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ABSTRACT. We study some Lorentzian surfaces in the
three-dimensional Lorentzian space forms whose shape oper-
ators are not diagonalizable at least at one point. It is related
to the so-called notion of 2-type surfaces. A local classification
theorem in this respect is obtained.

1. Introduction. Let us denote by M
3

1(c) the standard model
of a Lorentzian space form with constant curvature c = 0,±1, that
is, the Lorentz-Minkowski space L3, the de Sitter space-time S3

1 in
E4

1 and the anti de Sitter space-time H3
1 in E4

2 , respectively. For
(n, µ) = (3, 1), (4, 1) or (4,2), let En

µ be the corresponding pseudo-

Euclidean space where M
3

1(c) is lying.

Suppose that x : M2
1 → M

3

1(c) ⊂ En
µ is an isometric immer-

sion of a two-dimensional connected Lorentzian surface into the three-
dimensional Lorentzian space form. Denote by ∆ the Laplacian oper-
ator of the Lorentzian surface M2

1 . The immersion x is said to be of
finite type if each component of the position vector field of M2

1 in En
µ ,

also denoted by x, can be written as a finite sum of eigenfunctions of
the Laplacian operator ∆, that is, if

(1.1) x = x0 + x1 + x2 + · · ·+ xk,

where x0 is a constant vector, x1, . . . , xk are nonconstant maps sat-
isfying ∆xi = λixi, i = 1, . . . , k. If, in particular, all eigenvalues
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λ1, . . . , λk are mutually different, then the immersion x (or the surface
M2

1 ) is said to be of k-type and the decomposition (1.1) is called the
spectral decomposition of the immersion x. If one of λ1, . . . , λk is zero,
then the immersion is said to be of null k-type. Note that we have the
following formula:

(1.2) ∆x = − 2H,

where H is the mean curvature vector field of M2
1 in En

µ . It is well
known that M2

1 is of 1-type if and only if it is either minimal or non-
flat totally umbilical in M

3

1(c) [6].

If M2
1 is a null 2-type surface, then the position vector x takes the

following decomposition:

(1.3) x = x1 + x2, ∆x1 = 0, ∆x2 = λx2

for some nonconstant maps x1, x2 and a constant λ �= 0. From (1.2)
and (1.3) we have

(1.4) ∆H = λH, λ �= 0,

that is, the mean curvature vector field is an eigenvector function of ∆.
Conversely, we have the following [9].;

Lemma 1.1. There is a constant λ �= 0 such that (1.4) holds if and
only if M2

1 is either of 1-type or of null 2-type.

Now suppose that a surface M2
1 in M

3

1(c) is of 2-type. Then (1.1)
and (1.2) imply that

(1.5) ∆H = λH + µ(x− x0),

where x0 is a constant vector and λ and µ are two real constants.

Conversely, we have the following [4, 9].

Lemma 1.2. Suppose that there exist constants λ and µ such
that (1.5) holds. Then M2

1 is of 2-type if and only if the polynomial
t2 − λt+ 2µ has two distinct real roots.
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In a series of papers ([3, 5 8, 10 13, 16 18]), the technique of
finite type immersions has been used to characterize certain interesting
families of Riemannian or Lorentzian surfaces. If the ambient space is
the three-dimensional Riemannian space form E3, S3 or H3, then the
following theorems are well known [6, 7, 16].

Theorem 1.3. Let M2 be a surface in the 3-dimensional Euclidean
space E3. Then M2 is of null 2-type if and only if M2 is an open
portion of a circular cylinder.

Theorem 1.4. A surface M2 in the unit 3-sphere S3, standardly
embedded in E4, is of 2-type if and only if M2 is an open portion of
the product surface of two plane circles of different radii.

Theorem 1.5. A surface M2 in the hyperbolic space H3, standardly
embedded in E4

1 , is of 2-type if and only if M2 is an open portion of
the product surface H1(

√
1 + r2 )× S1(r).

