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INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGL

YOUNG SOO JO AND JOO HO KANG

ABSTRACT. Given vectors x and y in a Hilbert space,
an interpolating operator is a bounded operator T such that
Tx = y. In this paper we obtained a necessary and sufficient
condition for the existence of a solution A which is in CSL-
algebra AlgL.

1. Introduction. Let C be a collection of operators acting on a
Hilbert space H, and let x and y be vectors in H. An interpolation
question for C asks for which x and y is there a bounded operator
T ∈ C such that Tx = y. A variation, the ‘n-vector interpolation
problem’, asks for an operator T such that Txi = yi for fixed finite
collections {x1, x2, . . . , xn} and {y1, y2, . . . , yn}. The n-vector inter-
polation problem was considered for a C∗-algebra U by Kadison [6].
In case U is a nest algebra, the interpolation problem was solved by
Lance [7]; his result was extended by Hopenwasser [2] to the case that
U is a CSL-algebra. More recently, Munch [8] obtained conditions for
interpolation in case T is required to lie in the ideal of Hilbert-Schmidt
operators in a nest algebra. Hopenwasser [3] once again extended the
interpolation condition to the ideal of Hilbert-Schmidt operators in a
CSL-algebra. Hopenwasser’s paper also contain a sufficient condition
for interpolation of n-vectors, although necessity was not proved in that
paper.

First, we establish some notations and conventions. A commutative
subspace lattice L, or CSLL is a strongly closed lattice of (self-adjoint)
pairwise-commuting projections acting on a separable Hilbert space H.
We assume that the projections 0 and I lie in L. We usually identify
projections and their ranges so that it makes sense to speak of an
operator as leaving a projection invariant. If L is CSL, AlgL is called
a CSL-algebra. The algebra AlgL is the algebra of all bounded linear
operators on H that leave invariant all projections in L. Let x and y
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be vectors in a Hilbert space. Then 〈x, y〉 means the inner product of
vectors x and y. In this paper, we use the convention 0

0 = 0, when
necessary.

2. Interpolation problems in CSL-algebra AlgL. Let H be
a Hilbert space and L a commutative subspace lattice of orthogonal
projections acting on H containing 0 and 1. Let M be a subset of
a Hilbert space H. Then M means the closure of M and M⊥ the
orthogonal complement of M. Let f be a vector in a Hilbert space H
and {fn} a sequence of vectors in H. Then fn → f or limn→∞ fn = f
means that the sequence {fn} converges to f on the norm topology on
H. Let N be the set of all natural numbers, and let C be the set of all
complex numbers.

Theorem 1. Let H be a Hilbert space and L a commutative subspace
lattice on H. Let x and y be vectors in H. Then the following
statements are equivalent.

(1) There is an operator A in AlgL such that Ax = y and every E
in L reduces A.

(2) sup
{‖∑l

i=1 αiEiy‖
‖∑l

i=1 αiEix‖
: l ∈ N, αi ∈ C and Ei ∈ L

}
< ∞.

Proof. Suppose that there is an operator A in AlgL such that Ax = y
and every E in L reduces A. Then αEAx = AαEx = αEy for every E
in L and for every α in C. So A(

∑l
i=1 αiEix) =

∑l
i=1 αiEiy for l ∈ N ,

αi ∈ C and Ei ∈ L. Thus ‖∑l
i=1 αiEiy‖ = ‖A(

∑l
i=1 αiEix)‖ ≤

‖A‖‖∑l
i=1 αiEix‖.

If ‖∑l
i=1 αiEix‖ �= 0, then

‖
∑l

i=1
αiEiy‖

‖
∑

l

i=1
αiEix‖

≤ ‖A‖.

Hence, sup
{

‖
∑l

i=1
αiEiy‖

‖
∑l

i=1
αiEix‖

: l ∈ N, αi ∈ C and Ei ∈ L
}

≤ ‖A‖.

If sup
{

‖
∑l

i=1
αiEiy‖

‖
∑l

i=1
αiEix‖

: l ∈ N, αi ∈ C and Ei ∈ L
}

< ∞, then,
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without loss of generality, we may assume that

sup
{‖∑l

i=1 αiEiy‖
‖∑l

i=1 αiEix‖
: l ∈ N, αi ∈ C and Ei ∈ L

}
= 1.

