DISCONJUGACY OF SYMPLECTIC SYSTEMS AND POSITIVE DEFINITENESS OF BLOCK TRIDIAGONAL MATRICES

ROMAN HILSCHER

ABSTRACT. In this paper we discuss disconjugacy of symplectic difference systems in the relation with positive definiteness of a certain associated block tridiagonal matrix. Analogous results have been recently proved for a special form of symplectic systems-linear Hamiltonian difference systems and Sturm-Liouville difference equations. Finally, reciprocal systems are also discussed.

1. Introduction. The principal aim of this paper is to study the relationship between disconjugacy of symplectic systems

$$(S) z_{k+1} = S_k z_k, \quad 0 \le k \le N$$

and positive definiteness of a certain symmetric block tridiagonal matrix associated with (S). Symplectic systems cover two important objects as its special cases: linear Hamiltonian difference systems (LHdS, see below) and Sturm-Liouville difference equations (SLdE, the special case of LHdS). Lately a considerable effort has been made to define disconjugacy for LHdS, and hence for SLdE, and to prove the so-called Reid roundabout theorem for such systems, see [3]. Recently the abovementioned results have been extended by Bohner and Došlý also to symplectic systems, see [4]. The approach used in the above references is based on the discrete Picone's identity, which is not needed in [5], and in the present work, too.

Consider an LHdS

(H)
$$\Delta x_k = A_k x_{k+1} + B_k u_k, \quad \Delta u_k = C_k x_{k+1} - A_k^T u_k, \\ 0 \le k \le N,$$

Received by the editors on May 5, 1997, and in revised form on December 10,

<sup>1997.
1991</sup> AMS Mathematics Subject Classification. 39A10, 39A12, 15A09, 15A63.

Key words and phrases. Symplectic system, linear Hamiltonian difference system, disconjugacy, principal solution, Sturm-Liouville difference equation.

Supported by grants 201/96/0410 and 201/98/0677 of the Czech Grant Agency.

where A, B, C are sequences of $n \times n$ -matrices, B and C symmetric, I - A nonsingular. We denote $\tilde{A} := (I - A)^{-1}$. The associated discrete quadratic functional takes the form

$$\mathcal{F}_{H}(x,u) = \sum_{k=1}^{N} \{x_{k+1}^{T} C_{k} x_{k+1} + u_{k}^{T} B_{k} u_{k}\}.$$

System (H) can be rewritten into (S) with the matrix

$$S = \begin{pmatrix} \tilde{A} & \tilde{A}B \\ C\tilde{A} & C\tilde{A}B + \tilde{A}^{T-1} \end{pmatrix}.$$

Define the $n \times n$ -matrices \bar{T}_k , \bar{S}_k and $kn \times kn$ -matrix \mathcal{L}_k in the following way:

(1)
$$\bar{T}_{k} := C_{k} + (I - A_{k}^{T}) B_{k}^{\dagger} (I - A_{k}) + B_{k+1}^{\dagger},
\bar{S}_{k} := -B_{k}^{\dagger} (I - A_{k}), \quad 0 \le k \le N - 1,
\mathcal{L}_{k} = \begin{pmatrix} \bar{T}_{0} & \bar{S}_{1} \\ \bar{S}_{1}^{T} & \bar{T}_{1} & \ddots \\ & \ddots & \ddots & \bar{S}_{k-1} \\ & \bar{S}_{k-1}^{T} & \bar{T}_{k-1} \end{pmatrix}, \quad 1 \le k \le N.$$

In [5] it is shown that disconjugacy of the system (H), and hence positive definiteness of the quadratic functional \mathcal{F}_H , is equivalent to positive definiteness of the matrix $\mathcal{L} := \mathcal{L}_N$ on some appropriate subspace of "N-vectors" (here every item of such an "N-vector" is an n-vector itself). For more details on disconjugacy of LHdS, (S) and positive definiteness of \mathcal{F} , see the work of Bohner and Došlý [3, 5], and the references given therein. A comprehensive treatment of difference equations and LHdS is contained in the recent monograph of Ahlbrandt and Peterson [1].

The subject of this paper is to extend the above-mentioned results to symplectic systems.

2. Preliminary results. Let $n, N \in \mathbb{N}$, $J := [0, N] \cap \mathbb{Z}$, $J^* := [0, N+1] \cap \mathbb{Z}$. By M^{\dagger} we denote the Moore-Penrose generalized

inverse of a matrix M, i.e., the unique matrix satisfying $MM^\dagger M = M$, $M^\dagger MM^\dagger = M^\dagger$ such that MM^\dagger and $M^\dagger M$ are symmetric. For a symmetric matrix M, we write M>0 if M is positive definite and $M\geq 0$ if M is positive semi-definite. By Ker M, Im M, rank M, M^T , M^{-1} , det M, we denote the kernel, image, rank, transpose, inverse and determinant of the matrix M, respectively. By Δ we denote the usual forward difference operator. We denote by I the $n\times n$ -identity matrix and define $2n\times 2n$ -matrices $\mathcal{J}=\begin{pmatrix} 0&I\\ -I&0 \end{pmatrix}$ and $\mathcal{K}=\begin{pmatrix} 0&0\\ I&0 \end{pmatrix}$. A real $2n\times 2n$ -matrix S is called symplectic if $S^T\mathcal{J}S=\mathcal{J}$ holds.

Lemma 1 (Properties of symplectic matrices). Let $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \in \mathbf{R}^{n \times n}$ and $S := \begin{pmatrix} \mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D} \end{pmatrix} \in \mathbf{R}^{2n \times 2n}$ be matrices. Then S is symplectic if and only if

(2)
$$\begin{cases} \mathcal{A}^T \mathcal{D} - \mathcal{C}^T \mathcal{B} = \mathcal{A} \mathcal{D}^T - \mathcal{B} \mathcal{C}^T = I, & and \\ \mathcal{A} \mathcal{B}^T, \mathcal{C} \mathcal{D}^T, \mathcal{C}^T \mathcal{A}, \mathcal{D}^T \mathcal{B} & symmetric \end{cases}$$

In this case S is nonsingular, $S^{-1} = \mathcal{J}^T S^T \mathcal{J} = \begin{pmatrix} \mathcal{D}^T & -\mathcal{B}^T \\ -\mathcal{C}^T & \mathcal{A}^T \end{pmatrix}$ and both S^{-1} and S^T are symplectic as well. Consequently, the set of all (real) symplectic $2n \times 2n$ -matrices form a group with respect to the matrix multiplication.

Proof. Rewriting the definition of a symplectic matrix, we get formulae (2). From $\mathcal{J}^{-1} = \mathcal{J}^T$ and $1 = \det \mathcal{J} = \det (S^T \mathcal{J}S) = (\det S)^2$, the rest follows. \square

Consider a symplectic system

$$(S) z_{k+1} = S_k z_k, \quad k \in J,$$

where z_k is a sequence of 2n-vectors defined on J^* and S_k is a sequence of $2n \times 2n$ -matrices defined on J. The matrices S_k are supposed to be symplectic. Simultaneously with the system (S) we consider its matrix analogy $Z_{k+1} = S_k Z_k$, $k \in J$, where Z_k is a sequence of $2n \times n$ -matrices defined on J^* . When referring to solutions of (S), we use a usual agreement that the vector-valued solutions of (S) are denoted by small letters and the matrix-valued solutions by capital ones.