If the ambient space is the 3-dimensional Lorentzian space form
M

3

1(c), it is well known that the shape operator of a Lorentzian surface
need not be diagonalizable; because of this fact there are substantial
differences between the Lorentzian and Riemannian cases. Actually,
there exists a wide family of examples of surfaces in Lorentzian space
forms without Riemannian counterparts; the B-scrolls [14] and the
complex circles [19] are some of these examples.

Ferrández and Lucas showed the following [11]:

Theorem 1.6. Let M2
1 be a null 2-type Lorentzian surface in L3.

Then the following hold: i) if the shape operator is diagonalizable on
M2

1 , then M2
1 is an open piece of a Lorentzian cylinder, ii) if the shape

operator is not diagonalizable at a point p of M2
1 , then an open set of

M2
1 around p is a B-scroll.

For Lorentzian surfaces in the non-flat Lorentzian space forms, ex-
tending above, Aĺıas, Ferrández and Lucas gave nice classification the-
orems with certain conditions on the shape operator [3].
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Theorem 1.7. Let M2
1 be a 2-type Lorentzian surface in S3

1 ,
standardly embedded in E4

1 . Then the following hold: i) if the shape
operator is diagonalizable on M2

1 , then M2
1 is an open piece of a

Lorentzian cylinder S1
1(r) × S1(

√
1− r2 ), ii) if the shape operator is

not diagonalizable at a point p of M2
1 , then an open set of M2

1 around
p is a B-scroll over a null curve.

Theorem 1.8. Let M2
1 be a 2-type Lorentzian surface in H3

1 ,
standardly embedded in E4

2 . Then the following hold: i) if the shape
operator is diagonalizable on M2

1 , then M2
1 is an open piece of a

Lorentzian cylinder, H1
1 (r) × S1(

√
r2 − 1 ), or S1

1(r) × H1(
√
1 + r2 ),

ii) if the shape operator is not diagonalizable at a point p of M2
1 , then

an open set of M2
1 around p is a non-flat B-scroll over a null curve.

Interestingly, there exist 2-type Lorentzian surfaces which contain
points of both kinds. For example, a B-scroll is a case of such kind.
Let D denote the set of all points of M2

1 at which the shape operator S
is diagonalizable, and U = M2

1 \D, the set of all points of M2
1 at which

S is not diagonalizable. It can be shown that U is an open subset of
M2

1 , hence D is a closed subset of M2
1 . Thus it is natural to ask the

following question:

“What can we say about the neighborhood of a 2-type Lorentzian
surface around a point in the boundary of the set U?”

The purpose of this paper is to give an answer to this question. More
precisely, we shall establish the following:

Theorem A. If a null 2-type Lorentzian surface in L3 admits a
point where the shape operator is not diagonalizable, then it is locally a
B-scroll.

Theorem B. If a 2-type Lorentzian surface in S3
1 , H

3
1 admits a

point where the shape operator is not diagonalizable, then it is locally a
B-scroll.

2. B-scrolls and complex circles. In this section we will describe
some examples of surfaces of non-flat space form M

3

1(c) which will be
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useful in order to give the classification results.

Let γ(s) be a null curve in M
3

1(c) ⊂ E4
µ, and let {A(s), B(s), C(s)}

be a Cartan frame of γ(s), that is, A(s), B(s), C(s) are tangent vector
fields of M

3

1(c) along γ(s) satisfying the following conditions:

(2.1)
〈A,A〉 = 〈B,B〉 = 0, 〈A,B〉 = − 1,
〈A,C〉 = 〈B,C〉 = 0, 〈C,C〉 = 1,

and

(2.2)
γ̇(s) = A(s),

Ċ(s) = − aA(s)− k(s)B(s),

where a is a constant and k(s) is a function of s.

