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DISCONJUGACY OF SYMPLECTIC SYSTEMS
AND POSITIVE DEFINITENESS OF BLOCK
TRIDIAGONAL MATRICES

ROMAN HILSCHER

ABSTRACT. In this paper we discuss disconjugacy of sym-
plectic difference systems in the relation with positive definite-
ness of a certain associated block tridiagonal matrix. Anal-
ogous results have been recently proved for a special form
of symplectic systems-linear Hamiltonian difference systems
and Sturm-Liouville difference equations. Finally, reciprocal
systems are also discussed.

1. Introduction. The principal aim of this paper is to study the
relationship between disconjugacy of symplectic systems

(S) Zp41 = Skzg, 0Kk N

and positive definiteness of a certain symmetric block tridiagonal ma-
trix associated with (S). Symplectic systems cover two important ob-
jects as its special cases: linear Hamiltonian difference systems (LHdAS,
see below) and Sturm-Liouville difference equations (SLAE, the special
case of LHAS). Lately a considerable effort has been made to define
disconjugacy for LHdS, and hence for SLAE, and to prove the so-called
Reid roundabout theorem for such systems, see [3]. Recently the above-
mentioned results have been extended by Bohner and Dosly also to
symplectic systems, see [4]. The approach used in the above references
is based on the discrete Picone’s identity, which is not needed in [5],
and in the present work, too.

Consider an LHdS

T
Az = Apriy1 + Brug, Auy = Crapqr — Ay ug,

(H)
0<k<N,
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1302 R. HILSCHER

where A, B,C are sequences of n x n-matrices, B and C symmetric,
I — A nonsingular. We denote A := (I — A)~L. The associated discrete
quadratic functional takes the form

N

.7‘-H(.I',u) = Z{m£+lckxk+1 + u,{Bkuk}.
k=1

System (H) can be rewritten into (S) with the matrix
g A AB
“\CA CAB+ AT )"

Define the n x n-matrices Ty, Si and kn x kn-matrix £ in the
following way:

O Ty == Cr+ (I — AD)BJ(I - Ax) + B,
Spi=-Bl(I-A4;), 0<k<N-1,

T, S
T T ..
L = St T ' , 1<k<N.
' B Sk-1
55—1 Tk
In [5] it is shown that disconjugacy of the system (H), and hence
positive definiteness of the quadratic functional Fp, is equivalent to
positive definiteness of the matrix £ := Ly on some appropriate
subspace of “N-vectors” (here every item of such an “N-vector” is
an n-vector itself). For more details on disconjugacy of LHdS, (S) and
positive definiteness of F, see the work of Bohner and Dosly [3, 5], and
the references given therein. A comprehensive treatment of difference

equations and LHdS is contained in the recent monograph of Ahlbrandt
and Peterson [1].

The subject of this paper is to extend the above-mentioned results to
symplectic systems.

2. Preliminary results. Let n,N € N, J := [0,N] N Z,
J*:=[0,N +1]NZ. By M' we denote the Moore-Penrose generalized
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inverse of a matrix M, i.e., the unique matrix satisfying MMTM = M,
MTMMY = M such that MM' and MM are symmetric. For a
symmetric matrix M, we write M > 0 if M is positive definite and
M > 0 if M is positive semi-definite. By Ker M, Im M, rank M, M7,
M~ det M, we denote the kernel, image, rank, transpose, inverse and
determinant of the matrix M, respectively. By A we denote the usual
forward difference operator. We denote by I the n X n-identity matrix

and define 2n x 2n-matrices J = (_OI é) and £ = (? g). A real

2n X 2n-matrix S is called symplectic if ST 7S = 7 holds.

Lemma 1 (Properties of symplectic matrices). Let A,B,C,D €

R™™ and S := (“é g) € R2"*2" be matrices. Then S is symplectic if

and only if
ATD - CTB = ADT —BCT =1, and
(2) T AT T T .
ABY,CD*,C* A, D' B symmetric.

In this case S is nonsingular, S~' = JTSTJ = (?CTT _fTT) and both
S—1 and ST are symplectic as well. Consequently, the set of all (real)
symplectic 2n X 2n-matrices form a group with respect to the matriz

multiplication.