In the sequel we use the following notation:

$$S = \begin{pmatrix} \mathcal{A} & \mathcal{B} \\ \mathcal{C} & \mathcal{D} \end{pmatrix}, \qquad z = \begin{pmatrix} x \\ u \end{pmatrix}, \qquad Z = \begin{pmatrix} X \\ U \end{pmatrix}$$

with $x, u: J^* \to \mathbf{R}^n$, $X, U: J^* \to \mathbf{R}^{n \times n}$, $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}: J \to \mathbf{R}^{n \times n}$. The system (S) can then be rewritten into the form

(S)
$$x_{k+1} = A_k x_k + B_k u_k$$
, $u_{k+1} = C_k x_k + D_k u_k$, $k \in J$.

By Lemma 1, the time-reversed system $z_k = S_k^{-1} z_{k+1}$ reads as

(3)
$$x_k = \mathcal{D}_k^T x_{k+1} - \mathcal{B}_k^T u_{k+1}, \qquad u_k = -\mathcal{C}_k^T x_{k+1} + \mathcal{A}_k^T u_{k+1}, \quad k \in J.$$

Simultaneously with (S) consider the discrete quadratic functional

$$\mathcal{F}(z) = \sum_{k=0}^{N} z_k^T \left\{ S_k^T \mathcal{K} S_k - \mathcal{K} \right\} z_k,$$

which can be rewritten into the form

$$\mathcal{F}(x, u) = \sum_{k=0}^{N} \left\{ x_k^T \mathcal{C}_k^T \mathcal{A}_k x_k + x_k^T \mathcal{C}_k^T \mathcal{B}_k u_k + u_k^T \mathcal{B}_k^T \mathcal{C}_k x_k + u_k^T \mathcal{D}_k^T \mathcal{B}_k u_k \right\}.$$

For the LHdS the above quadratic functional \mathcal{F} reduces to \mathcal{F}_H .

According to [4], we say that

- (a) z satisfies the boundary conditions if $Kz_0 = 0 = Kz_{N+1}$, i.e., if $x_0 = 0 = x_{N+1}$;
- (b) z is admissible if $\mathcal{K}z_{k+1} = \mathcal{K}S_k z_k$ on J, i.e., if $x_{k+1} = \mathcal{A}_k x_k + \mathcal{B}_k u_k$ on J:
- (c) x is admissible if there exists u such that $z=\left(\begin{smallmatrix}x\\u\end{smallmatrix}\right)$ is admissible;
- (d) the discrete quadratic functional \mathcal{F} is positive definite $(\mathcal{F} > 0)$ if $\mathcal{F}(z) > 0$ for all nontrivial admissible z satisfying the boundary conditions, i.e., if $\mathcal{F}(x,u) > 0$ for all nontrivial admissible x with $x_0 = 0 = x_{N+1}$;
- (e) a solution Z of (S) is a conjoined basis of (S) if rank Z = n and $Z^T \mathcal{J} Z = 0$ hold on J^* , i.e., if rank $(X^T U^T) = n$ and $X^T U = U^T X$ on J^* ;

(f) the solution Z of (S) is *principal* at $m \in J$ if $Z_m = \begin{pmatrix} 0 \\ I \end{pmatrix}$, i.e., if $X_m = 0$ and $U_m = I$;

(g) a conjoined basis (X,U) has a focal point in the interval (k,k+1], $k\in J,$ if

(4)
$$\operatorname{Ker} X_{k+1} \subseteq \operatorname{Ker} X_k \text{ and } P_k := X_k X_{k+1}^{\dagger} \mathcal{B}_k \ge 0$$

does not hold;

(h) the solution (x, u) of (S) has a generalized zero in $(k, k+1], k \in J$, if

$$x_k \neq 0$$
, $x_{k+1} \in \operatorname{Im} \mathcal{B}_k$ and $x_k^T \mathcal{B}_k^{\dagger} x_{k+1} \leq 0$;

(i) the system (S) is disconjugate on J if no solution of (S) has more than one and no solution (x, u) of (S) with $x_0 = 0$ has any generalized zeros on J.

Lemma 2. For any two matrices V and W we have

$$\operatorname{Ker} V \subseteq \operatorname{Ker} W \quad iff \quad W = WV^{\dagger}V \quad iff \quad W^{\dagger} = V^{\dagger}VW^{\dagger}.$$

Proof. See [2] or [3, Remark 2(iii)].

Lemma 3. Let $P_k = X_k X_{k+1}^{\dagger} \mathcal{B}_k$ for $k \in J$. If $\operatorname{Ker} X_{k+1} \subseteq \operatorname{Ker} X_k$, then

$$P_k$$
 is symmetric and $\operatorname{Ker} X_{k+1}^T \subseteq \operatorname{Ker} \mathcal{B}_k^T$.

Proof. See [4] for details.

Remark 1. By Lemma 2 we have that if $\operatorname{Ker} X_{k+1} \subseteq \operatorname{Ker} X_k$, then $\mathcal{B}_k = X_{k+1} X_{k+1}^{\dagger} \mathcal{B}_k$ and $\mathcal{B}_k^{\dagger} = \mathcal{B}_k^{\dagger} X_{k+1} X_{k+1}^{\dagger}$.

The following Reid roundabout theorem for symplectic systems has been proved in [4].

Theorem 1. The following statements are equivalent.

- (i) $\mathcal{F} > 0$;
- (ii) the system (S) is disconjugate on J;
- (iii) the principal solution Z = (X, U) of (S) has no focal points in (0, N+1].

The goal of this paper is to relate the condition (4) to a condition on a certain block tridiagonal $(N+1)n \times (N+1)n$ -matrix. Namely, our Corollary 2 explains why matrices P_k appear in the definition of focal points for a conjoined basis of (S).

3. Main results. We proceed similarly as in [5]. In this section we always assume that (X, U) is the principal solution of (S) at 0, i.e., $X_0 = 0$ and $U_0 = I$.

For $m \in J$ we define $(m+1)n \times (m+1)n$ -matrices \mathcal{U}_m by $\mathcal{U}_0 := \mathcal{T}_0$ and for $1 \leq m \leq N$,

$$\mathcal{U}_m = egin{pmatrix} \mathcal{T}_0 & \mathcal{S}_0 & & & & & \\ \mathcal{S}_0^T & \mathcal{T}_1 & \ddots & & & & \\ & \ddots & \ddots & \mathcal{S}_{m-1} & & \mathcal{T}_m \end{pmatrix},$$

where

(5)
$$\mathcal{T}_k = \mathcal{A}_k^T \mathcal{E}_k \mathcal{A}_k - \mathcal{A}_k^T \mathcal{C}_k + \mathcal{E}_{k-1}$$
 and $\mathcal{S}_k = \mathcal{C}_k^T - \mathcal{A}_k^T \mathcal{E}_k$, $k \in J$,

with $\mathcal{E}_{-1} := 0$; the matrix \mathcal{E} is any symmetric $n \times n$ -matrix for which $\mathcal{B}^T \mathcal{E} \mathcal{B} = \mathcal{D}^T \mathcal{B}$ holds on J, for example, $\mathcal{B} \mathcal{B}^{\dagger} \mathcal{D} \mathcal{B}^{\dagger}$, $\mathcal{D}(\mathcal{D}^T \mathcal{B})^{\dagger} \mathcal{D}^T$, $(\mathcal{D} \mathcal{B}^{\dagger}/2) + ((\mathcal{D} \mathcal{B}^{\dagger})^T/2)$ or any other. Note that \mathcal{T} , and hence \mathcal{U} , are symmetric.

Note also that, in contrast to [5], we employ $(N+1)n \times (N+1)n$ -matrices \mathcal{U}_N , \mathcal{M}_N , cf., $Nn \times Nn$ -matrices \mathcal{L} , \mathcal{M} of [5], the space \mathcal{V} of (N+1)n-vectors (cf. the space \mathcal{A} of [5] consisting of Nn-vectors). The reason is that we include x_0 as the first entry of the elements of \mathcal{V} . Then the computations are, we believe, smoother.