Then the immersion x(s, t) = γ(s)+ tB(s) parametrizes a Lorentzian
surface M2

1 into M
3

1(c), which is called a B-scroll over a null curve γ
[14]. In the last section we prove the existence and uniqueness of Cartan
framed null curves in M

3

1(c) satisfying the appropriate differential
equations. For a B-scroll over a null curve in the flat Lorentzian space
form L3, see [11, 14].

By a reparametrization, we may always assume that γ(s) is a
null geodesic of the B-scroll, which is equivalent to the condition
〈Ȧ(s), B(s)〉 ≡ 0. Note that the Laplacian ∆ of the B-scroll M2

1 is
given by

∆h = 2hst + 2Ktht +Kt2htt, h ∈ C∞(M2
1 ),

where K = c+ a2 is the Gaussian curvature of the B-scroll M2
1 . Thus,

from (1.2), we have

H(s, t) = −KtB(s) + aC(s)− cγ(s),
∆H = 2KH.

For a non-flat B-scroll, we let

x2 = − 1
K

H, x1 =
1
K

{aC(s) + a2γ(s)};
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then we have

x = x1 + x2, ∆x1 = 0, ∆x2 = 2KH.

By a simple computation, we have

dx1

ds
=

−ak(s)
K

B(s).

Hence we obtain the following.

Proposition 2.1. If ak(s) �≡ 0, then the non-flat B-scroll in M
3

1(c)
is of null 2-type; otherwise, the non-flat B-scroll is of 1-type. However
a flat B-scroll (hence c = −1 and a2 = 1) is a biharmonic surface into
H3

1 and is of infinite type.

If we choose a unit normal vector field N = −atB(s) + C(s), then
the shape operator S takes, in the usual frame {xs, xt}, the following
form (

a 0
k(s) a

)

and its minimal polynomial changes its degree.

Suppose that k(s) ≡ 0 in an open interval I of s. Then x(s, t) +
(1/a)N(s, t) = (1/a)C(s) + γ(s) is a nonzero constant vector y0 with
〈y0, y0〉 = c + a−2. Hence the B-scroll x(s, t), restricted to I × R, is
just an open part of the following totally umbilic Lorentzian surface
L2

1(y0, c) determined by y0:

(2.3) L2
1(y0, c) = {x ∈ E4

µ | 〈x, x〉 = 〈x, y0〉 = c}.

Conversely, consider the Lorentzian surface L2
1(y0, c) ⊂ M

3

1(c) in
(2.3). Then the surface is Lorentzian if and only if 〈y0, y0〉 > c. Hence
we may assume that 〈y0, y0〉 = c + a−2 for a positive real number
a. Note that a unit normal vector field N of L2

1(y0, c) in M
3

1(c) is
given by N = a(y0 − x) and that the surface is of constant Gaussian
curvature K = c + a2. For any fixed point p ∈ L2

1(y0, c), choose a
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pseudo-orthonormal basis {A0, B0} of TpL and put C0 = a(y0 − p). If
we let

(2.4)

γ(s) = p+A0s,A(s) = A0,

B(s) =
1
2
KA0s

2 + (Kp− a2y0)s+B0,

C(s) = − aA0s+ C0 = a(γ0 − γ(s),

then {A(s), B(s), C(s)} is the unique Cartan frame of the null curve
γ(s) in L2

1(y0, c) with k(s) = k1(s) ≡ 0 satisfying γ(0) = p, A(0) = A0,
B(0) = B0 and C(0) = C0, see Appendix. The B-scroll y(s, t) =
γ(s) + tB(s) is a parametrization of the Lorentzian surface L2

1(y0, c),
which omits the null straight line 2y0 − p + A0t of L2

1(y0, c). Note
that every null geodesic of L2

1(y0, c) is a straight line. This property
characterizes the totally umbilic submanifolds with indefinite metric of
a pseudo-Euclidean space [2].