Proof. Rewriting the definition of a symplectic matrix, we get
formulae (2). From J ! = J7 and 1 = detJ = det(STJS) =
(det S)?, the rest follows. u]

Consider a symplectic system
(S) 21 = Sk2zk, k€ J,

where zj, is a sequence of 2n-vectors defined on J* and Sy, is a sequence
of 2n x 2n-matrices defined on J. The matrices S are supposed to
be symplectic. Simultaneously with the system (S) we consider its
matrix analogy Zx4+1 = Sk Zk, k € J, where Zj, is a sequence of 2n X n-
matrices defined on J*. When referring to solutions of (S), we use a
usual agreement that the vector-valued solutions of (S) are denoted by
small letters and the matrix-valued solutions by capital ones.
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In the sequel we use the following notation:

(@) ) ()

with z,u : J* - R", X,U : J* - R"*", A,B,C,D :J — R"*". The
system (S) can then be rewritten into the form

(S) kg1 = Agzr + Brug, Ug+1 = Crxy + Drug, k€ J.
By Lemma 1, the time-reversed system 2z, = S}, lzk+1 reads as
(3) T = D{l‘kJrl - Bguk+1, U = —Cg$k+1 + A;‘:ukﬂ, ke J

Simultaneously with (S) consider the discrete quadratic functional

N
F(z) =D 2k {SFKSk— K} 2,

k=0
which can be rewritten into the form

N
.7'-(37, ’u,) = Z {w%C,?Akwk + xfCZBkuk + uZBkTCka + uf'DgBkuk} .
k=0

For the LHdAS the above quadratic functional F reduces to Fpg.

According to [4], we say that

(a) z satisfies the boundary conditions if Kzop = 0 = Kzny1, ie., if
T =0=1xN41;

(b) z is admissible if Kzp11 = KSkz on J, ie., if 211 = Apzr+Brug
on J;

(c) @ is admaissible if there exists u such that z = () is admissible;

(d) the discrete quadratic functional F is positive definite (F > 0)
if F(z) > 0 for all nontrivial admissible z satisfying the boundary
conditions, i.e., if F(z,u) > 0 for all nontrivial admissible = with
zo =0 =2Nt1;

(e) a solution Z of (S) is a conjoined basis of (S) if rank Z = n and
ZTJZ =0 hold on J*, i.e., if rank (X"UT) =n and X"U = U X on
J*;
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(f) the solution Z of (S) is principal at m € J if Z,,, = (?), ie., if
X,,=0and U,, = I;

(g) a conjoined basis (X, U) has a focal point in the interval (k, k+1],
keld,if
(4) Ker Xj11 CKer Xj, and Py = XpX], By >0

does not hold;

(h) the solution (z,w) of (S) has a generalized zero in (k,k+1], k € J,
if
ok #0, wpy1€ImBy and zf Blag, <0

(i) the system (S) is disconjugate on J if no solution of (S) has more
than one and no solution (z,u) of (S) with zy = 0 has any generalized
zeros on J.

Lemma 2. For any two matrices V. and W we have

KerVCKerW iff W=wVv o wi=vivwh

Proof. See [2] or [3, Remark 2(iii)]. o

Lemma 3. Let P, = XX} By for k € J. If Ker X1 C Ker X,
then
P, is symmetric and  Ker XE+1 C Ker BF.

Proof. See [4] for details. u]

Remark 1. By Lemma 2 we have that if Ker X;;1 C Ker Xy, then
By = Xp41X] By and B} = Bl X1 X[ .

The following Reid roundabout theorem for symplectic systems has
been proved in [4].
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Theorem 1. The following statements are equivalent.
(i) F > 0;
(ii) the system (S) is disconjugate on J;

(iii) the principal solution Z = (X,U) of (S) has no focal points in
(0,N +1].

The goal of this paper is to relate the condition (4) to a condition on
a certain block tridiagonal (N + 1)n x (N + 1)n-matrix. Namely, our
Corollary 2 explains why matrices P, appear in the definition of focal
points for a conjoined basis of (S).

3. Main results. We proceed similarly as in [5]. In this section
we always assume that (X, U) is the principal solution of (S) at 0, i.e.,
X():O&Ild UOZI

For m € J we define (m + 1)n x (m + 1)n-matrices U, by Uy := T
and for 1 <m < N,

To  So
S T
) K Smfl
Smo1 T
where

(5) Tr = A{&Ak — A{Ck +&_1 and Sp = Cg — Afgk, ke,

with £_; := 0; the matrix £ is any symmetric n X n-matrix for
which BTEB = DT B holds on J, for example, BBIDB!, D(DTB)I DT,
(DB /2) + ((DB")T/2) or any other. Note that 7, and hence U, are

symmetric.

