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INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGZL

YOUNG SOO JO AND JOO HO KANG

ABSTRACT. Given vectors z and y in a Hilbert space,
an interpolating operator is a bounded operator T' such that
Tz = y. In this paper we obtained a necessary and sufficient
condition for the existence of a solution A which is in CSL-
algebra Alg L.

1. Introduction. Let C be a collection of operators acting on a
Hilbert space H, and let z and y be vectors in ‘H. An interpolation
question for C asks for which x and y is there a bounded operator
T € C such that Tx = y. A variation, the ‘n-vector interpolation
problem’; asks for an operator T such that Txz; = y; for fixed finite
collections {x1,zo,...,z,} and {y1,y2,... ,yn}. The n-vector inter-
polation problem was considered for a C*-algebra U by Kadison [6].
In case U is a nest algebra, the interpolation problem was solved by
Lance [7]; his result was extended by Hopenwasser [2] to the case that
U is a CSL-algebra. More recently, Munch [8] obtained conditions for
interpolation in case T is required to lie in the ideal of Hilbert-Schmidt
operators in a nest algebra. Hopenwasser [3] once again extended the
interpolation condition to the ideal of Hilbert-Schmidt operators in a
CSL-algebra. Hopenwasser’s paper also contain a sufficient condition
for interpolation of n-vectors, although necessity was not proved in that
paper.

First, we establish some notations and conventions. A commutative
subspace lattice £, or CSL L is a strongly closed lattice of (self-adjoint)
pairwise-commuting projections acting on a separable Hilbert space H.
We assume that the projections 0 and I lie in £. We usually identify
projections and their ranges so that it makes sense to speak of an
operator as leaving a projection invariant. If £ is CSL, Alg L is called
a CSL-algebra. The algebra Alg £ is the algebra of all bounded linear
operators on H that leave invariant all projections in £. Let x and y
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be vectors in a Hilbert space. Then (x,y) means the inner product of
vectors x and y. In this paper, we use the convention % = 0, when

necessary.

2. Interpolation problems in CSL-algebra Alg L. Let H be
a Hilbert space and £ a commutative subspace lattice of orthogonal
projections acting on H containing 0 and 1. Let M be a subset of
a Hilbert space H. Then M means the closure of M and M* the
orthogonal complement of M. Let f be a vector in a Hilbert space H
and {f,} a sequence of vectors in H. Then f,, — f or lim, o frn = f
means that the sequence {f,,} converges to f on the norm topology on
‘H. Let N be the set of all natural numbers, and let C be the set of all
complex numbers.

Theorem 1. Let ‘H be a Hilbert space and L a commutative subspace
lattice on H. Let x and y be vectors in H. Then the following
statements are equivalent.

(1) There is an operator A in Alg L such that Az =y and every E
in L reduces A.

1
(2)sup{%:l€N,ai€C and Ei€£}<oo.
i=1 XL T

Proof. Suppose that there is an operator A in Alg £ such that Ax =y
and every E in L reduces A. Then aEAx = AaFEx = aFEy for every E
in £ and for every o in C. So A(Zizl a; Fix) = Zézl o; By forl € N,
a; € Cand E; € L. Thus | 22:1 a By = ||A(z:li:1 a;Ex)| <

!
AN 5= i Bl

I3 Byl
If l.i OéiEi-/E 0, then ei=l 7 A .
(DI I # 1D iBix| — Al

1
Hence, sup{%ﬂimizyll :leN,a;€eCand E; € E} < ||A]|-
i=1 YT

! OL,'E,‘
If sup{%ﬂ%ﬁyh :l € N,a; € Cand E; € /J} < 00, then,
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without loss of generality, we may assume that

l
sup {—' 2;21 OB e N 0y e C and B, € [,} ~1.
12051 ci Bz

So [, Byl < ||, iEiz||, l€N, a; €C and E; € L... (%).
Let M = {3 | a;Ex : | € N,a; € Cand E; € £}. Then
M is a linear manifold. Define A : M — H by A(Eizl o E;x)
= 22:1 a;FE;y. Then A is well defined. For, if 22:1 o B =
> iy BjEjx, then S o B+ 75 (—6;) Ejz=0. So || S Bt
Yy (=B))Ejz| = 0 and hence | Yi_y ai By + Y7, (—B;) Ejyll = 0
by (). Thus 22:1 a;Ey = E;n:1 B;E;y, ie., A(Eizl a;Fx) =
A(YIL, BjBjx). Extend A to M by continuity, and define Al. = 0.
Clearly, Az =y and ||A]| < 1.