Theorem 2. Let (x, u) be admissible on J with $x_0 = 0 = x_{N+1}$. Then

$$\mathcal{F}(x,u) = \begin{pmatrix} x_0 \\ \vdots \\ x_N \end{pmatrix}^T \mathcal{U}_N \begin{pmatrix} x_0 \\ \vdots \\ x_N \end{pmatrix}.$$

Proof. Let (x, u) be admissible, and let $x_0 = 0 = x_{N+1}$. Then $\mathcal{B}_k u_k = x_{k+1} - \mathcal{A}_k x_k$ holds on J, and so

$$\mathcal{F}(x,u) = \sum_{k=0}^{N} \left\{ x_k^T \mathcal{C}_k^T (\mathcal{A}_k x_k + \mathcal{B}_k u_k) + u_k^T \mathcal{B}_k^T \mathcal{C}_k x_k + u_k^T \mathcal{B}_k^T \mathcal{E}_k \mathcal{B}_k u_k \right\}$$

$$= \sum_{k=0}^{N} \left\{ x_k^T \mathcal{C}_k^T x_{k+1} + (x_{k+1}^T - x_k^T \mathcal{A}_k^T) \mathcal{C}_k x_k + (x_{k+1}^T - x_k^T \mathcal{A}_k^T) \mathcal{E}_k (x_{k+1} - \mathcal{A}_k x_k) \right\}$$

$$= \sum_{k=0}^{N} \left\{ x_k^T \mathcal{T}_k x_k + x_k^T \mathcal{S}_k x_{k+1} + x_{k+1}^T \mathcal{S}_k^T x_k \right\}$$

$$+ x_{N+1}^T \mathcal{E}_N x_{N+1}$$

$$= \begin{pmatrix} x_0 \\ \vdots \\ x_N \end{pmatrix}^T \mathcal{U}_N \begin{pmatrix} x_0 \\ \vdots \\ x_N \end{pmatrix}. \quad \Box$$

Let us introduce the space \mathcal{V} of (N+1)n-vectors

$$\mathcal{V}:=\left\{egin{pmatrix} x_0 \\ \vdots \\ x_N \end{pmatrix} \text{ such that } x=\{x_k\}_{k=0}^{N+1} \text{ is admissible on } J \end{cases}$$
 with $x_0=0=x_{N+1}$

Then we easily formulate a consequence of Theorem 2.

Corollary 1. $\mathcal{F} > 0$ if and only if $\mathcal{U}_N > 0$ on \mathcal{V} .

Remark 2. Note that $\mathcal{U}_N > 0$ on \mathcal{V} , i.e., $\chi^T \mathcal{U}_N \chi > 0$ for all $\chi \in \mathcal{V} \setminus \{0\}$, if and only if

(6)
$$\mathcal{M}_N^T \mathcal{U}_N \mathcal{M}_N \geq 0$$
 and $\operatorname{Ker} \mathcal{M}_N^T \mathcal{U}_N \mathcal{M}_N \subseteq \operatorname{Ker} \mathcal{M}_N$

whenever \mathcal{M}_N is a matrix with $\operatorname{Im} \mathcal{M}_N = \mathcal{V}$. We will construct such matrix \mathcal{M}_N and show that (6) is equivalent to the condition given in (4).

Lemma 4. Let $\operatorname{Ker} X_{k+1} \subseteq \operatorname{Ker} X_k$ on J. Then, for all $k \in J$, we have

$$X_{k+1}^T \mathcal{T}_{k+1} X_{k+1} = \Delta \left\{ X_k^T U_k + X_k^T \left[\mathcal{A}_k^T \mathcal{E}_k \mathcal{A}_k - \mathcal{C}_k^T \mathcal{A}_k \right] X_k \right\} - X_k^T \mathcal{S}_k X_{k+1} - X_{k+1}^T \mathcal{S}_k^T X_k.$$

Proof. Let $k \in J$. Then

$$\begin{split} X_{k+1}^T \mathcal{T}_{k+1} X_{k+1} + X_k^T \mathcal{S}_k X_{k+1} + X_{k+1}^T \mathcal{S}_k^T X_k \\ &= X_{k+1}^T \mathcal{A}_{k+1}^T \mathcal{E}_{k+1} \mathcal{A}_{k+1} X_{k+1} - X_{k+1}^T \mathcal{C}_{k+1}^T \mathcal{A}_{k+1} X_{k+1} \\ &+ X_{k+1}^T \mathcal{E}_k X_{k+1} + X_k^T \mathcal{C}_k^T X_{k+1} - X_k^T \mathcal{A}_k^T \mathcal{E}_k X_{k+1} \\ &+ X_{k+1}^T \mathcal{C}_k X_k - X_{k+1}^T \mathcal{E}_k \mathcal{A}_k X_k \\ &= X_{k+1}^T \mathcal{A}_{k+1}^T \mathcal{E}_{k+1} \mathcal{A}_{k+1} X_{k+1} - X_{k+1}^T \mathcal{C}_{k+1}^T \mathcal{A}_{k+1} X_{k+1} \\ &+ X_{k+1}^T \mathcal{E}_k X_{k+1} + X_k^T (\mathcal{A}_k^T U_{k+1} - U_k) - X_k^T \mathcal{A}_k^T \mathcal{E}_k (\mathcal{A}_k X_k + \mathcal{B}_k U_k) \\ &+ X_{k+1}^T (U_{k+1} - \mathcal{D}_k U_k) - X_{k+1}^T \mathcal{E}_k (X_{k+1} - \mathcal{B}_k U_k) \\ &= \Delta \left\{ X_k^T U_k + X_k^T \mathcal{A}_k^T \mathcal{E}_k \mathcal{A}_k X_k \right\} + (X_{k+1} - \mathcal{A}_k X_k)^T \mathcal{E}_k \mathcal{B}_k U_k \\ &- X_{k+1}^T \mathcal{C}_{k+1}^T \mathcal{A}_{k+1} X_{k+1} + X_k^T \mathcal{A}_k^T (\mathcal{C}_k X_k + \mathcal{D}_k U_k) - X_{k+1}^T \mathcal{D}_k U_k \\ &= \Delta \left\{ X_k^T U_k + X_k^T \mathcal{A}_k^T \mathcal{E}_k \mathcal{A}_k X_k - X_k^T \mathcal{C}_k^T \mathcal{A}_k X_k \right\} \\ &+ U_k^T \mathcal{B}_k^T \mathcal{E}_k \mathcal{B}_k U_k + (\mathcal{A}_k X_k - X_{k+1})^T \mathcal{D}_k U_k \\ &= \Delta \left\{ X_k^T U_k + X_k^T [\mathcal{A}_k^T \mathcal{E}_k \mathcal{A}_k - \mathcal{C}_k^T \mathcal{A}_k] X_k \right\}. \quad \Box \end{split}$$

Let us define matrices P_{ij} for $0 \le i \le j \le N$ by

$$P_{ij} = X_i X_j^{\dagger} P_j,$$

where $P_j = X_j X_{j+1}^{\dagger} \mathcal{B}_j$. Then we have $P_{0j} = X_0 X_j^{\dagger} P_j = 0$, $P_{ii} = X_i X_i^{\dagger} P_i = X_i X_{i+1}^{\dagger} \mathcal{B}_i = P_i$ and if $\operatorname{Ker} X_j \subseteq \operatorname{Ker} X_i$, i.e., if $X_i = X_i X_j^{\dagger} X_j$, then

$$P_{ij} = X_i X_i^{\dagger} P_j = X_i X_i^{\dagger} X_j X_{i+1}^{\dagger} \mathcal{B}_j = X_i X_{i+1}^{\dagger} \mathcal{B}_j.$$

For $m \in J$ we define $(m+1)n \times (m+1)n$ -matrices \mathcal{M}_m by

$$\mathcal{M}_{m} = \begin{pmatrix} P_{00} & P_{01} & \cdots & P_{0m} \\ 0 & P_{11} & \cdots & P_{1m} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & P_{mm} \end{pmatrix}.$$

Proposition 1 (Characterization of Im \mathcal{M}_N). If Ker $X_{k+1} \subseteq \text{Ker } X_k$ holds on J, then Im $\mathcal{M}_N = \mathcal{V}$.