Note also that, in contrast to [5], we employ (N + 1)n x (N + 1)n-
matrices Uy, My, cf., Nn x Nn-matrices £, M of [5], the space V of
(N 4 1)n-vectors (cf. the space A of [5] consisting of Nn-vectors). The
reason is that we include xzy as the first entry of the elements of V.
Then the computations are, we believe, smoother.
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Theorem 2. Let (z,u) be admissible on J with x9 = 0 = zn41.
Then
Zo Zo

TN TN

Proof. Let (x,u) be admissible, and let zg = 0 = xyy1. Then
Brug = xg+1 — Arzy holds on J, and so

N
.7:(517, u) = Z {mekT(Aka:k + Bkuk)
k=0
+uf BE Crwy + ui B ExBruy }

N
Z {:v{CkakH + (xﬂ_l — zF AT\Cpy,
k=0

+(zhyy — 2h AL Ek(Thgr — Arzi) }

N
T T T T
= E {@} Tewk + z Skri1 + T4y 1 S Ti}
k=0

T
TN 1ENTNL

+
T
) )
= ( Un . [m}
TN TN

Let us introduce the space V of (IV + 1)n-vectors

o
V= such that = = {zx};, is admissible on J

TN

with o = 0= LL‘N+1}.
Then we easily formulate a consequence of Theorem 2.

Corollary 1. F > 0 if and only if Uy > 0 on V.
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Remark 2. Note that Uy > 0on V, i.e., XTUynX > 0 for all X € V\{0},
if and only if

(6) MEUNMy >0 and Ker MEUN My C Ker My

whenever My is a matrix with Im My = V. We will construct such
matrix My and show that (6) is equivalent to the condition given in

(4).

Lemma 4. Let Ker X1 C Ker Xy, on J. Then, for all k € J, we
have

X Tes1Xes1 = A XU + XF[AT EcAr — CE AR X0}
— XS Xps1 — Xy SE X

Proof. Let k € J. Then
X Ter1 Xeg1 + XE SeXpqr + Xi SE X
= Xp A 181 Ak 1 X — X Gl Ar i1 Xt
+ X1 & Xpg1 + X3 Cf X1 — Xip AL ExXpq1
+ X 1Ce Xk — XiL Ep AR X,
= XAl ErrrAr i1 X1 — Xi 1 Ciy Ar1 X
+ X1 &k Xip1 + XE (AL Ukgr — Ug) — X AT E (AR Xy, + BiUy)
+ X1 Uk g1 — DrlUk) — X1 Ex(Xky1 — BrUs)
= AMX[U + XTATE A XK} + (Xis1 — AeXi) T EBLUY
— X G Ak X1 + XEAL (Cu X + DiUi) — Xiy 1 DiUs
= A{XLU, + XFAL &AL Xy — XECFAXK}
+ UL BLEWBRUL + (A Xk — Xpy1) DrUs
= A{XL U, + XT[ALEG AL — CFARXL}. O

Let us define matrices F;; for 0 <i < j < N by

Pj = X;X| P,
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where P; = X;X| B;. Then we have Py; = XOXTPJ =0, Py =
X, X]P = X;X] ,Bi = P; and if KerX; C KerX;, ie, if X; =
XZXJ-XJ, then

t
Pij =X X;Pj = XXXX]HB—XX]HB

For m € J we define (m + 1)n x (m + 1)n-matrices M,, by

Py Poi -+ P
0 P - Pinp

Mo = : .o :
0 -~ 0 Pu.n

Proposition 1 (Characterization of Im My). If Ker Xj, 11 C Ker X},
holds on J, then In My =V

Zo
Proof. Let Ker Xpy1 C Ker Xy on J. Let ( ) € V, ie.,
9o =0=2zn41. We put Y
co :=0, Ck+1 ‘= Ck — X,IJrlBk(Uka - uk) for k € J,

where u = {ug }xes is such that (z,u) is admissible on J. We will prove
do

To do
> € RIW+Dn guch that ( > ZMN< >,
dn TN dn

zo
ie., ( € Im My.

TN

that there exists (

We define dy, := Upcp, — ug for k € J. Then we have Xycg = 0 = xo.
Hence, by induction,

Xkt1cp41 = Xpy1ck — Xk+1X]Z+1Bk(Uka — ug)
= (Aka + BkUk)ck - Bk(Ukck - uk) = Ap Xpcr + Brug

= Apxy + Brug = Tiy1.
Thus Xcr = zy for all k € J*. Next we have for j € J

Pid; = X; X[, B;(Uje; — uj) = Xj(ej — ¢j1) = —XjA¢
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and
Pijdj = X; X Pjdj = ~X; X X;Ac; for0<i<j<N.

