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GRAPHS OF CONVEX FUNCTIONS
ARE σ1-STRAIGHT

RICHARD DELAWARE

ABSTRACT. A set E ⊆ Rn is s-straight for s > 0 if E has
finite Method II outer s-measure equal to its Method I outer
s-measure. If E is Method II s-measurable, this means E has
finite Hausdorff s-measure equal to its Hausdorff s-content.
The graph Γ of a convex function f : [a, b] → R is shown
to be a countable union of 1-straight sets, and to contain a 1-
straight set maximal in the sense that its Hausdorff 1-measure
equals the diameter of Γ.

1. Introduction. In [7], Foran introduced the notion of an s-
straight set (Definition 2), that is, a set whose (finite) Hausdorff s-
measure and Hausdorff s-content are equal. In [1], [2] we continued
the first analysis of such sets, among other results proving that a quar-
ter circle is a countable union of 1-straight sets, verifying a conjecture
of Foran. Here, by a different argument we extend that result, proving
that the graph of any convex function f : [a, b] → R is a countable
union of 1-straight sets (Theorem 7). In [4], using yet another different
argument, we extend this result further to graphs of continuously dif-
ferentiable, absolutely continuous, and increasing continuous functions,
as well as to regular 1-sets in R2. Finally, in [3] we prove a general
theorem which implies that every set of finite s-measure is a countable
union of s-straight sets.

Before proceeding to the main results, we provide some necessary
background information. Let d be the standard distance function on
Rn where n ≥ 1. The diameter of an arbitrary nonempty set U ⊆ Rn

is defined by |U | = sup{d(x, y) : x, y ∈ U}, with |∅| = 0. Given
0 < δ ≤ ∞, let Cn

δ represent the collection of subsets of Rn with
diameter less than δ.
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Definition 1. For s > 0 and E ⊆ Rn, let

s-m∗
δ(E) = inf

{ ∑
|Ei|s : E ⊆

⋃
Ei where Ei ∈ Cn

δ for i = 1, 2, ...
}
.

Define s-m∗
I(E) = s-m∗

∞(E) and s-m∗
II(E) = supδ>0 s-m∗

δ(E). The
outer measure s-m∗

I(E) is constructed by what is called Method I, and is
called Hausdorff s-content. The outer measure s-m∗

II(E) is constructed
by what is called Method II, and when restricted to the σ-field of s-m∗

II -
measurable sets is called Hausdorff s-measure, or Hs-measure. A set
E ⊆ Rn is called an s-set if it is Hs-measurable and 0 < Hs(E) <∞.

Note that Hs-measure is a metric outer measure, so that closed, and
hence compact, sets are Hs-measurable.

Definition 2 [1], [2]. Define a set E ⊆ Rn to be s-straight if

s-m∗
I(E) = s-m∗

II(E) <∞.

So, when s = 1, we say 1-straight. A set which is the countable union
of s-straight sets will be called σs-straight. When s = 1, we say σ1-
straight.

In [7], Foran proves the following theorem which provides a useful
equivalent definition of an s-straight set that does not require the
calculation of s-m∗

I . Henceforth we will often use this result without
reference.

Theorem 1 [7, p. 733]. Let E ⊆ Rn satisfy s-m∗
II(E) <∞. Then E

is s-straight if and only if s-m∗
II(A) ≤ |A|s for each s-m∗

II-measurable
A ⊆ E. This last condition can be written

Hs(A) ≤ |A|s.

In particular, sets of zero Hs-measure are s-straight.

In the same paper [7], the following corollary appears. A proof is
provided in [1], [2].
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Corollary 1 [7, p. 734]. Hs-measurable subsets A of an s-straight
set E ⊆ Rn are s-straight. In particular, intersections of s-straight sets
are s-straight.

By Theorem 1, to show that a set E is s-straight it then suffices to
show for all (bounded) Hs-measurable subsets A ⊆ E that Hs(A) ≤
|A|s.

Theorem 2 [1], [2]. Let E ⊆ Rn have finite s-measure. Every Hs-
measurable subset of positive Hs-measure of E contains an s-straight
set of positive Hs-measure if and only if E is σs-straight.