So ‖∑l
i=1 αiEiy‖ ≤ ‖∑l

i=1 αiEix‖, l ∈ N, αi ∈ C and Ei ∈ L . . . (∗).
Let M =

{∑l
i=1 αiEix : l ∈ N, αi ∈ C and Ei ∈ L}

. Then
M is a linear manifold. Define A : M → H by A(

∑l
i=1 αiEix)

=
∑l

i=1 αiEiy. Then A is well defined. For, if
∑l

i=1 αiEix =∑m
j=1 βjEjx, then

∑l
i=1 αiEix+

∑m
j=1(−βj)Ejx=0. So ‖∑l

i=1 αiEix+∑m
j=1(−βj)Ejx‖ = 0 and hence ‖∑l

i=1 αiEiy +
∑m

j=1(−βj)Ejy‖ = 0
by (∗). Thus

∑l
i=1 αiEiy =

∑m
j=1 βjEjy, i.e., A(

∑l
i=1 αiEix) =

A(
∑m

j=1 βjEjx). Extend A to M by continuity, and define A|M⊥ = 0.
Clearly, Ax = y and ‖A‖ ≤ 1.

Now we must show that E reduces A or AE = EA for every E in L.
Let f be in H, and let f =

∑l
i=1 αiEix⊕ g, where g ∈ M⊥

. Then, for
every E in L,

AEf = AE

( l∑
i=1

αiEix + g

)

= A

( l∑
i=1

αiEEix

)
+ AEg

=
l∑

i=1

αiEEiy because Eg ∈ M⊥

= E

( l∑
i=1

αiEiy

)

= EA

( l∑
i=1

αiEix + g

)
because Ag = 0.

So AE = EA for every E ∈ L.
If we modify the proof of Theorem 1 a little, we can prove the

following theorem.
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Theorem 2. Let H be a Hilbert space and L a commutative subspace
lattice on H. Let {x1, x2, . . . , xn} and {y1, y2, . . . , yn} be two sequences
of vectors in H. Then the following statements are equivalent.

(1) There is an operator A in AlgL such that Axi = yi, i = 1, . . . , n,
and every E in L reduces A.

(2)

sup
{‖∑mi

k=1

∑l
i=1 αk,iEk,iyi‖∑mi

k=1

∑l
i=1 αk,iEk,ixi‖

: mi ∈ N, l≤n, Ek,i ∈ L and αk,i ∈ C
}

< ∞.

Proof. Suppose that there is an operator A in AlgL such that
Axi = yi, i = 1, 2, . . . , n, and every E in L reduces A. Then αEAxi =
AαExi = αEyi for every E in L and for every α in C, i = 1, 2, . . . , n.
So A(

∑mi

k=1

∑l
i=1 αk,iEk,ixi) =

∑mi

k=1

∑l
i=1 αk,iEk,iyi, mi ∈ N , l ≤

n, Ek,i ∈ L and αk,i ∈ C. Thus ‖∑mi

k=1

∑l
i=1 αk,iEk,iyi‖ ≤

‖A‖‖∑mi

k=1

∑l
i=1 αk,iEk,ixi‖. If ‖

∑mi

k=1

∑l
i=1 αk,iEk,ixi‖ �= 0, then

‖∑mi

k=1

∑l
i=1 αk,iEk,iyi‖

‖∑mi

k=1

∑l
i=1 αk,iEk,ixi‖

≤ ‖A‖.

Hence

sup
{ ‖∑mi

k=1

∑l
i=1 αk,iEk,iyi‖

‖∑mi

k=1

∑l
i=1 αk,iEk,ixi‖

: mi ∈ N, l≤n, Ek,i ∈ L and αk,i ∈ C
}

< ∞.