Therefore, for i € J,

N N N
ZPijdj - Z(_XiACj) - _Xi ZAC]'
j=i j=t

=i
= —Xi(eny1 — ¢i)
= _XiX;v+1XN+1CN+1 + Xic
= _XiX}‘v+1mN+1 +x; = x;.
Thus,
do Py -+ PN do T
(7) My : = : : = :
dy Pyn dn TN

Zo

Conversely, let < ) € ImMpy and put 1 = 0. There are
TN

do, ... ,dy € R™ satisfying (7), i.e., z; = Z;V:Z Pijd; for ¢ € J. Then
zo = 0 and for k € J\{NN}, we have

N N
Thor — Arzr = > Xp1 X[ Pid; — Ap Y X3 X Pyd;
j=k+1 j=k

N
= (Xip1 — AuXi) Y X[Pjd; — A Xy X[ Pedy,

j=k+1
N
=BUx Y XIPjd; — ABEX]T X d
Jj=k+1

N
= By [Uk > XIPd; - ALX[L X[ di | € Im By,
j=k+1

and

TN+1 — ANxN = —.ANPNNdN = —BNA%XJTVJJ_IX?\}CZN S ImBN.
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o
Thus z is admissible and ( > ev. u]

TN

For m € J, define (m+1)n X n-matrices Q,,, Rm, Qm and n X n-matrix
A, by

Xo 0
Qm = : ) Rm = : )
X‘ 0
m Sm

Qm = Mﬁqum + M%Rme—ﬁ—la
A = QLU O + QL Ry X1 + X5 R Qu + X5 1 Toni1 Xon1.-

Lemma 5. Let Ker Xi1 C Ker X, on J. Then
(1) A = XL 1 {Unms1 + [AL 1 Emi1Amtr — CL 1 A1) Ximga } for
m e J;
(i) Prsa X3 Am X}y Pt = P for m € J\{N};
(iii) @, =0 for m € J\{N}.

Proof. See Appendix A. O
The following statement is the key to our main result, Theorem 3.

Proposition 2. Let Ker X411 C Ker Xy on J. Then, for any
m € J\{N}, we have

MU M,y O
M£+1um+1Mm+1 = ( 0 Pm+1> .

Proof. Let m € J. Then we have
Po() R P()m P0m+1

Pmm Pmm+1 0 Xm+1X:n+1Pm+1

o - 0 Poyimtl
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and
To  So
s T Un R
Umt1 = Sy :<R£ Tm+1>'
St Tm Sm
ST Tmi1

Hence, by putting M, = (A/é’" ), we have

Mm+1 = (Mm QerlX:nJrleJrl) .

Moreover,
Mo\ (U, R M
T = o m m m m o T
M, U1 My, = < 0 > (RT Tm-‘,—l) ( 0 > = M, UMy,

Therefore,

ME U s 1Mot
7T
_ ( ME Uy 11 M, ME U191 X, 3 P >
P XIT 08 Umgr Pt X4 Q8 U1 Q1 X,y P
_ ( MT U M, QX! Pt >
Pm+1XanT+1Q£z Pm+1X:nilAlez+1Pm+1 ’

where
. B - Un Rm Om
Q= MpUm11Qmi1 = (M, 0) <R% Tm+1 Xm+1
= MﬁUQO + MZ-LRme+17
Un Rm Om
Am = Qi ailm41Qmi1 = (QF, XT11) <R£ Tm+1> (Xm+1>

= Q%um Qm + Q%Rme—i-l + X;H_l/R»%Qm + XZL_._le—Q—le—Q—l-
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Thus we are done if we prove that
Q=0 and Py X! ApX! Prii = P,

which is a content of Lemma 5. O

Corollary 2. Let Ker X; 11 C Ker Xy, on J. Then

MEUN My = diag {Py, Py,... ,Pxn}.

Proof. By applying Proposition 2 for m = N —1,...,0, we have
MTI\}UNMN = diag {MguOMo, Pl, e ,PN}.

However, MTUy Mo = PyToPy = 0 = P, so the result follows. ]

Now we may state the main result of this paper, the theorem relating
positivity of the discrete quadratic functional F to (among others)
condition (4) but without using the discrete Picone’s identity. We
remind the reader that (X, U) is the principal solution of (S) at zero.

