [0, 00).
Then (3.1) becomes (3.6) and consequently (3.1) holds. Hence we may
apply Theorem 3 (i) to get that [[,—, @1k (xk) < Pre(x1x2 - Xp,)
for all x; € Ry, k=1,2,... ,m

Lemma 6. Let M be a strictly increasing continuous function defined

n [0,00) with M(0) = 0 and M(co0) = co. For each s € (0,00), let
M(s) = maxye (0,00) L M (t) — st} be well defined. Then M is continuous,
strictly decreasing and Range (M) = (0, o).

Proof. We divide the proof into three steps.
Step 1. M is strictly decreasing on (0, c0).
By the definition of M, we have, for each s € (0,00), M(s) =

M(t;) — st for some t, € (0,00). Now let 51,50 € (0,00). Now using
the definition of M, we get

M(s1) + (s1 — so)ts, = M(ts,) — s1ts, + (s1— s0)ts,
= M(ts,) — sotsl
(3.7) < M(sp) = M( s0) — Sots,
= M(ts,) — sits, + (51 — 50)ts,
< M(sy) + (sl — 50)tsg-

If 0 < sp < s1 < 00, then the first inequality in (3.7) gives M(sy) <
M (s9), which completes the proof of Step 1.
Step 2. M is continuous on (0, 00).

Let sg € (0,00) be fixed. From (3.7) we get, for each s € (0,00),
(3.8) |M(s) — M(so)| < max(ts,ts,)|s — sol.

Let s; € (0, o) be a fixed number. By comparing the first and last term
n (3.7) we obtain that ts, < ts, and, in a similar way, that t, < ¢,, for
all s > s;. This with (3.8) implies that [M(s) — M(so)| < ts,|s — so|
if s is close enough to sg. Consequently, M is continuous at sy, and
hence this completes the proof of Step 2.

Step 3. Range (M) = (0, 00).
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First let us show that lim, o+ M(s) = oo. For each t € (0,00), we
have M(s) > M (t)—st. Therefore, liminf,_,o+ M(s) > lim,_,o+ [M(t)—
st] = M (t). Since sup,¢ g o) M (t) = oo, then lim, o+ M(s) = oo.

Next let us show that lim,_ o, M(s) = 0. Since M is strictly
decreasing on (0, 00) by Step 1, and M (s) > 0 for all s € (0,00), then
there exists [ > 0 such that lims_, oo M (s) = l. From the first inequality
in (3.7) we obtain that, for all s € (0,00), M(s4+1)+((s+1)—8)tes1 <
M(s). Hence 0 < ty; < M(s) — M(s+ 1). Consequently, we get that
limg o0 ts11 = 0. But we have 0 < M(s) = M(ts) —sts < M(ts) for all
s > 0. Therefore, letting s — oo, we get that 0 < limsup,_, ., M(s) <
lim, 00 M(ts) = M(0) = 0. Hence, lim,_,oo M(s) = 0. This proves

that Range (M) = (0,00), as required, and that ends the proof of the
lemma. o

Corollary 7. Let M be a strictly increasing continuous function
defined on [0, co) with M (0) = 0 and M (co0) = co. For each s € (0,00),
let M(s) = max;e(0,00) 1M (t) — st} be well defined. If o, 3 € (0, 00),
then Ry pr # @ and Ry i # . Moreover, if x € Ry p andy € Ry yis
then we have

(3.9) q’a,M(X)q’ﬁ,M(Y) > (o= By — Z-Tiyi-

Proof. By the definition of M, we have tity > M(ty) — Z\Zf(tz),
t1 € [0,00) and ¢ € (0,00). By Lemma 6 we obtain that R,  # @.

Now applying Theorem 3 (i) with M; = M, My = M, a; = a, 1 = 3,
o1 =1 and o3 = —1, we get inequality (3.9) as required.

The following result is part (ii) of Corollary 2 in [6].

Corollary 8. Let 0 < p <1, (1/p)+ (1/q) = 1. Then for z; > 0,
o) >3 a2l gy >0 andy! > 37,y we have

n 1/p n 1/q n
(3.10) <x’1’ - me) <yf - ny) > 1Y — Zl‘iyi-
i=2 i=2

=2
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Proof. Let M(t)=(t?/p), t € [0,00). Then M (s)=supg;coo{M(t) —
st} = s%/|q|, 0 < s < oo. The conditions on z; and y; imply that
(T1,22,... ,%,) € R(1/p),m and (Y1,92,--+ ,Yn) € R(1/\q\),z\7z- Now
applying Corollary 7 with a = (1/p) and 8 = 1/|q|, we get exactly
inequality (3.10), as required. O

4. A comparison theorem and further inequalities. In this
section we present a theorem that will provide a generalization of
Theorem 1 in [6]. Moreover, we combine this with Theorem 3 to deduce
Bejelica’s result [4].