If

sup
{ ‖∑mi

k=1

∑l
i=1 αk,iEk,iyi‖

‖∑mi

k=1

∑l
i=1 αk,iEk,ixi‖

: mi ∈ N, l≤n, Ek,i ∈ L and αk,i ∈ C
}

< ∞,

then, without loss of generality, we may assume that

sup
{ ‖∑mi

k=1

∑l
i=1 αk,iEk,iyi‖

‖∑mi

k=1

∑l
i=1 αk,iEk,ixi‖

: mi ∈ N, l≤n, Ek,i ∈ Land αk,i ∈ C
}

= 1.
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So
∥∥∥∥

mi∑
k=1

l∑
i=1

αk,iEk,iyi

∥∥∥∥ ≤
∥∥∥∥

mi∑
k=1

l∑
i=1

αk,iEk,ixi

∥∥∥∥, mi ∈ N, l≤n, Ek,i ∈ L

and αk,i ∈ C · · · (∗). Let M = {∑mi

k=1

∑l
i=1 αk,iEk,ixi : mi ∈ N, l ≤

n, αk,i ∈ C and Ek,i ∈ L}. Then M is a linear manifold. Define
A : M → H by A(

∑mi

k=1

∑l
i=1 αk,iEk,ixi) =

∑mi

k=1

∑l
i=1 αk,iEk,iyi.

Then A is well defined.

For, if
∑mi

k=1

∑l
i=1 αk,iEk,ixi =

∑mj

k=1

∑t
j=1 βk,jEk,jxj , then

‖∑mi

k=1

∑l
i=1 αk,iEk,ixi +

∑mj

k=1

∑t
j=1(−βk,j)Ek,jxj‖ = 0 and hence

‖∑mi

k=1

∑l
i=1 αk,iEk,iyi+

∑mj

k=1

∑t
j=1(−βk,j)Ek,jyj‖ = 0 by (∗). Thus,∑mi

k=1

∑l
i=1 αk,iEk,iyi =

∑mj

k=1

∑t
j=1 βk,jEk,jyj .

Extend A to M by continuity and define A|M⊥ = 0. Clearly,
Axi = yi, i = 1, 2, . . . , n, and ‖A‖ ≤ 1.

Now we must show that E reduces A or AE = EA for every E in L.
Let f be in H, and let f = (

∑mi

k=1

∑l
i=1 αk,iEk,ixi)⊕g, where g ∈ M⊥

.
Then, for every E in L,

AEf = AE

( mi∑
k=1

l∑
i=1

αk,iEk,ixi + g

)

= A

( mi∑
k=1

l∑
i=1

αk,iEEk,ixi

)
+ AEg

=
mi∑
k=1

l∑
i=1

αk,iEEk,iyi because Eg ∈ M⊥

and

EAf = EA

( mi∑
k=1

l∑
i=1

αk,iEk,ixi + g

)

= E

( mi∑
k=1

l∑
i=1

αk,iEk,iyi

)
+ Ag

=
mi∑
k=1

l∑
i=1

αk,iEEk,iyi because Ag = 0.
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So AE = EA for every E ∈ L.
If we modify the proof of Theorem 2 a little, we can get the following

theorem. So we omit its proof.

Theorem 3. Let H be a Hilbert space, and let L be a commutative
subspace lattice on H. Let {xn} and {yn} be two infinite sequences of
vectors in H. Then the following statements are equivalent.

(1) There is an operator A in AlgL such that Axn = yn, n = 1, 2, . . . ,
and every E in L reduces A.

(2)

sup
{ ‖∑mi

k=1

∑l
i=1 αk,iEk,iyi‖

‖∑mi

k=1

∑l
i=1 αk,iEk,ixi‖

: mi, l∈N, Ek,i ∈ L and αk,i ∈ C
}

< ∞.

Theorem 4. Let H be a Hilbert space, and let L be a subspace
lattice on H. Let x1, . . . , xn and y be vectors in H. If there are
operators A1, . . . , An in AlgL such that

∑n
k=1 Akxk = y and every

E in L reduces Ak, k = 1, 2, . . . , n, then

sup
{ ‖∑l

i=1 αiEiy‖∑n
k=1 ‖

∑l
i=1 αiEixk‖

: l ∈ N, Ei ∈ L and αi ∈ C
}

< ∞.