Theorem 3. The following are equivalent.
(i) F > 0;
(ii) Un > 0 on V;
(iii) Ker MY UN My C Ker My and MEUNMpy > 0;

(iv) Ker X341 € Ker Xy, and P, > 0 on J, i.e., (X,U) has no focal
points in (0, N + 1].

Proof. Tt is a direct consequence of Corollary 1, Remark 2 and
Corollary 2. mi

Remark 3. If B is nonsingular and if the system (S) is rewritten
system (H), i.e., if both the matrix A of (S) and B of the Hamiltonian
system are nonsingular, the so-called “regular case,” then the above
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procedure gives the results of [5] noted in Section 1. However, for a
general matrix B this cannot be expected since, in the case of LHdS,
the matrix A = A is nonsingular and this fact is essential for the
construction of the matrices T}, and Sy, for system (H). It means that
one cannot obtain T, S as special cases of our Ty, Sy in spite of the
fact that the procedure for deriving them is in both cases the same.
For, if A is nonsingular, then D = CA~'B + AT~1, and the matrices
CA~! and A~'B are symmetric and (z,u) is admissible if and only if
T + A;lBkuk = A;1$k+1. Then the quadratic functional F can be
brought into the form from Theorem 2 with

To = (Ay*Bo)',

Te = Coor Aty + AL (A0 Bron) T ALY
+ (A'By)T for 1 <k <N,

Sk =—(A'Br)T A fork e J,

which reduce to T} and 5’,2 when substituting A = A, B = AB and
C = CA, cf. (1), although Ty # T and Sk # Sk.

4. Reciprocal symplectic systems. The following transformation
lemma is an easy consequence of Lemma 1.

Lemma 6. Let Ry be a sequence of symplectic n X n-matrices. Then
the transformation z = RZ takes the symplectic system zpi1 = Sk2k
into another symplectic system Zx41 = gkék Particularly, S’k =
R} SkRy.

The reciprocal symplectic system is the symplectic system
(5%) Zhy1 = Sk

arising from (S) upon the transformation z = Jz*, i.e., we have
S*=JTSJ = ST-1. Thus,

(1) s (5 X))
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The corresponding quadratic functional F* takes the form

N

Fr(z7) =Y {SiTKSE — Kz
k=0
N

=3 H IS KSE - Ky T e
0

2 KT — SEKT S}z

I
=1

x~
Il
=

= —F(2).

Reformulating the definitions from page 4, we get

(a) z* satisfies the boundary conditions if KT 2y = 0 = KT 2n 41, iee.,
if Uy = 0= UN+15

(b) z* is admissible if KTzpy1 = KT Skzi, on J, ie., if upyr =
Crxp + Druy on J;

(c) u is admissible if there exists an z such that z* = (;") is
admissible;

(d) the solution Z* of (S*) is principal at m € J if the solution
Z = (X,U) of (S) satisfies Z,,, = (é), ie., if X,, =1 and U,,, = 0.

Let us define the matrices 7, and S} by
Tr :=Dr&D, +DFBL+ &}, and S} :=-Bf —DFe;, kel
with £*, := 0; the matrix £* is any symmetric n x n-matrix satisfying

crexC = —ATC, for example, —CCTACT, —A(ATC)T AT, —(ACT/2) —
((ACH)T/2).

In this section we always assume that (X,U) is the solution of (S)
satisfying Xo = I, Up = 0. Define the matrices Py and P;; by
P; =UUJ, Cc and P} =UUP;.

Define the matrices /* and M* in the analogous way as for the system
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(S), i.e., all their entries with the superscript ‘x.” Let

Uo
V* = such that u = {ug }h~)" is admissible on J

un
with ug =0 = UN+1}-
Then Theorem 3 for reciprocal symplectic systems reads as:

Theorem 4. The following are equivalent.

(i) F(z,u) <0 for all (z,u) satisfying

uZ 0, ug =0=unt1 and upy1 = Crzr + Drus;

(ii) Uy > 0 on V*;
(iii) Ker M3 UKZ M C Ker MY and M3 UMy > 0;
(iv) The solution (X,U) of (S) with Xo = I, Uy = 0, satisfies

Ker U4y CKerUp and P} =UUl Ck <0 onJ.

Remark 4. The equivalence (i) < (iv) is a part of the Reid roundabout
theorem for reciprocal symplectic systems of [4].

APPENDIX
A. Proof of Lemma 5.
Proof. (i) First we have, by Lemma 4,

Ao = 9T, 0, = XXy = x{ {U1 + [AnglAl — CfAl] Xl}.