Definition 3. A (closed) line segment in Rn is the image under
an isometry of a closed (non-degenerate) interval in R. The length
L(E) of a line segment E with endpoints x and y is defined by
L(E) = |E| = d(x, y). Following [9, p. 197], an arc in Rn is defined
to be the image of a homeomorphism f : [0, 1] → Rn. In particular,
an arc does not cross itself. The length of an arc Λ is defined to be
L(Λ) = sup

∑m
i=1 d(f(ti−1), f(ti)), where the supremum is taken over

all partitions 0 = t0 < t1 < · · · < tm = 1 of [0, 1].

A well-known fact will be helpful.

Theorem 3 [5, p. 29]. If Λ ⊆ Rn for n ≥ 1 is an arc, then
H1(Λ) = L(Λ).

The next two results are also proved in [1, 2].

Theorem 4 [1], [2]. If E ⊆ Rn for n ≥ 1 is a (non-degenerate) line
segment, then 0 < |E| = L(E) = H1(E) < ∞, and E is a 1-straight
1-set.

Theorem 5 [1], [2]. Let E1, E2 ⊆ Rn be nonoverlapping line
segments. The set E = E1 ∪ E2 is a 1-straight 1-set if and only if
|E1 ∪ E2| ≥ |E1| + |E2|.
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2. Main results.

Definition 4 [6, p. 363]. A function f : [a, b] → R is convex if for
x1, x2, x3 ∈ [a, b] where x1 < x2 < x3 it follows that

f(x2) ≤ f(x1) · x3 − x2

x3 − x1
+ f(x3) · x2 − x1

x3 − x1
.

If f : [a, b] → R is convex, let Γ = {(x, f(x)) : x ∈ [a, b]} denote its
graph. Denote the length of Γ by L(Γ), as in Definition 3. Let Γ(u, v)
represent the closed arc of Γ between the points u, v ∈ Γ. Let the line
segment between any two points on Γ be called a secant. That f is
convex means every such point (x2, f(x2)) in the definition is below or
on the secant connecting the points (x1, f(x1)) and (x3, f(x3)). By [6,
p. 364], if f : [a, b] → R is convex, then f is continuous on (a, b), and
differentiable except at most at a countable set of points.

Lemma 1. Let f : [a, b] → R be a convex function whose graph
Γ contains no line segments. Then Γ can be written as the union of
at most two isolated endpoints and at most two continuous arcs such
that for any points p1 and p2 in a given arc, |Γ(p1, p2)| = d(p1, p2) >
(1/2)L(Γ(p1, p2)).

Proof. Since f is continuous on a closed interval, it attains both a
maximum and a minimum value. So Γ is circumscribed by the rectangle
formed by the supporting lines x = a, x = b, y = min{f(x) : x ∈ [a, b]},
and y = max{f(x) : x ∈ [a, b]}. Since f is a convex function, and Γ
contains no line segments, Γ intersects the lines x = a, x = b, or
y = min{f(x) : x ∈ [a, b]} in at most one point, and the line y =
max{f(x) : x ∈ [a, b]} in at most two points. The graph Γ then consists
of at most two isolated endpoints, and at most two continuous arcs, say
Γ1,Γ2, each of which intersects adjacent sides of the rectangle. For say
Γ1, the secant of length |Γ1| connecting its endpoints is the hypotenuse
of a right triangle formed with adjacent sides of the rectangle. Since
Γ1 is contained in this triangle, for any points p1, p2 ∈ Γ1 the property
|Γ1(p1, p2)| = d(p1, p2) holds because a corresponding right triangle
can be circumscribed about Γ1(p1, p2). Finally, let r, s be the lengths
of the sides of the right triangle for which t = |Γ1(p1, p2)| = d(p1, p2)
is the length of the hypotenuse. Since Γ1(p1, p2) is the graph of an
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increasing, or decreasing, function contained in this triangle, it is well-
known and follows from the definition of the length of a convex arc
that L(Γ1(p1, p2)) ≤ r + s < t + t = 2 · d(p1, p2). Thus in a given arc,
d(p1, p2) > (1/2)L(Γ(p1, p2)) as desired.