Proof. Since
∑n

k=1 Akxk = y and AkE = EAk for every k =
1, 2, . . . , n, and every E in L, ∑n

k=1 Ak(
∑l

i=1 αiEixk) =
∑l

i=1 αiEiy,
l ∈ N , αi ∈ C and Ei ∈ L. So

∥∥∥∥
l∑

i=1

αiEiy

∥∥∥∥ ≤ [sup
k

‖Ak‖]
( n∑

k=1

∥∥∥∥
l∑

i=1

αiEixi

∥∥∥∥
)

.

If
∑n

k=1 ‖
∑l

i=1 αiEixk‖ �= 0, then

‖∑l
i=1 αiEiy‖∑n

k=1 ‖
∑l

i=1 αiEixk‖
< sup

k
‖Ak‖.
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Hence,

sup
{ ‖∑l

i=1 αiEiy‖∑n
k=1 ‖

∑l
i=1 αiEixk‖

: l ∈ N, Ei ∈ L and αi ∈ C
}

< ∞.

Theorem 5. Let H be a Hilbert space, and let L be a commutative
subspace lattice on H. Let x1, . . . , xn and y be vectors in H. If

sup
{ ‖∑l

i=1 αiEiy‖
‖∑l

i=1 αiEixk‖
: l ∈ N, Ei ∈ L and αi ∈ C

}
< ∞

for all k = 1, 2, . . . , n, then there are operators A1, . . . , An in AlgL
such that

∑n
k=1 Akxk = y and EAk = AkE for every E in L and

k = 1, 2, . . . , n.

Proof. Put y/n = yk, k = 1, 2, . . . , n. Since

sup
{ ‖∑l

i=1 αiEiy‖
‖∑l

i=1 αiEixk‖
: l ∈ N, Ei ∈ L and αi ∈ C

}
< ∞,

sup
{ ‖∑l

i=1 αiEiyk‖
‖∑l

i=1 αiEixk‖
: l ∈ N, Ei ∈ L and αi ∈ C

}
< ∞,

and hence there is an operator Ak in AlgL such that Akxk = yk and
EAk = AkE for every E in L and all k = 1, 2, . . . , n by Theorem 1. So
A1x1 + A2x2 + · · ·+ Anxn = y1 + y2 + · · ·+ yn = y.

We want to apply Theorem 2 to concrete examples.

Example 1. Let H be a Hilbert space with an orthonormal base
{e1, e2, . . . , en} and L = {[0], [e1], [e1e2], [e1e2e3], . . . , [e1, e2, . . . , en]}.
Let A = AlgL. Then B is in AlgL if and only if B has the form




∗ ∗ ∗ · · · ∗
∗ ∗ · · · ∗

∗ · · · ∗
. . .

...
∗



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with respect to the basis {e1, e2, . . . , en}, where all nonstarred entries
are zero.

Let {x1, . . . , xt} and {y1, . . . , yt} be two sequences of vectors in H.
Assume that

sup
{ ‖∑mi

k=1

∑l
i=1 αk,iEk,iyi‖

‖∑mi

k=1

∑l
i=1 αk,iEk,ixi‖

: mi ∈ N, l ≤ t, αk,i ∈ C and Ek,i ∈ L
}

< ∞.

Then there is an operator A in AlgL such that (i) Axi = yi,
i = 1, 2, . . . , t, (ii) every E reduces A, (iii) A is diagonal, and
(iv) βji = αjjαji, i = 1, 2, . . . , t and j = 1, 2, . . . , n, where xi =
(α1i, α2i, . . . , αni)t and yi = (β1i, β2i, . . . , βni)t. For, by arguments
similar to those of the proof of Theorem 2, we can get the above re-
sults.

Example 2. Let H be a Hilbert space with an orthonormal base
{e1, e2, . . . , e2n+1}. Let L = {[0], [e1], [e1e2e3], [e1e2e3e4e5], . . . , [e1, e2,
e3, . . . , e2n+1]}.
Let B be in B(H). Then B is in AlgL if and only if B has the form




∗ ∗ ∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ ∗ · · · ∗ ∗

∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗

. . .
...

...
∗ ∗
∗ ∗




with respect to the basis {e1, e2, . . . , e2n+1}, where all nonstarred
entries are zero.