Now we must show that E reduces A or AE = EA for every E in L.
Let f be in ‘H, and let f = 22:1 o, E;x @ g, where g € HL. Then, for
every F in L,

1
AEf = AE(ZaiEix—f—g)

i=1

1
=A < > aEEx) + AEg
i=1
: 1
= Z o, EE;y because Eg € M
i=1

l
i=1

1

= EA(Z a; Ex + g) because Ag = 0.
i=1

So AE = E A for every E € L.

If we modify the proof of Theorem 1 a little, we can prove the
following theorem.
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Theorem 2. Let H be a Hilbert space and L a commutative subspace
lattice on H. Let {x1,xa,... ,x} and {y1,y2, ... ,yn} be two sequences
of vectors in H. Then the following statements are equivalent.

(1) There is an operator A in Alg L such that Ax; =y;,i=1,... ,n,
and every E in L reduces A.

(2)

(DN 4_1 ak,i By iyl
sup P —" — :m; € N, I<n, E,; € Land a3, € C
Dokt Dim ki Bk i

< 00.

Proof. Suppose that there is an operator A in Alg L such that
Ax; =vy;,1=1,2,... ,n, and every F in L reduces A. Then aFAx; =
AaFEz; = aFy; for every F in £ and for every ain C,i=1,2,... ,n.
So A(Yh) Sicy akiBrami) = ity Sy okiEriyi, mi € N, 1 <
n, Ek,i € L and Qg € C. Thus || Z;n:ll 221 ak,iEk’iyiH <
AN S0y Sy e Bl 16 | 3272 35y o B i # 0, then

[y izl ak,i Bk iyl

IS S i B

< [IA]l.

Hence

i l
sup{ >y i aniBrayill
[DIFEPD DAY oA

m; € N,I<n, E,; € Land oy ; € C}
< 00.
If

-,
sup{ > hiy iy akiBrivill
. l .
>y i kB ]|

m; € N, I<n, Ek:,i € L and Qg € C}

< 00,
then, without loss of generality, we may assume that

il
Sup{ 2oty i ki Byl |
> ey 221 o By x|

m; € N, I<n, Ey; € Land oy ; € C}

=1
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So

m; 1

Z Z o i B iy

k=11i=1

m;

E E oy i By iz

k=11i=1

< ,m; € N, I<n, B, €L

and g € C--- (*) Let M = {Zzl:ll li:l ak,iEk,ixi :m; € N,I <
n,ar; € Cand Ey; € L£}. Then M is a linear manifold. Define
A: M —-H by A(ZZL:Ll é:l ak’iEk,iwi) = Z;cn:ll 221 ak,iEk,iyi-
Then A is well defined.

FOI‘7 lf ka;1 i:l O‘k,iEk,iIi = ZZL:Jl ;’21 ﬂk,jEk,jIjv then
>, 2:1 i B i + Y02, ;:1(—6;@7]-)Ek)ja:j|| = 0 and hence

m; l m;j

I35y i ki Briyi+ D52y 25—y (=Br) Br gy || = 0 by (). Thus,

m; l mj
S ory i ki Bt = Y opy iy Bri Bk ;-

Extend A to M by continuity and define A|ml = 0. Clearly,
Az, =vy;,i=1,2,... ,n,and ||4] < 1.