Now we fix a complex number c + id = κ in C with c2 − d2 =
−1. C2 can be identified with R4

2 by sending (x1 + ix3, x2 + ix4) to
(x1, x2, x3, x4). The metric on R4

2 is given by dx2
1 + dx2

2 − dx2
3 − dx2

4.
The mapping x(z) = κ(cos z, sin z) ∈ C2, where z = u1 + iu2 =
(u1, u2), parametrizes a nonminimal flat Lorentzian surface into the
anti de Sitter space H3

1 , which is called a complex circle of radius
κ [19].

If we choose a unit normal vector field

N = (d+ ic)(cos z, sin z),

then the shape operator S takes, in the usual frame {∂x/∂u1, ∂x/∂u2},
the following form: (

α −β
β α

)
,

where α = −2cd/(c2 + d2), β = 1/(c2 + d2). The mean curvature
vector field H in R4

2 is given by H = αN + x. It is not difficult to
show that a complex circle satisfies the condition (1.5) with x0 = 0,
λ = −4/(c2 + d2) and µ = 2/(c2 + d2)2. However, since the polynomial
t2 − λt + 2µ has vanishing discriminant, Lemma 1.2 shows that the
complex circle is not of finite type.

3. Behavior of nondiagonalizable shape operator and B-
scrolls as 2-type surfaces. In this section we prove the main
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theorems, Theorem A and B in Section 1. Let M2
1 be a null 2-type (2-

type) Lorentzian surface in the 3-dimensional Lorentz-Minkowski space
L3 (non-flat Lorentzian space form M

3

1(c), respectively). Then Aĺıas,
Ferrández and Lucas show that the shape operator S has constant trace,
say 2a, and constant square of length |S|2 = tr (S2) [3, 11]. Obviously,
the constant a is nonzero. Let D denote the set of all points of M2

1

at which the shape operator S is diagonalizable, and U = M2
1 \ D,

the set of all points of M2
1 at which the shape operator S cannot

be diagonalizable. It is well known that 1) if c = 0, each connected
component of the interior of D is an open part of a Lorentzian cylinder
or a de Sitter space-time S2

1 [y0, (1/|a|)], y0 ∈ L3, 2) if c �= 0, each
connected component of the interior of D is an open part of either a
totally umbilic surface L2

1(y0, c) of M
3

1(c) with 〈y0, y0〉 = c+a−2 or one
of the standard product surfaces in Theorems 1.7 and 1.8 [1], [2].

Suppose that p is a point in the set U . Choose a pseudo-orthonormal
frame {X,Y } on a normal neighborhood V1 around p. Since the shape
operator S is self-adjoint with trace 2a, it satisfies

(3.1) S(X) = aX + kY, S(Y ) = jX + aY,

for some functions j and k on V1. Hence, we have |S|2 = tr (S2) =
2(a2 + jk), which implies that on V1 the product function jk is a
constant d. Thus the characteristics polynomial of S becomes

(3.2) Ps(t) = (t− a)2 − d.

If d is positive, then the shape operator S has two distinct real eigen-
values. In particular, it is diagonalizable at p, which is a contradiction.
Suppose d is a negative constant −b2. Then on V1 the shape operator
S has two complex eigenvalues a± ib. First we consider the case c = 0.
Since the minimal polynomial Ps(t) of S is constant on V1, V1 is an
isoparametric surface in Magid’s sense, and hence the shape operator
cannot have a complex eigenvalue [20], Theorem 4.10. Now consider
the case c �= 0. We can choose an orthonormal frame {e1, e2} on V
such that the shape operator S satisfies

S(e1) = ae1 + be2, S(e2) = −be1 + ae2.

From the equations of Codazzi we see that the connection form ω1
2

vanishes, and hence the neighborhood V is a flat Lorentzian surface in
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H3
1 with parallel second fundamental form in R4

2. Therefore, V1 is, up
to congruences, an open part of a complex circle [19], which is not of
finite type as we have already seen. These contradictions show that
the product function jk(= d) must vanish everywhere on V1. From the
hypothesis that p belongs to the set U , we may assume that k(p) �= 0.
Hence on a neighborhood V2 of p, k is nonzero, and hence the function
j must vanish there. Thus, on V2, the shape operator S satisfies

(3.3) S(X) = aX + kY, S(Y ) = aY.