Theorem 6. Let f : [a, b] → R be a convex function whose graph Γ
contains no line segments. Then Γ contains a perfect 1-straight 1-set
P which is maximal in the sense that H1(P ) = |Γ|.

Proof. By Lemma 1 we can take Γ to be a (non-degenerate) con-
tinuous arc such that for any points p1, p2 ∈ Γ we have |Γ(p1, p2)| =
d(p1, p2). We now construct a particular subset P ⊆ Γ. Let a∗ =
(a, f(a)) and b∗ = (b, f(b)). Note that |Γ| = d(a∗, b∗). At stage 0
of the construction, let the points a0,1, b0,1 ∈ Γ satisfy d(a∗, a0,1) =
(1/2) · |Γ| = d(b0,1, b

∗), and remove the open arc Γ(a0,1, b0,1) from
Γ. (Intuitively, divide the secant from a∗ to b∗ in half and rotate
each half secant toward Γ about the endpoints a∗ and b∗, respec-
tively, until they intersect Γ in two new points.) At stage 1 of the
construction, let the additional points a1,1, a1,2, b1,1, b1,2 ∈ Γ satisfy
d(a∗, a1,1) = d(a1,2, a0,1) = (1/22) · |Γ| = d(b0,1, b1,2) = d(b1,1, b

∗), and
remove from the two remaining arcs of Γ two open arcs Γ(a1,1, a1,2) ⊆
Γ(a∗, a0,1) and Γ(b1,2, b1,1) ⊆ Γ(b0,1, b

∗). (Intuitively, divide each of
the two equal length secants from stage 0 in half and rotate these half
secants toward Γ about the points of intersection with Γ until they
meet Γ in four new points.) In general at stage m of the construc-
tion remove from the 2m remaining arcs of Γ a collection of 2m open
arcs of Γ in the same manner. Call the perfect set which remains,
P . We claim that P is a 1-straight 1-set. For each m = 0, 1, 2, . . . ,
let Bm represent the union of the collection of 2m+1 disjoint equal
length secants, as described above, corresponding to the remaining
arcs in the construction of P at stage m. For each m = 0, 1, 2, . . . ,
we have H1(Bm) = |Γ|. Note that since P is perfect and bounded,
it is compact. Thus, any open cover of P has a finite subcover, and
for sufficiently large m it follows that Bm is contained in that open
subcover. So H1(Bm) ≤ H1(P ). But since P can be covered with sets
having the same diameter as the secant lines in Bm, it follows that
H1(P ) ≤ H1(Bm). Therefore we also have H1(P ) = H1(Bm) = |Γ|.
So P is a 1-set. By Theorem 1, the set P will be 1-straight if for each
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H1-measurable A ⊆ P it follows that H1(A) ≤ |A|. Here we can write
that A = P ∩ Γ(p1, p2) for some p1, p2 ∈ P or its closure. So it suf-
fices to show that H1(P ∩ Γ(p1, p2)) ≤ |P ∩ Γ(p1, p2)|. Let Bm(p1, p2)
be the union of the disjoint equal length secants in Bm lying strictly
between p1 and p2, not including the two disjoint equal length secants
in Bm which subtend arcs containing p1 and p2. By Lemma 4 (fol-
lowing this proof) Bm is 1-straight. By Corollary 1, it follows that
Bm(p1, p2) ⊆ Bm is also 1-straight. So for each m = 0, 1, 2, . . . , we
have H1(Bm(p1, p2)) ≤ |Bm(p1, p2)| ≤ |P ∩ Γ(p1, p2)| = d(p1, p2). Let
the two disjoint equal length secants in Bm which subtend arcs contain-
ing p1 and p2 be denoted respectively by Bm(p1) and Bm(p2). It then
follows that H1(Bm(p1, p2)) ≤ H1(P ∩ Γ(p1, p2)) ≤ H1(Bm(p1, p2) ∪
Bm(p1) ∪ Bm(p2)) = H1(Bm(p1, p2)) + H1(Bm(p1)) + H1(Bm(p2)).
So, because limm→∞ H1(Bm(p1)) = limm→∞ H1(Bm(p2)) = 0, we
have H1(A) = H1(P ∩ Γ(p1, p2)) = limm→∞ H1(Bm(p1, p2)) ≤ |P ∩
Γ(p1, p2)| = |A|. Since A = P ∩ Γ(p1, p2) ⊆ P is arbitrary, P is 1-
straight.