Let {x1, . . . , xt} and {y1, . . . , yt} be two sequences of vectors in H.
Assume that

sup
{ ‖∑mi

k=1

∑l
i=1 αk,iEk,iyi‖

‖∑mi

k=1

∑l
i=1 αk,iEk,ixi‖

: mi ∈ N, l ≤ t, αk,i ∈ C and Ek,i ∈ L
}

< ∞.
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Then there is an operator A in AlgL such that

(i) Axi = yi, i = 1, 2, . . . , t, (ii) every E in AlgL reduces A, (iii) A
has the form




∗
∗ ∗
∗ ∗

∗ ∗
∗ ∗

. . .
∗ ∗
∗ ∗




with respect to the basis {e1, e2, . . . , e2n+1}, where all nonstarred en-
tries are zero, and (iv) β1j = a11α1j , β2p,j = a2p,2pα2p,j+a2p,2p+1α2p+1,j

and β2p+1,j = a2p+1,2pα2p,j + a2p+1,wp+1α2p+1,j , j = 1, 2, . . . , t and
p = 1, 2, . . . , n, where A = (app), xj = (α1j , α2j , . . . , α2n+1,j)t and
yj = (β1j , β2j , . . . , β2n+1,j)t.

For, by Theorem 2, there is an operator A in AlgL such that (i) Axi =
yi, i = 1, 2, . . . , t, and every E in L reduces A. If we put E = [e1],
E = [e1, e2, e3], E = [e1, e2, e3, e4, e5], . . . , E = [e1, e2, . . . , e2n+1]
in turn in the equation AE = EA, and if we compare components
of AE with those of EA, then (iii) A has the desired form. We
know that AExi = Eyi in the proof of Theorem 1, i = 1, 2, . . . , t.
(iv) If we put E = [e1], E = [e1, e2, e3], E = [e1, e2, e3, e4, e5], . . . ,
E = [e1, e2, . . . , e2n+1] in turn in the equation AExi = Eyi, i =
1, 2, . . . , t, and if we compare each component of AExi with that of
Eyi, then we can get β1j = a11α1j , β2p,j = a2p,2pα2p,j+α2p,2p+1α2p+1,j

and β2p+1,j = a2p+1,2pα2p,j + a2p+1,2p+1α2p+1,j , j = 1, 2, . . . , and
p = 1, 2, . . . , n, where A = (app), xi = (α1j , α2j , . . . , α2n+1,j)t and
yi = (β1j , β2,j , . . . , β2n+1,j)t.

Example 3. Let H be a Hilbert space with an orthonormal
base {e1, e2, . . . , e9}. Let L be the lattice generated by {[0], [e1, e2],
[e1, e2, e3], [e4, e5], [e1, . . . , e8], [e9]}.
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Let B be a B(H). Then B is in AlgL if and only if B has the form




∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗




with respect to the basis {e1, . . . , e9}, where all nonstarred entries are
zero.

Let {x1, . . . , xt} and {y1, . . . , yt} be two sequences of vectors in H,
t ≤ 9. Assume that

sup
{ ‖∑mi

k=1

∑l
i=1 αk,iEk,iyi‖

‖∑mi

k=1

∑l
i=1 αk,iEk,ixi‖

: mi ∈ N, l ≤ t, αk,i ∈ C and Ek,i ∈ L
}

< ∞.

Then there is an operator A in AlgL such that

(i) Axi = yi, i = 1, 2, . . . , t, (ii) every E in L reduces A, (iii) A has
the form 



∗ ∗
∗ ∗

∗
∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗




with respect to the basis {e1, e2, . . . , e9}, where all nonstarred entries
are zero, and
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(iv)
β1j = a11α1j + a12α2j , β2j = a21α1j + a22α2j ,

β3j = a33α3j ,

β4j = a44α4j + a45α5j ,

β5j = a54α4j + a55α5j ,

β6j = a66α6j + a67α7j + a68α8j ,

β7j = a76α6j + a77α7j + a78α8j

β8j = a86α6j + a87α7j + a88α8j and
β9j = a99α9j , j = 1, 2, . . . , 9.

For, by arguments similar to those of the proof of Examples 1 and 2,
we can get the above results.

We can get much information from Examples 1, 2 and 3 about A, xi

and yi.
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