From (3.3) on V2, we have

(3.4) ∇Y Y = αY,

where α = −〈∇Y Y,X〉 and ∇ denotes the flat connection on the
ambient pseudo-Euclidean space En

µ . Using the Codazzi equation, it
can be shown from (3.3) and (3.4) that on V2,

(3.5) Y (k) = − 2αk.

Let γ(s) be an integral curve of X starting from p. For each s, let
x(s, t) denote an integral curve of Y starting from γ(s). Then x(s, t)
is a coordinate system of a neighborhood V around p. From (3.4), we
see that

(3.6) Y (x(s, t)) = fs(t)Y (γ(s)),

where fs(t) is the positive function with fs(0)=1, f ′
s(t)=α(x(s, t))fs(t).

If we replace {X,Y } by the pseudo-orthonormal frame {A,B} defined
by

(3.7) A(x(s, t)) = fs(t)X(x(s, t)), B(x(s, t)) = Y (γ(s)),

then on V , we have

(3.8) S(A) = aA+ hB, S(B) = aB,

where the nonzero function h is given by h = kf2
s . Furthermore, (3.5),

(3.6) and (3.7) imply that

(3.9) ∇BB = 0,
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which shows that the null geodesic in the direction of B is a straight line
segment andB is parallel along the line segment. Hence a neighborhood
V of p consists of a one-parameter family of null straight lines. By the
same argument as in the proof of (3.5), it follows from (3.8) and (3.9)
that

(3.10) B(h) = 0.

From (3.8) we see that, for a fixed unit normal N , the function
〈∇AA,N〉 = −h vanishes nowhere on V , and hence the null geodesic
in the direction of B is the unique null geodesic line segment through
p. For each p in U we denote by l(p) the maximal null geodesic line
segment through p.

We are going to see what happens when we extend this segment of
null line. The following lemma shows that the extended line never
meets the set D; either it ends at a boundary point of M2

1 or stays
indefinitely in U .

Lemma 3.1. Let l(p) be the maximal null geodesic line segment
through a point p ∈ U . Then l(p) ⊂ U .

Proof. We parametrize l(p) by p+ tB(p). Suppose that the line l(p)
contains a point q ∈ D. Then there exists a point p0 = p + t0B(p)
of l(p) such that p0 ∈ D and the points of l(p) with t ∈ [0, t0) belong
to U . By the above results, we may extend {A,B} to an open set
containing the half open line segment pp0 so that (3.8) and (3.9) hold
there. Then (3.10) shows that the function h is constant on the half
open line segment pp0. Since p0 ∈ D, by continuity, h must vanish on
that line segment pp0, which is a contradiction.

For a point p in the boundary bd (U) of the set U , we prove the
following.

Lemma 3.2. Let p ∈ bd (U) ⊂ M2
1 be a point of the boundary of the

set U . Then through p there passes a unique open segment of null line
l(p) ⊂ M2

1 . Furthermore, l(p) ⊂ bd (U), that is, the boundary of U is
formed by segments of null lines.
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Proof. Let p ∈ bd (U). On a neighborhood V around p, let {X,Y } be
a pseudo-orthonormal frame on V . Then the shape operator S satisfies
(3.1) for some functions j and k on V . Furthermore, we see as above
that on V ∩U the product function jk vanishes everywhere, but j and
k do not vanish simultaneously. Since p is a limit point of U , it is
possible to choose a sequence {pn} in V ∩ U which converges to p as
n → ∞.