Proof. Let $\operatorname{Ker} X_{k+1} \subseteq \operatorname{Ker} X_k$ on J. Let $\begin{pmatrix} x_0 \\ \vdots \\ x_N \end{pmatrix} \in \mathcal{V}$, i.e., $x_0 = 0 = x_{N+1}$. We put

$$c_0 := 0,$$
 $c_{k+1} := c_k - X_{k+1}^{\dagger} \mathcal{B}_k (U_k c_k - u_k)$ for $k \in J$,

where $u = \{u_k\}_{k \in J}$ is such that (x, u) is admissible on J. We will prove that there exists $\begin{pmatrix} d_0 \\ \vdots \\ d_N \end{pmatrix} \in \mathbf{R}^{(N+1)n}$ such that $\begin{pmatrix} x_0 \\ \vdots \\ x_N \end{pmatrix} = \mathcal{M}_N \begin{pmatrix} d_0 \\ \vdots \\ d_N \end{pmatrix}$, i.e., $\begin{pmatrix} x_0 \\ \vdots \\ x_N \end{pmatrix} \in \operatorname{Im} \mathcal{M}_N$.

We define $d_k := U_k c_k - u_k$ for $k \in J$. Then we have $X_0 c_0 = 0 = x_0$. Hence, by induction,

$$X_{k+1}c_{k+1} = X_{k+1}c_k - X_{k+1}X_{k+1}^{\dagger}\mathcal{B}_k(U_kc_k - u_k)$$

= $(\mathcal{A}_kX_k + \mathcal{B}_kU_k)c_k - \mathcal{B}_k(U_kc_k - u_k) = \mathcal{A}_kX_kc_k + \mathcal{B}_ku_k$
= $\mathcal{A}_kX_k + \mathcal{B}_ku_k = x_{k+1}$.

Thus $X_k c_k = x_k$ for all $k \in J^*$. Next we have for $j \in J$

$$P_j d_j = X_j X_{j+1}^{\dagger} \mathcal{B}_j (U_j c_j - u_j) = X_j (c_j - c_{j+1}) = -X_j \Delta c_j$$

and

$$P_{ij}d_j = X_i X_i^{\dagger} P_j d_j = -X_i X_i^{\dagger} X_j \Delta c_j \quad \text{for } 0 \le i \le j \le N.$$

Therefore, for $i \in J$,

$$\sum_{j=i}^{N} P_{ij} d_j = \sum_{j=i}^{N} (-X_i \Delta c_j) = -X_i \sum_{j=i}^{N} \Delta c_j$$

$$= -X_i (c_{N+1} - c_i)$$

$$= -X_i X_{N+1}^{\dagger} X_{N+1} c_{N+1} + X_i c_i$$

$$= -X_i X_{N+1}^{\dagger} x_{N+1} + x_i = x_i.$$

Thus,

(7)
$$\mathcal{M}_N \begin{pmatrix} d_0 \\ \vdots \\ d_N \end{pmatrix} = \begin{pmatrix} P_{00} & \cdots & P_{0N} \\ & \ddots & \vdots \\ & & P_{NN} \end{pmatrix} \begin{pmatrix} d_0 \\ \vdots \\ d_N \end{pmatrix} = \begin{pmatrix} x_0 \\ \vdots \\ x_N \end{pmatrix}.$$

Conversely, let $\binom{x_0}{\vdots}_{x_N} \in \text{Im } \mathcal{M}_N$ and put $x_{N+1} = 0$. There are $d_0, \ldots, d_N \in \mathbf{R}^n$ satisfying (7), i.e., $x_i = \sum_{j=i}^N P_{ij} d_j$ for $i \in J$. Then $x_0 = 0$ and for $k \in J \setminus \{N\}$, we have

$$\begin{split} x_{k+1} - \mathcal{A}_k x_k &= \sum_{j=k+1}^N X_{k+1} X_j^\dagger P_j d_j - \mathcal{A}_k \sum_{j=k}^N X_k X_j^\dagger P_j d_j \\ &= \left(X_{k+1} - \mathcal{A}_k X_k \right) \sum_{j=k+1}^N X_j^\dagger P_j d_j - \mathcal{A}_k X_k X_k^\dagger P_k d_k \\ &= \mathcal{B}_k U_k \sum_{j=k+1}^N X_j^\dagger P_j d_j - \mathcal{A}_k \mathcal{B}_k^T X_{k+1}^{\dagger T} X_k^T d_k \\ &= \mathcal{B}_k \left[U_k \sum_{j=k+1}^N X_j^\dagger P_j d_j - \mathcal{A}_k^T X_{k+1}^{\dagger T} X_k^T d_k \right] \in \operatorname{Im} \mathcal{B}_k, \end{split}$$

and

$$x_{N+1} - \mathcal{A}_N x_N = -\mathcal{A}_N P_{NN} d_N = -\mathcal{B}_N \mathcal{A}_N^T X_{N+1}^{\dagger T} X_N^T d_N \in \operatorname{Im} \mathcal{B}_N.$$

Thus x is admissible and $\begin{pmatrix} x_0 \\ \cdots \\ x_N \end{pmatrix} \in \mathcal{V}$.

For $m \in J$, define $(m+1)n \times n$ -matrices $\mathcal{Q}_m, \mathcal{R}_m, \Omega_m$ and $n \times n$ -matrix Λ_m by

$$\mathcal{Q}_m = \begin{pmatrix} X_0 \\ \vdots \\ X_m \end{pmatrix}, \qquad \mathcal{R}_m = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \mathcal{S}_m \end{pmatrix},$$

$$\Omega_m = \mathcal{M}_m^T \mathcal{U}_m \mathcal{Q}_m + \mathcal{M}_m^T \mathcal{R}_m X_{m+1},$$

 $\Lambda_m = \mathcal{Q}_m^T \mathcal{U}_m \mathcal{Q}_m + \mathcal{Q}_m^T \mathcal{R}_m X_{m+1} + X_{m+1}^T \mathcal{R}_m^T \mathcal{Q}_m + X_{m+1}^T \mathcal{T}_{m+1} X_{m+1}.$

Lemma 5. Let $\operatorname{Ker} X_{k+1} \subseteq \operatorname{Ker} X_k$ on J. Then

(i) $\Lambda_m = X_{m+1}^T \{ U_{m+1} + [\mathcal{A}_{m+1}^T \mathcal{E}_{m+1} \mathcal{A}_{m+1} - \mathcal{C}_{m+1}^T \mathcal{A}_{m+1}] X_{m+1} \}$ for $m \in J$;

(ii)
$$P_{m+1}X_{m+1}^{\dagger T}\Lambda_mX_{m+1}^{\dagger}P_{m+1} = P_{m+1} \text{ for } m \in J \setminus \{N\};$$

(iii) $\Omega_m = 0$ for $m \in J \setminus \{N\}$.

Proof. See Appendix A. \square

The following statement is the key to our main result, Theorem 3.