Lemmas 2 and 3 are technical and used to prove Lemma 4.

Lemma 2. Let x1, x2 ∈ Rn and x1 �= x2. Let E1, E2 ⊆ Rn be line
segments such that x1 is an endpoint of E1 and x2 is an endpoint of E2,
with |E1| = |E2| ≤ (1/2)d(x1, x2). Then E = E1 ∪ E2 is a 1-straight
1-set.

Proof. Since |E1 ∪E2| is determined by a pair of endpoints from line
segments E1 or E2, we have |E1 ∪ E2| ≥ d(x1, x2) ≥ |E1| + |E2|. So,
by Theorem 5, it follows that E = E1 ∪ E2 is a 1-straight 1-set.

Figure 1 is an aid to visualizing the statement and proof of Lemma 3.

Lemma 3. Let f : [a, b] → R be a convex function whose graph Γ
contains no line segments. Let pi = (xi, f(xi)) ∈ Γ for xi ∈ [a, b] and
i = 1, . . . , 6, such that a < x1 < x2 < x3 < x4 < x5 < x6 < b.
Let q12, q34, q36, q56 be four points such that qjk lies on the secant
between pj and pk. Then, if d(p3, q36) = d(p3, q34) it follows that
d(q12, q34) > d(q12, q36), and if d(q36, p6) = d(q56, p6) it follows that
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FIGURE 1.

d(q12, q56) > d(q12, q36).

Proof. Let m(u, v) represent the slope, defined as usual, of the secant
between points u and v in R2. Since f is convex, by [8, p. 194] we have
that m(p3, p4) < m(p3, p6) < m(p5, p6). Let the notation angle (rst)
represent the angle with vertex s, formed by rays through r and t.
We use the fact that the slope of a line in R2 equals the tangent of
the angle measured counterclockwise which that line makes with the
x-axis. Then

angle (q12p3q34) = tan−1(m(q12, p3)) − tan−1(m(p3, p4))
> tan−1(m(q12, p3)) − tan−1(m(p3, p6))
= angle (q12p3q36).

Since in a triangle a larger angle is opposite a larger side, if d(p3, q36) =
d(p3, q34) it follows that d(q12, q34) > d(q12, q36). Similarly

angle (q12p6q56) = tan−1(m(p5, p6)) − tan−1(m(q12, p6))
> tan−1(m(p3, p6)) − tan−1(m(q12, p6))
= angle (q12p6q36),

from which if d(q36, p6) = d(q56, p6) it follows that d(q12, q56) >
d(q12, q36).

Lemma 4 establishes that the sets Bm defined in the proof of Theo-
rem 6 are each 1-straight.
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Lemma 4. For each m = 0, 1, 2, . . . , the union Bm of the collection
of disjoint equal length secants corresponding to the remaining arcs at
stage m in the construction of the perfect set P in Theorem 6 is a
1-straight 1-set.

Proof. The proof is by induction on m. At stage m = 0, the set B0

is the union of two disjoint equal length secants, which by construction
and Lemma 2 is a 1-straight 1-set. Now suppose m = j ≥ 0 and
by the induction hypothesis assume Bj , which is the union of 2j+1

disjoint equal length secants, is a 1-straight 1-set. Call a pair of
secants contained in Bj+1 adjacent if two of their four endpoints are the
endpoints of the same secant contained in Bj . (Intuitively, two secants
form an adjacent pair if they are the rotated halves of the same secant
in the previous step of the construction.) By Lemma 2, the union of
such an adjacent pair of secants is a 1-straight 1-set. The set Bj+1

will be 1-straight by Theorem 1 if for each H1-measurable A ⊆ Bj+1

it follows that H1(A) ≤ |A|. Let A represent the disjoint union of
the smallest line segments in Bj+1 containing A. Then |A| = |A| and
H1(A) ≤ H1(A). Assume that A is not contained in the union of a pair
of adjacent secants in Bj+1. Let A′ ⊆ Bj be the exact set of (closed)
line segments whose image in the construction of Bj+1 as described in
Theorem 6 is A ⊆ Bj+1. So H1(A) = H1(A′). Since Bj is 1-straight,
by Corollary 1 then A′ ⊆ Bj is also 1-straight. Thus, H1(A′) ≤ |A′|.
Let x′1, x