Without loss of generality, we may assume that there exists such a
sequence {pn} as above with k(pn) �= 0, n = 1, 2, . . . . Then in a
neighborhood of pn, the function j vanishes; hence, the shape operator
S satisfies (3.3) there. Put φ : (−δ1, δ1) × W → V be the C∞

unique trajectory of Y with φ(0, q) = q in a neighborhood W of p.
Then φ(t, pn) is nothing but a parametrization of the null straight line
segment l(pn) through pn. This shows that (∇Y Y )(φ(t, pn)) is parallel
to Y (φ(t, pn)) for each n = 1, 2, . . . , and |t| < δ1. By letting n → ∞,
we see that (∇Y Y )(φ(t, p)) and Y (φ(t, p)) are parallel for all t with
|t| < δ1. Thus φ(t, p) is a parametrization of the null line segment
through p in the direction of Y .

Suppose that there exists another sequence {qn} in V ∩ U with
j(qn) �= 0, n = 1, 2, . . . , which converges to p as n → ∞. Then,
as before, we see that the unique trajectory ψ(t, qn) of X, |t| < δ2,
converges to a line segment ψ(t, p) through p. For sufficiently large
n, the line segment φ(t, pn) through pn should meet the line segment
ψ(t, p) at a point q in V . This is a contradiction, because Lemma 3.1
shows that φ(t, pn) and ψ(t, p) belong to the sets U and D, respectively.
This contradiction shows that the integral curve φ(t, p) of Y is a
parametrization of the unique null geodesic line segment through p,
which we will denote by l(p).

Next we assert that every point of l(p) on M2
1 is a boundary point of

U . In fact, if q ∈ l(p), there exists a sequence qn = φ(t, pn) in U with
pn → p, and hence qn → q as n → ∞. Thus q belongs to the closure of
U . Assume that q does not belong to bd (U). Then q ∈ U and l(p) is
the unique null geodesic line segment through q and hence that p ∈ U ,
a contradiction.

Note that each component of int (D) is as follows.

1) If c = 0, int (D) is one of an open part of a cylinder S1
1(r) × R,
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R1
1 × S1(r), with r = 1/(2|a|) or a de Sitter space-time S2

1(y0, r) with
r = 1/|a|, y0 ∈ L3.

2) If c �= 0, int (D) is an open part of either a totally umbilic
Lorentzian surface L2

1(y0, c) in (2.3) or one of the standard product
surfaces in Theorems 1.7 and 1.8. Since the cylinders and the product
surfaces contain no null geodesic line segment, we see that each compo-
nent of int (D) is an open part of a de Sitter space-time S2

1(y0, r) (in case
c = 0) or a Lorentzian surface L2

1(y0, c) of M
3

1(c) with 〈y0, y0〉 = c+a−2

(in case c �= 0).

Now we give the proof of the main theorems. It suffices to show that
the theorems hold in a neighborhood of a point p ∈ bd (U). Let p be
a point in the boundary of U and {X,Y } a pseudo-orthonormal frame
in a neighborhood of p. Then the shape operator S satisfies (3.1).
Without loss of generality, we may assume that the line segment l(p)
is in the direction of Y . Then the proof of Lemma 3.2 shows that there
exists a neighborhood V of p such that ∇Y Y is parallel to Y on V ∩U .
Since every null geodesic of int (D) is a straight line segment, we see
that ∇Y Y is parallel to Y in V ∩ int (D) and hence, by continuity,
in the whole neighborhood V . This implies that in V the function
j = −〈S(Y ), Y 〉 vanishes, and hence the shape operator S satisfies
(3.3) for some function k on V . Obviously, we have k−1(0) = V ∩D.

Let γ(s) be the integral curve of X through p and A(s), B(s), C(s)
the restrictions of X,Y,N along γ(s), respectively. Then (3.3) shows
that the Cartan frame {A(s), B(s), C(s)} satisfies (2.2). Hence we see
that in a neighborhood of p, M2

1 can be parametrized by a B-scroll
x(s, t) = γ(s) + tB(s). This completes the proofs of Theorems A
and B.