Proposition 2. Let $\operatorname{Ker} X_{k+1} \subseteq \operatorname{Ker} X_k$ on J. Then, for any $m \in J \setminus \{N\}$, we have

$$\mathcal{M}_{m+1}^T \mathcal{U}_{m+1} \mathcal{M}_{m+1} = \begin{pmatrix} \mathcal{M}_m^T \mathcal{U}_m \mathcal{M}_m & 0 \\ 0 & P_{m+1} \end{pmatrix}.$$

Proof. Let $m \in J$. Then we have

$$\mathcal{M}_{m+1} = \begin{pmatrix} P_{00} & \cdots & P_{0m} & P_{0m+1} \\ 0 & \ddots & \vdots & \vdots \\ \vdots & \ddots & P_{mm} & P_{mm+1} \\ 0 & \cdots & 0 & P_{m+1m+1} \end{pmatrix} = \begin{pmatrix} \mathcal{M}_m & \mathcal{Q}_m X_{m+1}^{\dagger} P_{m+1} \\ 0 & X_{m+1} X_{m+1}^{\dagger} P_{m+1} \end{pmatrix}$$

and

$$\mathcal{U}_{m+1} = egin{pmatrix} \mathcal{T}_0 & \mathcal{S}_0 & & & & & & \\ \mathcal{S}_0^T & \mathcal{T}_1 & \ddots & & & & & \\ & \ddots & \ddots & \mathcal{S}_{m-1} & & & & \\ & & \mathcal{S}_{m-1}^T & \mathcal{T}_m & \mathcal{S}_m & & & \\ & & & \mathcal{S}_m^T & \mathcal{T}_{m+1} \end{pmatrix} = egin{pmatrix} \mathcal{U}_m & \mathcal{R}_m & & & \\ \mathcal{R}_m^T & \mathcal{T}_{m+1} & & & & \\ & & & \mathcal{R}_m^T & \mathcal{T}_{m+1} & & \\ & & & & & & \\ \end{pmatrix}.$$

Hence, by putting $\tilde{\mathcal{M}}_m = \begin{pmatrix} \mathcal{M}_m \\ 0 \end{pmatrix}$, we have

$$\mathcal{M}_{m+1} = \begin{pmatrix} \tilde{\mathcal{M}}_m & \mathcal{Q}_{m+1} X_{m+1}^{\dagger} P_{m+1} \end{pmatrix}.$$

Moreover,

$$\tilde{\mathcal{M}}_m^T \mathcal{U}_{m+1} \tilde{\mathcal{M}}_m = \begin{pmatrix} \mathcal{M}_m \\ 0 \end{pmatrix}^T \begin{pmatrix} \mathcal{U}_m & \mathcal{R}_m \\ \mathcal{R}_m^T & \mathcal{T}_{m+1} \end{pmatrix} \begin{pmatrix} \mathcal{M}_m \\ 0 \end{pmatrix} = \mathcal{M}_m^T \mathcal{U}_m \mathcal{M}_m.$$

Therefore,

$$\begin{split} &\mathcal{M}_{m+1}^{T}\mathcal{U}_{m+1}\mathcal{M}_{m+1} \\ &= \left(\begin{array}{c} \tilde{\mathcal{M}}_{m}^{T} \\ P_{m+1}X_{m+1}^{\dagger T}\mathcal{Q}_{m+1}^{T} \end{array} \right) \mathcal{U}_{m+1} \left(\tilde{\mathcal{M}}_{m} \quad \mathcal{Q}_{m+1}X_{m+1}^{\dagger}P_{m+1} \right) \\ &= \left(\begin{array}{cc} \tilde{\mathcal{M}}_{m}^{T}\mathcal{U}_{m+1}\tilde{\mathcal{M}}_{m} & \tilde{\mathcal{M}}_{m}^{T}\mathcal{U}_{m+1}\mathcal{Q}_{m+1}X_{m+1}^{\dagger}P_{m+1} \\ P_{m+1}X_{m+1}^{\dagger T}\mathcal{Q}_{m+1}^{T}\mathcal{U}_{m+1} & P_{m+1}X_{m+1}^{\dagger T}\mathcal{Q}_{m+1}^{T}\mathcal{U}_{m+1}\mathcal{Q}_{m+1}X_{m+1}^{\dagger}P_{m+1} \right) \\ &= \left(\begin{array}{cc} \mathcal{M}_{m}^{T}\mathcal{U}_{m}\mathcal{M}_{m} & \Omega_{m}X_{m+1}^{\dagger}P_{m+1} \\ P_{m+1}X_{m+1}^{\dagger T}\Omega_{m}^{T} & P_{m+1}X_{m+1}^{\dagger T}\Lambda_{m}X_{m+1}^{\dagger}P_{m+1} \end{array} \right), \end{split}$$

where

$$\begin{split} \Omega_m &= \tilde{\mathcal{M}}_m^T \mathcal{U}_{m+1} \mathcal{Q}_{m+1} = \left(\, \mathcal{M}_m^T \quad 0 \, \right) \left(\, \begin{matrix} \mathcal{U}_m & \mathcal{R}_m \\ \mathcal{R}_m^T & \mathcal{T}_{m+1} \, \end{matrix} \right) \left(\, \begin{matrix} \mathcal{Q}_m \\ X_{m+1} \, \end{matrix} \right) \\ &= \mathcal{M}_m^T \mathcal{U}_m \mathcal{Q}_m + \mathcal{M}_m^T \mathcal{R}_m X_{m+1}, \\ \Lambda_m &= \mathcal{Q}_{m+1}^T \mathcal{U}_{m+1} \mathcal{Q}_{m+1} = \left(\, \begin{matrix} \mathcal{Q}_m^T & X_{m+1}^T \, \end{matrix} \right) \left(\, \begin{matrix} \mathcal{U}_m & \mathcal{R}_m \\ \mathcal{R}_m^T & \mathcal{T}_{m+1} \, \end{matrix} \right) \left(\, \begin{matrix} \mathcal{Q}_m \\ X_{m+1} \, \end{matrix} \right) \\ &= \mathcal{Q}_m^T \mathcal{U}_m \mathcal{Q}_m + \mathcal{Q}_m^T \mathcal{R}_m X_{m+1} + X_{m+1}^T \mathcal{R}_m^T \mathcal{Q}_m + X_{m+1}^T \mathcal{T}_{m+1} X_{m+1}. \end{split}$$

Thus we are done if we prove that

$$\Omega_m = 0$$
 and $P_{m+1} X_{m+1}^{\dagger T} \Lambda_m X_{m+1}^{\dagger} P_{m+1} = P_{m+1}$,

which is a content of Lemma 5.

Corollary 2. Let $\operatorname{Ker} X_{k+1} \subseteq \operatorname{Ker} X_k$ on J. Then

$$\mathcal{M}_N^T \mathcal{U}_N \mathcal{M}_N = \operatorname{diag} \{P_0, P_1, \dots, P_N\}.$$

Proof. By applying Proposition 2 for $m = N - 1, \ldots, 0$, we have

$$\mathcal{M}_N^T \mathcal{U}_N \mathcal{M}_N = \operatorname{diag} \{ \mathcal{M}_0^T \mathcal{U}_0 \mathcal{M}_0, P_1, \dots, P_N \}.$$

However, $\mathcal{M}_0^T \mathcal{U}_0 \mathcal{M}_0 = P_0 \mathcal{T}_0 P_0 = 0 = P_0$, so the result follows. \square

Now we may state the main result of this paper, the theorem relating positivity of the discrete quadratic functional \mathcal{F} to (among others) condition (4) but without using the discrete Picone's identity. We remind the reader that (X, U) is the principal solution of (S) at zero.

Theorem 3. The following are equivalent.