DISCONJUGACY OF SYMPLECTIC SYSTEMS 1317

Hence, by induction, if (i) holds for 0 < k < m, i.e., 1 <m < N, then

A =Am 1+ X2 Toi1 X1 + QLR X1 + X2, R Q,,
=Amo1+ X 1 T 1 Xmg1 + X Sm X1 + X 1S Xom
Lot T Uy + [ALEm A — CEA] Xom}

+ A X U + X [AREmAn — CLAR] X1}

= X {Un + [AL 1 Emi1Amis — Ch i Ama] Xomga } 5
(ii) Let m € J\{N}. In the first step we show that

Pt [AL 1Emi1Amir — Coh iy Amt1] Pyt

= X1 X! oA 1 X1 X 41 Pt
‘We have

Py [Agm+15m+1~'4m+1 - C£+1Am+1] Pt
= X1 X, 0Bt Ay 1 EmrAm1 By X 0 X0
- m+1C3,:+1Am+1Pm+1
= m+1X:nJrZAm‘i‘1B7€l+lgm+16m+1Ag+1X:na2err;+l
— X1 X 2B 1A 1Cn1 Pt
= m+1XrTn+2Am+1Bgz+1Dm+lA£+1XjnT+2X£+1
- m+1X:n+2Am+1BZz+lcm+1Br1;+1XLT+2X3;+1
= X1 X o Ami1 BL ) (D1 ALy — i BL ) XIT L XE L
= m+1Xjn+2Am+1B7T’L+1X:nT+2X7Z;+1 = Xm+1XIn+2Am+1Pm+l

= X1 X 0 Ams1 X1 X, o1 Pt
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Thus, by (i) and by the first step

Pm+1X;T+1AmXIn+1Pm+1

= m+1XlzT+1X£+1Um+1X:n+1Pm+1 + Pm+1X:na1X£+1

: [Azn+1gm+1Am+1 - Cr7;+1Am+1] Xm+1XL+1Pm+1

= m+1Um+1X;z+1Pm+1 + Py

AN 1 Emi1Amir = Ch 1 Amg1] P
= X1 X) 1 oBm 1 U1 X, P

+ X1 X o A1 X1 Xy Pt

= X1 X) o Bims1Ums1 + Ams1 Xims1) X Pt

= Xm+1X:n+2Xm+2XrTn+1Pm+1

= Xm+1Xm+1Pm+1 = Pm+1-

(iii) First we have

Qo = MIUQy + MERoX1 = PooToXo + PooSo X1 = 0.

Hence, by induction, if €, = 0 for some 0 < m < N — 1, then

Qm,-l—l
4T
= Mm+1um+2 Qm+2

— <Mm+1 >T ( um+1 Rerl > ( Qm+1 )
0 Rt Tmir ) \ Xmyz
Mm+1( m+1 Qm+1 + Rm+1Xm+2)

T

Mm Qm +1 m+1 >

m (uerl Qerl + Rm+1Xm+2)
Xm+1Xm+1Pm+1

M um+1Qm+1 +.A;l RerleJrZ

P X1 O U1 Qg + P X1 Q8 Ry X2

Q40

< m+1Xm+IQm+1>( +19m+1 +1Xm42)
< Py X A +Pm+1Xm+1Xm+13m+1Xm+2>

)
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0
- <Pm+1XJnT+1Am + Pm+18m+1Xm+2> '
Thus we are done if we prove that Pm+1X;rnT+1Am + Pr1Sm1Xmy2 =
0. By part (i) we have
Pm+1X;£z7:|-1Am + Pm+18m+1Xm+2
= m+1Xjn11Xr€+l{Um+l + [A£+1g7n+1~’4m+1 - C£+1Am+1]Xm+l}
+ Pm+1[cg;+1 - A771;+18m+1]Xm+2
= m+1Um+1 + Pm+1A£z€m+1Am+1Xm+l
- m+1A$n+1cm+1Xm+1
+ Poi1Cri 1 Xma2 — Pyt A1 Emi1 Ximpo
= Pm+1Um+1 + PerlAnglngrl(AerleJrl - Xm+2)
- m—l—lAZz-i-lCm-l—le-l-l + Pm+1(A£+1Um+2 - Um+1)
= X1 X} Bt AL 1€ 1Bt Uit
+ Pr1 Ay 1 (Ungz — Cy1 Ximg1)
= X1 X} o Am 1Bl D1 U
+ X1 X o Bt AL 1 D1 U1 = 0.

The proof is now complete. ]
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