Let us consider a B-scroll x(s, t) = γ(s) + tB(s) with (s, t) ∈ R2. As
we already have seen in Section 2, we may assume that 〈Ȧ(s), B(s)〉 ≡ 0,
so that the metric tensor (gij) is given by(

Kt2 −1
−1 0

)
.

Hence a non-flat B-scroll x(s, t) is isometric to the parametrization
y(s, t) of the non-flat totally umbilic surface L2

1(y0, c) defined by (2.4).
Since y(s, t) omits a null straight line of L2

1(y0, c), it is not complete.
Thus x(s, t) is not complete either. On the other hand, a flat B-scroll
is complete, because it is isometric to the Lorentz-Minkowski plane L2.
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Actually, our proofs show the following:

Theorem 3.3. Let M2
1 be a Lorentzian surface in the three-

dimensional Lorentz-Minkowski space L3. If the mean curvature and
the Gaussian curvature are constant and the shape operator is not di-
agonalizable at a point, then M2

1 is locally a B-scroll.

Theorem 3.4. Let M2
1 be a Lorentzian surface in the three-

dimensional non-flat Lorentzian space form M
3

1(c). If the mean and
Gaussian curvatures are constant and the shape operator is not diag-
onalizable at a point, then M2

1 is either a complex circle or locally a
B-scroll.
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Appendix

Let γ(s) be a null curve in M
3

1(c) ⊂ E4
µ with a Cartan frame

{A(s), B(s), C(s)} with γ̇(s) = A(s). Obviously we have (c, µ) =
(1, 1), (−1, 2). If we let X(s) be the matrix [A(s), B(s), C(s), γ(s)],
with column vectors A,B,C and γ, then the 4 × 4 matrix X(s) must
satisfy the condition

(4.1) X(s)tEX(s) = T,

whereX(s)t denotes the transpose of the matrixX(s), E = diag (ν1, ν2, ν3, ν4),
νi = −1 for 1 ≤ i ≤ µ and νi = 1 for µ+ 1 ≤ i ≤ 4, and

T =




0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 c


 .
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And (2.2) implies that

(4.2)

Ȧ(s) = k1(s)A(s)− k(s)C(s),

Ḃ(s) = − k1(s)B(s)− aC(s) + cγ(s),

Ċ(s) = − aA(s)− k(s)B(s),
γ̇(s) = A(s),

where k(s) and k1(s) are continuous functions on the domain J of γ.
On J , we put

M(s) =




k1(s) 0 −a 1
0 −k1(s) −k(s) 0

−k(s) −a 0 0
0 c 0 0


 ,

then (4.2) is equivalent to the matrix equation:

(4.3) Ẋ(s) = X(s)M(s).

Since the matrix T and E satisfies T 2 = E2 = I where I denotes
the identity matrix, it can be easily shown that a matrix X satisfies
XtEX = T if and only if X satisfies XTXt = E.

For any X(0) = [A(0), B(0), C(0), γ(0)] satisfying X(0)tEX(0) = T ,
there is a unique solution X(s) of (4.3) with initial value X(0). Fur-
thermore, X(s) is defined on the whole domain J of s. Since MT is
skew symmetric, we see that (d/ds)(X(s)TX(s)t) = 0. Thus X(s) sat-
isfies X(s)TX(s)t = E or equivalently, X(s)tEX(s) = T . Therefore,
the columns {A(s), B(s), C(s)} of X(s) = [A(s), B(s), C(s), γ(s)] is a
desired Cartan frame along a null curve γ(s) in M

3

1(c) ⊂ E4
µ.

REFERENCES

1. N. Abe, N. Koike and S. Yamaguchi, Congruence theorems for proper semi-
Riemannian hypersurfaces in a real space form, Yokohama Math. J. 35 (1987),
123 136.

2. S.-S. Ahn, D.-S. Kim and Y.H. Kim, Totally umbilic Lorentzian submanifolds,
J. Korean Math. Soc. 33 (1996), 507 512.
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