- (i) F > 0;
- (ii) $U_N > 0$ on V;
- (iii) Ker $\mathcal{M}_N^T \mathcal{U}_N \mathcal{M}_N \subseteq \text{Ker } \mathcal{M}_N \text{ and } \mathcal{M}_N^T \mathcal{U}_N \mathcal{M}_N \geq 0$;
- (iv) $\operatorname{Ker} X_{k+1} \subseteq \operatorname{Ker} X_k$ and $P_k \geq 0$ on J, i.e., (X, U) has no focal points in (0, N+1].

Proof. It is a direct consequence of Corollary 1, Remark 2 and Corollary 2. \Box

Remark 3. If \mathcal{B} is nonsingular and if the system (S) is rewritten system (H), i.e., if both the matrix \mathcal{A} of (S) and \mathcal{B} of the Hamiltonian system are nonsingular, the so-called "regular case," then the above

procedure gives the results of [5] noted in Section 1. However, for a general matrix \mathcal{B} this cannot be expected since, in the case of LHdS, the matrix $\mathcal{A} = \tilde{A}$ is nonsingular and this fact is essential for the construction of the matrices \bar{T}_k and \bar{S}_k for system (H). It means that one cannot obtain \bar{T}_k , \bar{S}_k as special cases of our \mathcal{T}_k , \mathcal{S}_k in spite of the fact that the procedure for deriving them is in both cases the same. For, if \mathcal{A} is nonsingular, then $\mathcal{D} = \mathcal{C}\mathcal{A}^{-1}\mathcal{B} + \mathcal{A}^{T-1}$, and the matrices $\mathcal{C}\mathcal{A}^{-1}$ and $\mathcal{A}^{-1}\mathcal{B}$ are symmetric and (x,u) is admissible if and only if $x_k + \mathcal{A}_k^{-1}\mathcal{B}_k u_k = \mathcal{A}_k^{-1} x_{k+1}$. Then the quadratic functional \mathcal{F} can be brought into the form from Theorem 2 with

$$\begin{split} \bar{\mathcal{T}}_0 &= (\mathcal{A}_0^{-1} \mathcal{B}_0)^{\dagger}, \\ \bar{\mathcal{T}}_k &= \mathcal{C}_{k-1} \mathcal{A}_{k-1}^{-1} + \mathcal{A}_{k-1}^{T-1} (\mathcal{A}_{k-1}^{-1} \mathcal{B}_{k-1})^{\dagger} \mathcal{A}_{k-1}^{-1} \\ &+ (\mathcal{A}_k^{-1} \mathcal{B}_k)^{\dagger} \quad \text{for } 1 \le k \le N, \\ \bar{\mathcal{S}}_k &= -(\mathcal{A}_k^{-1} \mathcal{B}_k)^{\dagger} \mathcal{A}_k^{-1} \quad \text{for } k \in J, \end{split}$$

which reduce to \bar{T}_k and \bar{S}_k when substituting $\mathcal{A} = \tilde{A}$, $\mathcal{B} = \tilde{A}B$ and $\mathcal{C} = C\tilde{A}$, cf. (1), although $\bar{\mathcal{T}}_k \neq \mathcal{T}_k$ and $\bar{\mathcal{S}}_k \neq \mathcal{S}_k$.

4. Reciprocal symplectic systems. The following transformation lemma is an easy consequence of Lemma 1.

Lemma 6. Let R_k be a sequence of symplectic $n \times n$ -matrices. Then the transformation $z = R\tilde{z}$ takes the symplectic system $z_{k+1} = S_k z_k$ into another symplectic system $\tilde{z}_{k+1} = \tilde{S}_k \tilde{z}_k$. Particularly, $\tilde{S}_k = R_{k+1}^{-1} S_k R_k$.

The reciprocal symplectic system is the symplectic system

$$(\mathbf{S}^*) \qquad \qquad z_{k+1}^* = S_k^* z_k^*$$

arising from (S) upon the transformation $z = \mathcal{J}z^*$, i.e., we have $S^* = \mathcal{J}^T S \mathcal{J} = S^{T-1}$. Thus,

$$z^* = \begin{pmatrix} -u \\ x \end{pmatrix}, \qquad S^* = \begin{pmatrix} \mathcal{D} & -\mathcal{C} \\ -\mathcal{B} & \mathcal{A} \end{pmatrix}.$$

The corresponding quadratic functional \mathcal{F}^* takes the form

$$\begin{split} \mathcal{F}^*(z^*) &= \sum_{k=0}^N z_k^{*T} \{S_k^{*T} \mathcal{K} S_k^* - \mathcal{K}\} z_k^* \\ &= \sum_{k=0}^N z_k^T \mathcal{J} \{S_k^{-1} \mathcal{K} S_k^{T-1} - \mathcal{K}\} \mathcal{J}^T z_k \\ &= \sum_{k=0}^N z_k^T \{\mathcal{K}^T - S_k^T \mathcal{K}^T S_k\} z_k \\ &= -\mathcal{F}(z). \end{split}$$

Reformulating the definitions from page 4, we get

- (a) z^* satisfies the boundary conditions if $\mathcal{K}^T z_0 = 0 = \mathcal{K}^T z_{N+1}$, i.e., if $u_0 = 0 = u_{N+1}$;
- (b) z^* is admissible if $\mathcal{K}^T z_{k+1} = \mathcal{K}^T S_k z_k$ on J, i.e., if $u_{k+1} = \mathcal{C}_k x_k + \mathcal{D}_k u_k$ on J;
- (c) u is admissible if there exists an x such that $z^* = \begin{pmatrix} -u \\ x \end{pmatrix}$ is admissible;
- (d) the solution Z^* of (S*) is principal at $m \in J$ if the solution Z = (X, U) of (S) satisfies $Z_m = \begin{pmatrix} I \\ 0 \end{pmatrix}$, i.e., if $X_m = I$ and $U_m = 0$.

Let us define the matrices \mathcal{T}_k^* and \mathcal{S}_k^* by

$$\mathcal{T}_k^* := \mathcal{D}_k^T \mathcal{E}_k^* \mathcal{D}_k + \mathcal{D}_k^T \mathcal{B}_k + \mathcal{E}_{k-1}^* \quad \text{and} \quad \mathcal{S}_k^* := -\mathcal{B}_k^T - \mathcal{D}_k^T \mathcal{E}_k^*, \quad k \in J,$$

with $\mathcal{E}_{-1}^* := 0$; the matrix \mathcal{E}^* is any symmetric $n \times n$ -matrix satisfying $\mathcal{C}^T \mathcal{E}^* \mathcal{C} = -\mathcal{A}^T \mathcal{C}$, for example, $-\mathcal{C}\mathcal{C}^{\dagger} \mathcal{A}\mathcal{C}^{\dagger}$, $-\mathcal{A}(\mathcal{A}^T \mathcal{C})^{\dagger} \mathcal{A}^T$, $-(\mathcal{A}\mathcal{C}^{\dagger}/2) - ((\mathcal{A}\mathcal{C}^{\dagger})^T/2)$.

In this section we always assume that (X, U) is the solution of (S) satisfying $X_0 = I$, $U_0 = 0$. Define the matrices P_k^* and P_{ij}^* by

$$P_k^* = U_k U_{k+1}^\dagger \mathcal{C}_k \quad \text{and} \quad P_{ij}^* = U_i U_j^\dagger P_j^*.$$

Define the matrices \mathcal{U}^* and \mathcal{M}^* in the analogous way as for the system

(S), i.e., all their entries with the superscript '*.' Let

$$\mathcal{V}^*:=\left\{egin{pmatrix} u_0\\ \vdots\\ u_N \end{pmatrix} \text{ such that } u=\{u_k\}_{k=0}^{N+1} \text{ is admissible on } J \end{cases}$$
 with $u_0=0=u_{N+1}$.

Then Theorem 3 for reciprocal symplectic systems reads as:

Theorem 4. The following are equivalent.