Now we must show that F reduces A or AE = F A for every E in L.
Let f bein H, and let f = (3°}%, 2:1 oy Ey ;) ®g, where g € M
Then, for every E in L,

m; 1
AEf = AE ( SO kB + g>
k=11i=1
m; 1
=A < Z Z akviEEkﬂ-xi) + AEg
k=11i=1
m; 1
= Z ZakﬁiEEkﬁiyi because Fg € Ml
k=11i=1
and

m; 1
EAf = EA<Z Z oy i By ix; + 9>

k=11i=1

m; 1
=F ( Z Z Oék,iEk,iyi) + Ag
k=1 i=1
m; 1
= Z Z oy i EEL ;y;  because Ag = 0.
k=1i=1



908 Y.S. JO AND J.H. KANG

So AE = E A for every E € L.

If we modify the proof of Theorem 2 a little, we can get the following
theorem. So we omit its proof.

Theorem 3. Let H be a Hilbert space, and let L be a commutative
subspace lattice on H. Let {x,,} and {y,} be two infinite sequences of
vectors in ‘H. Then the following statements are equivalent.

(1) There is an operator A in Alg L such that Az, =y, n=1,2,...,
and every E in L reduces A.

(2)

p{|2 z 104szkzyzH
” Z"Ll —1 Ok, By, zxz”
< 0.

mq, LEN, Ek,i € L and Qi € C}

Theorem 4. Let H be a Hilbert space, and let L be a subspace
lattice on H. Let x1,...,x, and y be vectors in H. If there are
operators Aq,..., A, in AlgL such that Y }_, Agxy, = y and every
E in L reduces Ay, k=1,2,... ,n, then

l
sup{ nHlellaZ iyl :lEN,EieﬁandaiGC}<oo
Dok 1225 i B

Proof. Since Y.}_, Ayzy, = y and AyE = EA; for every k =
1,2,...,n,and every Ein £, >, _ 1A;€(Zz T Eiry) = Zizl a; By,
leN, aZECandE e L. So

\ o 4] (Z
k=

I3 | Zé:l a;Fxi| # 0, then

l
> i1 ai By
l
Zzzl H Zi:1 aiEika

Y B,

< sup || Ag|l-
K
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Hence,

1
sup{ nszzlla i :lEN,EieﬁandaiGC}<oo.
>kt | 20imy @i B |

Theorem 5. Let H be a Hilbert space, and let L be a commutative
subspace lattice on H. Let x1,... ,x, andy be vectors in H. If

l
Sup{@ml—am;leN,Eieﬁ andaiEC}<OO
1 22i=1 ai B |

for all k = 1,2,... ,n, then there are operators Ai,..., A, in AlgL
such that Y p_, Agxr, = y and EA, = ARE for every E in L and
k=1,2,...,n.

Proof. Put y/n =yi, k =1,2,... ,n. Since

l
Sup{”zlll—ayl:leN7Eie£andai€C}<OO,
12 2i—1 ci B |

1
sup{'zzlz—l—aka:ZEN,EiEEandaiEC} < 00,
| Zi:l i B

and hence there is an operator Ay in Alg £ such that Axz, = y, and
FEA, = ApE for every E'in £ and all k =1,2,... ,n by Theorem 1. So
Az +Aszo 4+ -+ Az =1ty YU =9

We want to apply Theorem 2 to concrete examples.

Example 1. Let H be a Hilbert space with an orthonormal base
{e1,ea,... ,e,} and L = {[0], [e1], [e1e2], [e1eze3], ... , [e1,€2,... ,en]}.
Let A = AlgL. Then B is in Alg £ if and only if B has the form
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with respect to the basis {ej,ea, ... ,e,}, where all nonstarred entries
are zero.
Let {x1,...,2:} and {y1,...,y:} be two sequences of vectors in H.

Assume that

3oy Yoy i By
sup P - :m; €N, 1<t a,;, €Cand E; €L
> ks Dimy i Beiil|

< 00.

Then there is an operator A in AlgL such that (i) Az; = i,
i = 1,2,...,t, (ii) every E reduces A, (iii) A is diagonal, and
(iv) Bji = ajjog, @ = 1,2,...,t and j = 1,2,...,n, where z; =
(ali,agi, . ,Oéni)t and Y = (ﬂli,ﬁgh. ‘e ,ﬂni)t. FOI‘7 by arguments
similar to those of the proof of Theorem 2, we can get the above re-
sults.