Theorem 9. Let My and Ms be two strictly increasing functions
from the interval I onto I, where I is either [0,1] or (0,1). Suppose
that M (t) < Ma(t) for allt € (0,1). Then we have:

If x € Ri,m, then x € Ry u, and

(i) If I =10,1], then @1 p,(x) < 1,0, (x). Equality holds if and
only if either z; = 0 for all ¢ > 2 or z;, = x; for some iy > 2 and
x; =0 foralli > 2,1 +# ig.

(ii) If I =1(0,1), then ®1, m,(x) < P10, (x).

Proof. From the conditions on M; and M, we obtain that if I = [0, 1],
then

(4.1) M;(0) = My(0) =0 and M;(1) = My(1) = 1.

Now let I = [0,1] and let x € Ry pr,.- By (4.1) and since M;(t) <
M>(t) for all ¢t € (0,1), we have

(4.2)  0< [121\@(2)} < [1%%(%)] <1

Note that (x;/®1) € Domain (Mz) = Domain (Ml) From (4.2) we
obtain that x € Ry a, and, smce 5 L(t) < M;(t) for all t € (0,1),
M;l(o)zM;(o)_OM (1) = 1()—1andM ,j=1,2,is
strictly increasing in I, that

()] empEm(2)]

=2
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Multiplying both sides by z1 we get that ®; a,(x) < ®1 a7, (x). The
proof of (ii) is similar. For the remainder of (i), it is clear that from
(4.1), (4.2) and the fact that M;(t) < Mas(¢) for all t € (0,1) that
equality holds if and only if (x;/x;) = 0 or 1 for each ¢ > 2. Since
X € Rim,, then [1 — 37 ) My(z;/21)] € Range (M») = [0,1]. Hence,
we must have either (z;/z1) = 0 for all ¢ > 2 or (z;,/21) = 1 for some
io > 2 and (z;/z1) = 0 for all i(# ip) > 2. This completes the proof of
the theorem.

Remark 1. We note that the inequality ®1,a,(x) < ®1,0, (%) in (i)
of Theorem 9 still holds if we replace the assumption M;(t) < Ma(t)
for all ¢ € (0,1) by the assumption M;(t) < Ma(¢) for all ¢ € (0,1).

The following corollary is Theorem 1 in [6].

Corollary 10. If 0 < p < q and x € Ry, then x € R, and
¢p(x) < ¢q(x). Equality holds if and only if o = --- =z, = 0 or
z1 = s for somes € {2,... ,n} and z; =0 fori e {2,... ,n}\{s}.

If p<g<0and x € Ry, then x € R, and ¢,(x) < ¢4(x).

Proof. Let 0 < p < ¢q. Let My(t) = t? and Mo(t) = 7, t € [0,1].
Then Ry = Ry p, U {0} and R, = Ri v, U {0}. Now apply Theorem
9 (i) to get the required conclusion. Similarly if p < ¢ < 0 we take
M;i(t) =¢t7P and Ma(t) =t79, ¢t € (0,1), and we apply Theorem 9 (ii).

Corollary 11. Let M be a strictly increasing function from [0, 1]
onto [0,1] with M(t) > t* for all t € (0,1). If x,y € Ry, then
X,y € Ry 42 and

Q1 0m (%) (Y) < P2 (x)Py 42(y) < P1e(xy),

where Xy = (Z1Y1, .-+ ,TnlYn)-

Proof. The first inequality follows from Theorem 9 and the remark
following it by taking M, (t) = t? and My = M. The second inequality
follows from Theorem 3 (i) by taking m = 2, M;(t) = Ma(t) = t3,
Q] = Qg = 1 and g1 = 09 = (]./2)

The above corollary is a generalization of Bjelica’s result in [4].
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As a direct consequence of Corollary 11, we obtain Corollary 3 in [6]:

Corollary 12. If 0 <p <2 and x,y € R, then

$p(X)Pp(y) < da2(x)da(y) < ¢1(xy).
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