(i)
$$\mathcal{F}(x,u) < 0$$
 for all (x,u) satisfying

$$u \not\equiv 0$$
, $u_0 = 0 = u_{N+1}$ and $u_{k+1} = \mathcal{C}_k x_k + \mathcal{D}_k u_k$;

- (ii) $\mathcal{U}_N^* > 0$ on \mathcal{V}^* ;
- (iii) $\operatorname{Ker} \mathcal{M}_N^{*T} \mathcal{U}_N^* \mathcal{M}_N^* \subseteq \operatorname{Ker} \mathcal{M}_N^* \text{ and } \mathcal{M}_N^{*T} \mathcal{U}_N^* \mathcal{M}_N^* \geq 0;$
- (iv) The solution (X,U) of (S) with $X_0=I,\,U_0=0,$ satisfies

$$\operatorname{Ker} U_{k+1} \subseteq \operatorname{Ker} U_k$$
 and $P_k^* = U_k U_{k+1}^{\dagger} C_k \leq 0$ on J .

Remark 4. The equivalence (i) \Leftrightarrow (iv) is a part of the Reid roundabout theorem for reciprocal symplectic systems of [4].

APPENDIX

A. Proof of Lemma 5.

Proof. (i) First we have, by Lemma 4,

$$\Lambda_0 = \mathcal{Q}_1^T \mathcal{U}_1 \mathcal{Q}_1 = X_1^T \mathcal{T}_1 X_1 = X_1^T \left\{ U_1 + \left[\mathcal{A}_1^T \mathcal{E}_1 \mathcal{A}_1 - \mathcal{C}_1^T \mathcal{A}_1 \right] X_1 \right\}.$$

Hence, by induction, if (i) holds for $0 \le k < m$, i.e., $1 \le m \le N$, then

$$\begin{split} &\Lambda_{m} = \Lambda_{m-1} + X_{m+1}^{T} \mathcal{T}_{m+1} X_{m+1} + \mathcal{Q}_{m}^{T} \mathcal{R}_{m} X_{m+1} + X_{m+1}^{T} \mathcal{R}_{m}^{T} \mathcal{Q}_{m} \\ &= \Lambda_{m-1} + X_{m+1}^{T} \mathcal{T}_{m+1} X_{m+1} + X_{m}^{T} \mathcal{S}_{m} X_{m+1} + X_{m+1}^{T} \mathcal{S}_{m}^{T} X_{m} \\ &\stackrel{\text{Lemma } 4}{=} X_{m}^{T} \left\{ U_{m} + \left[\mathcal{A}_{m}^{T} \mathcal{E}_{m} \mathcal{A}_{m} - \mathcal{C}_{m}^{T} \mathcal{A}_{m} \right] X_{m} \right\} \\ &+ \Delta \left\{ X_{m}^{T} U_{m} + X_{m}^{T} \left[\mathcal{A}_{m}^{T} \mathcal{E}_{m} \mathcal{A}_{m} - \mathcal{C}_{m}^{T} \mathcal{A}_{m} \right] X_{m} \right\} \\ &= X_{m+1}^{T} \left\{ U_{m+1} + \left[\mathcal{A}_{m+1}^{T} \mathcal{E}_{m+1} \mathcal{A}_{m+1} - \mathcal{C}_{m+1}^{T} \mathcal{A}_{m+1} \right] X_{m+1} \right\}; \end{split}$$

(ii) Let $m \in J \setminus \{N\}$. In the first step we show that

$$\begin{split} P_{m+1} \left[\mathcal{A}_{m+1}^T \mathcal{E}_{m+1} \mathcal{A}_{m+1} - \mathcal{C}_{m+1}^T \mathcal{A}_{m+1} \right] P_{m+1} \\ &= X_{m+1} X_{m+2}^{\dagger} \mathcal{A}_{m+1} X_{m+1} X_{m+1}^{\dagger} P_{m+1}. \end{split}$$

We have

$$\begin{split} &P_{m+1}\left[\mathcal{A}_{m+1}^{T}\mathcal{E}_{m+1}\mathcal{A}_{m+1} - \mathcal{C}_{m+1}^{T}\mathcal{A}_{m+1}\right]P_{m+1} \\ &= X_{m+1}X_{m+2}^{\dagger}\mathcal{B}_{m+1}\mathcal{A}_{m+1}^{T}\mathcal{E}_{m+1}\mathcal{A}_{m+1}\mathcal{B}_{m+1}^{T}X_{m+2}^{\dagger T}X_{m+1}^{T} \\ &- P_{m+1}\mathcal{C}_{m+1}^{T}\mathcal{A}_{m+1}P_{m+1} \\ &= X_{m+1}X_{m+2}^{\dagger}\mathcal{A}_{m+1}\mathcal{B}_{m+1}^{T}\mathcal{E}_{m+1}\mathcal{B}_{m+1}\mathcal{A}_{m+1}^{T}X_{m+2}^{\dagger T}X_{m+1}^{T} \\ &- X_{m+1}X_{m+2}^{\dagger}\mathcal{B}_{m+1}\mathcal{A}_{m+1}^{T}\mathcal{C}_{m+1}P_{m+1} \\ &= X_{m+1}X_{m+2}^{\dagger}\mathcal{A}_{m+1}\mathcal{B}_{m+1}^{T}\mathcal{D}_{m+1}\mathcal{A}_{m+1}^{T}X_{m+2}^{\dagger T}X_{m+1}^{T} \\ &- X_{m+1}X_{m+2}^{\dagger}\mathcal{A}_{m+1}\mathcal{B}_{m+1}^{T}\mathcal{C}_{m+1}\mathcal{B}_{m+1}^{T}X_{m+2}^{\dagger T}X_{m+1}^{T} \\ &= X_{m+1}X_{m+2}^{\dagger}\mathcal{A}_{m+1}\mathcal{B}_{m+1}^{T}\left(\mathcal{D}_{m+1}\mathcal{A}_{m+1}^{T} - \mathcal{C}_{m+1}\mathcal{B}_{m+1}^{T}\right)X_{m+2}^{\dagger T}X_{m+1}^{T} \\ &= X_{m+1}X_{m+2}^{\dagger}\mathcal{A}_{m+1}\mathcal{B}_{m+1}^{T}X_{m+2}^{\dagger T}X_{m+1}^{T} &= X_{m+1}X_{m+2}^{\dagger}\mathcal{A}_{m+1}P_{m+1} \\ &= X_{m+1}X_{m+2}^{\dagger}\mathcal{A}_{m+1}X_{m+1}^{T}X_{m+1}^{\dagger}P_{m+1}. \end{split}$$

Thus, by (i) and by the first step

$$\begin{split} P_{m+1}X_{m+1}^{\dagger T}\Lambda_{m}X_{m+1}^{\dagger}P_{m+1} \\ &= P_{m+1}X_{m+1}^{\dagger T}X_{m+1}^{T}U_{m+1}X_{m+1}^{\dagger}P_{m+1} + P_{m+1}X_{m+1}^{\dagger T}X_{m+1}^{T} \\ & \cdot \left[\mathcal{A}_{m+1}^{T}\mathcal{E}_{m+1}\mathcal{A}_{m+1} - \mathcal{C}_{m+1}^{T}\mathcal{A}_{m+1}\right]X_{m+1}X_{m+1}^{\dagger}P_{m+1} \\ &= P_{m+1}U_{m+1}X_{m+1}^{\dagger}P_{m+1} + P_{m+1} \\ & \cdot \left[\mathcal{A}_{m+1}^{T}\mathcal{E}_{m+1}\mathcal{A}_{m+1} - \mathcal{C}_{m+1}^{T}\mathcal{A}_{m+1}\right]P_{m+1} \\ &= X_{m+1}X_{m+2}^{\dagger}\mathcal{B}_{m+1}U_{m+1}X_{m+1}^{\dagger}P_{m+1} \\ &+ X_{m+1}X_{m+2}^{\dagger}\mathcal{A}_{m+1}X_{m+1}X_{m+1}^{\dagger}P_{m+1} \\ &= X_{m+1}X_{m+2}^{\dagger}(\mathcal{B}_{m+1}U_{m+1} + \mathcal{A}_{m+1}X_{m+1})X_{m+1}^{\dagger}P_{m+1} \\ &= X_{m+1}X_{m+2}^{\dagger}X_{m+2}X_{m+1}^{\dagger}P_{m+1} \\ &= X_{m+1}X_{m+1}^{\dagger}P_{m+1} = P_{m+1}. \end{split}$$