Example 2. Let H be a Hilbert space with an orthonormal base
{617 €o, ... 762n+1}- Let L = {[O], [61]7 [616263], [6162636465], ceey [61, €a,
€3,... ,62n+1]}.

Let B be in B(H). Then B is in Alg £ if and only if B has the form

* * % *x %
* % * %
* % * %
* % * %
* % * %
* %
*
with respect to the basis {ej,es,...,ea,41}, where all nonstarred
entries are zero.
Let {x1,...,2:} and {y1,...,y:} be two sequences of vectors in H.

Assume that

il
Sup{ 2y i ki Briyill |
> ey 221 o By x|

m; € N, 1 <t, a; € Cand EWEL’}

< 00.
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Then there is an operator A in Alg £ such that

(i) Az; = y;, 1= 1,2,...,t, (ii) every E in Alg £ reduces A, (iii) A
has the form

with respect to the basis {e1,ea,... ,€a,41}, where all nonstarred en-
tries are zero, and (iv) B1; = a1104;, Bap,j = A2p 2pQ2p i +A2p 2p+1¥2p41,5
and fapt1,; = G2pt1,2pQ2p,5 + A2pr1wp+1Q2pt1,5, J = 1,2,... ¢ and
p=12,...,n, where A = (app), z; = (15, 25,... ,Q2n41,;)" and
v = (B1j, B2y - - s Bong1,)"

For, by Theorem 2, there is an operator A in Alg £ such that (i) Az; =
¥i, @ = 1,2,...,t, and every F in L reduces A. If we put E = [eq],
E = [61,62,63], E = [61762763,64765}7...7 E = [61,627... ;62n+1]
in turn in the equation AE = FEA, and if we compare components
of AE with those of FA, then (iii) A has the desired form. We
know that AFx; = Fy; in the proof of Theorem 1, i = 1,2,... ,t.
(iv) If we put E = [e1], E = [e1,e2,e3], E = [e1,ea,€3,€e4,€5],. ..,
E = [e1,ea,...,62,41] In turn in the equation AEx; = Ey;, i =
1,2,...,t, and if we compare each component of AEx; with that of
Evy;, then we can get 815 = aj10uy, Bap,j = G2p2pQ2p j+2p 2p41Q2p4 1,5
and fBopi1; = G2p41,2pQ2p,; + A2p41,2p+102p41,5, J = 1,2,..., and
p = 1,2,... , Ny where A = (app), Ty = (alj,agj,... ,Oégn+1)j)t and

yi = (B1j, B2,js- -+ Bont1,5)"-

Example 3. Let H be a Hilbert space with an orthonormal
base {e1,ea,...,e9}. Let L be the lattice generated by {[0],[e1, es],
[ela €2, 63}7 [647 65}7 [ela e ae8]a [69}}'



912 Y.S. JO AND J.H. KANG

Let B be a B(H). Then B is in Alg £ if and only if B has the form

EE S S R I S
S S S S S G S 3
* X X X X X X ¥

with respect to the basis {ej,...,eg}, where all nonstarred entries are
Zero.

Let {z1,...,2:} and {y1,... ,y:} be two sequences of vectors in H,
t < 9. Assume that

3o my Sy ki By
sup === — :m; €N, 1<t a,;, €Cand E; € L
> ks Dimy i B il

< 00.

Then there is an operator A in Alg £ such that

(i) Az; =y, i =1,2,...,t, (ii) every E in L reduces A, (iii) A has
the form

with respect to the basis {ej, es,... ,e9}, where all nonstarred entries
are zero, and
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(iv
B1j = anan; + ara0j, B2 = as10q; + azaoj,
Bsj = azzas;,
Baj = Qaa045 + ag5055,
Bs; = asaiaj + assas;,
Bej = ascts; + acrQrj + assas;,
Brj = areQe; + arrar; + argag;
Bgj = agsrs; + agrorj + aggag; and

69j:a99a9j5 ]:172a79

For, by arguments similar to those of the proof of Examples 1 and 2,
we can get the above results.

We can get much information from Examples 1, 2 and 3 about A, z;
and ;.
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