′
2 ∈ A′ be such that |A′| = d(x′1, x

′
2), and suppose that in the

construction of Bj+1, we have that x′1 corresponds to x1 ∈ A and x′2
corresponds to x2 ∈ A. (See Figure 2, where the pair of thick dashed
line segments represent a set A′, and the pair of thick solid line segments
represent a set A.)

Since A is not contained in the union of an adjacent pair of secants
in Bj+1, it cannot happen that both x1 = x′1 and x2 = x′2. If
say x2 �= x′2, let B′ ⊆ Bj be the line segment containing x′2 whose
image in the construction of Bj+1 is B ⊆ Bj+1 containing x2. Let
x0 = x′0 be the common endpoint of B′ and B. Then by Lemma 3,
since d(x0, x

′
2) = d(x0, x2), we conclude that d(x′1, x2) > d(x′1, x

′
2). If

also x1 = x′1 then this last inequality becomes d(x1, x2) > d(x′1, x
′
2).

So by the definition of diameter as a supremum, |A′| ≤ |A| and
hence H1(A) ≤ H1(A) = H1(A′) ≤ |A′| ≤ |A| = |A|. If both
x2 �= x′2 and x1 �= x′1, then by an argument similar to that for
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the case x2 �= x′2 and x1 = x′1, using Lemma 3 we conclude that
d(x2, x1) > d(x2, x

′
1). Together with d(x′1, x2) > d(x′1, x

′
2) this last

inequality yields d(x1, x2) > d(x′1, x
′
2). So again |A′| ≤ |A|, and likewise

we conclude H1(A) ≤ |A|. Since A ⊆ Bj+1 is arbitrary, Bj+1 is 1-
straight. Therefore by induction each set Bm is a 1-straight 1-set.

Theorem 7. Let f : [a, b] → R be a convex function with graph Γ.
Then Γ is the countable union of perfect 1-straight 1-sets along with a
set of H1-measure zero; that is, Γ is σ1-straight.

Proof. Since Γ can contain at most a countable number of line
segments, which by Theorem 4 are 1-straight, we can take Γ to be
a continuous arc. Let E ⊆ Γ be an H1-measurable set with H1(E) > 0.
Let q1, q2 ∈ E or its closure, such that E ⊆ Γ(q1, q2) and |E| =
|Γ(q1, q2)| = d(q1, q2). Construct as in Theorem 6 above, a perfect 1-
straight 1-set P1 ⊆ Γ(q1, q2). If H1(P1 ∩E) = 0, then using Theorem 3
and Lemma 1 it follows that 0 < H1(E) ≤ H1(Γ(q1, q2)) − H1(P1) =
L(Γ(q1, q2)) − d(q1, q2) < (1/2)L(Γ(q1, q2)). Next, within each of
the countable number of open arcs removed in the construction of
P1, construct a perfect 1-straight 1-set as above. The countable
union of these sets is a perfect σ1-straight 1-set P2 ⊆ Γ(q1, q2). If
H1(P2∩E) = 0, then using Lemma 1 again, it follows that 0 < H1(E) <
(1/22)L(Γ(q1, q2)). Continue this process. Since a least k ≥ 1 exists
such that (1/2k)L(Γ(q1, q2)) ≤ H1(E), and the countable union of σ1-
straight sets is again σ1-straight, there eventually exists a σ1-straight
1-set Pk ⊆ Γ(q1, q2) and a 1-straight set F ⊆ Pk ∩ E ⊆ E such that
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H1(F ) > 0. Since E is arbitrary, by Theorem 2, it follows that Γ is a
σ1-straight 1-set.
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