(iii) First we have

$$\Omega_0 = \mathcal{M}_0^T \mathcal{U}_0 \mathcal{Q}_0 + \mathcal{M}_0^T \mathcal{R}_0 X_1 = P_{00} \mathcal{T}_0 X_0 + P_{00} \mathcal{S}_0 X_1 = 0.$$

Hence, by induction, if $\Omega_m = 0$ for some $0 \le m \le N - 1$, then

$$\begin{split} &\Omega_{m+1} \\ &= \tilde{\mathcal{M}}_{m+1}^T \mathcal{U}_{m+2} \mathcal{Q}_{m+2} \\ &= \begin{pmatrix} \mathcal{M}_{m+1} \end{pmatrix}^T \begin{pmatrix} \mathcal{U}_{m+1} & \mathcal{R}_{m+1} \\ \mathcal{R}_{m+1}^T & \mathcal{T}_{m+1} \end{pmatrix} \begin{pmatrix} \mathcal{Q}_{m+1} \\ X_{m+2} \end{pmatrix} \\ &= \mathcal{M}_{m+1}^T (\mathcal{U}_{m+1} \mathcal{Q}_{m+1} + \mathcal{R}_{m+1} X_{m+2}) \\ &= \begin{pmatrix} \mathcal{M}_m & \mathcal{Q}_m X_{m+1}^\dagger P_{m+1} \\ 0 & X_{m+1} X_{m+1}^\dagger P_{m+1} \end{pmatrix}^T (\mathcal{U}_{m+1} \mathcal{Q}_{m+1} + \mathcal{R}_{m+1} X_{m+2}) \\ &= \begin{pmatrix} \tilde{\mathcal{M}}_m^T \\ P_{m+1} X_{m+1}^{\dagger T} \mathcal{Q}_{m+1}^T \end{pmatrix} (\mathcal{U}_{m+1} \mathcal{Q}_{m+1} + \mathcal{R}_{m+1} X_{m+2}) \\ &= \begin{pmatrix} \tilde{\mathcal{M}}_m^T \mathcal{U}_{m+1} \mathcal{Q}_{m+1} + \tilde{\mathcal{M}}_m^T \mathcal{R}_{m+1} X_{m+2} \\ P_{m+1} X_{m+1}^{\dagger T} \mathcal{Q}_{m+1}^T \mathcal{U}_{m+1} \mathcal{Q}_{m+1} + P_{m+1} X_{m+1}^{\dagger T} \mathcal{Q}_{m+1}^T \mathcal{R}_{m+1} X_{m+2} \end{pmatrix} \\ &= \begin{pmatrix} \Omega_m + 0 \\ P_{m+1} X_{m+1}^{\dagger T} \Lambda_m + P_{m+1} X_{m+1}^{\dagger T} X_{m+1}^T \mathcal{S}_{m+1} X_{m+2} \end{pmatrix} \end{split}$$

$$= \begin{pmatrix} 0 \\ P_{m+1}X_{m+1}^{\dagger T}\Lambda_m + P_{m+1}\mathcal{S}_{m+1}X_{m+2} \end{pmatrix}.$$

Thus we are done if we prove that $P_{m+1}X_{m+1}^{\dagger T}\Lambda_m + P_{m+1}S_{m+1}X_{m+2} = 0$. By part (i) we have

$$\begin{split} &P_{m+1}X_{m+1}^{\dagger T}\Lambda_{m} + P_{m+1}\mathcal{S}_{m+1}X_{m+2} \\ &= P_{m+1}X_{m+1}^{\dagger T}X_{m+1}^{T}\{U_{m+1} + [\mathcal{A}_{m+1}^{T}\mathcal{E}_{m+1}\mathcal{A}_{m+1} - \mathcal{C}_{m+1}^{T}\mathcal{A}_{m+1}]X_{m+1}\} \\ &+ P_{m+1}[\mathcal{C}_{m+1}^{T} - \mathcal{A}_{m+1}^{T}\mathcal{E}_{m+1}]X_{m+2} \\ &= P_{m+1}U_{m+1} + P_{m+1}\mathcal{A}_{m}^{T}\mathcal{E}_{m+1}\mathcal{A}_{m+1}X_{m+1} \\ &- P_{m+1}\mathcal{A}_{m+1}^{T}\mathcal{C}_{m+1}X_{m+1} \\ &+ P_{m+1}\mathcal{C}_{m+1}^{T}X_{m+2} - P_{m+1}\mathcal{A}_{m+1}^{T}\mathcal{E}_{m+1}X_{m+2} \\ &= P_{m+1}U_{m+1} + P_{m+1}\mathcal{A}_{m+1}^{T}\mathcal{E}_{m+1}(\mathcal{A}_{m+1}X_{m+1} - X_{m+2}) \\ &- P_{m+1}\mathcal{A}_{m+1}^{T}\mathcal{C}_{m+1}X_{m+1} + P_{m+1}(\mathcal{A}_{m+1}^{T}U_{m+2} - U_{m+1}) \\ &= -X_{m+1}X_{m+2}^{\dagger}\mathcal{B}_{m+1}\mathcal{A}_{m+1}^{T}\mathcal{E}_{m+1}\mathcal{B}_{m+1}U_{m+1} \\ &+ P_{m+1}\mathcal{A}_{m+1}^{T}(U_{m+2} - \mathcal{C}_{m+1}X_{m+1}) \\ &= -X_{m+1}X_{m+2}^{\dagger}\mathcal{A}_{m+1}\mathcal{B}_{m+1}^{T}\mathcal{D}_{m+1}U_{m+1} \\ &+ X_{m+1}X_{m+2}^{\dagger}\mathcal{B}_{m+1}\mathcal{A}_{m+1}^{T}\mathcal{D}_{m+1}U_{m+1} = 0. \end{split}$$

The proof is now complete.

REFERENCES

- 1. C.D. Ahlbrandt and A.C. Peterson, *Discrete Hamiltonian systems: Difference equations, continued fractions and Riccati equations*, Kluwer Academic Publishers, Boston, 1996.
- 2. A. Ben-Israel and T.N.E. Greville, Generalized inverses: Theory and applications, John Wiley & Sons, Inc., New York, 1974.
- 3. M. Bohner, Linear Hamiltonian difference systems: Disconjugacy and Jacobitype conditions, J. Math. Anal. Appl. 199 (1996), 804-826.
- 4. M. Bohner and O. Došlý, Disconjugacy and transformations for symplectic systems, Rocky Mountain J. Math. 27 (1997), 707–743.
- 5. —, Positivity of block tridiagonal matrices, SIAM J. Matrix Anal. 20 (1998), 182–195.

Department of Mathematics, Faculty of Science, Masaryk University Brno, Janáčkovo nám. 2A, CZ-66295 Brno, Czech Republic $E\text{-}mail\ address:}$ houska@math.muni.cz