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OSCILLATION CRITERIA FOR
SYSTEMS OF PARABOLIC EQUATIONS
WITH FUNCTIONAL ARGUMENTS

WEI NIAN LI AND FAN WEI MENG

ABSTRACT. Sufficient conditions are established for the
oscillations of systems of parabolic equations with functional
arguments of the form

D i@, 1) = ai()Aui(e t) + DD i (AU, p; (1))

ot
k=1 j=1

m 1
_ Z Z Qikh (z, t)ug (z, op(t)),

k=1 h=1
(z,t) € x[0,00) =G, i=1,2,...,m,

under boundary conditions of Dirichlet and Neumann type,
where 2 is a bounded domain in R™ with a piecewise smooth
boundary 90f2, and A is the Laplacian in Euclidean n-space
R™. These results are illustrated by some examples.

1. Introduction. Recently, the oscillation theory for systems of
partial functional differential equations has been studied extensively
[3-7]. In this paper, we study the oscillation of systems of parabolic
differential equations with functional arguments of the form

& 1) = i) Auwa, 1)+ S0 D g () Due(, (1)

k=1 j=1
(1) m 1

— Z Z Gikn (T, t)U]g(l'7 Uh(t))’

k=1h=1
(x,t) €Qx[0,00) =G, i=1,2,...,m,

This work is supported by the Natural Science Foundation of Shandong Province,

China.
1991 AMS Mathematics Subject Classification. 35B05, 35R10.
Key words and phrases. scillation, system, parabolic equation, functional

argument.
Received by the editors on July 21, 2000.

Copyright ©2004 Rocky Mountain Mathematics Consortium

1031



1032 W.N. LI AND F.W. MENG

where € is a bounded domain in R™ with a piecewise smooth boundary
o0, and Au;(z,t) = > (0%u;(x,t)/022), i =1,2,...,m

Suppose that the following conditions hold:
(C1) a; € C(]0,00);[0,00)), ajx; € C([0,00); R), a;;(t) > 0 and

Aj(t) = min {a“—j(t) - |akij(t)’} >0,
= k=1 ki
ikel,={1,2,... ,m}, jel,={1,2,...,s};

(C2) girn € C(G; R), and giin(z,t) > 0; qsin(t) = min g qiin(z, 1),

Gikn(t) = max | gixn(z,t) |, and
zEN

Qn(t) = min {Qizh Y g } 0,
- = k=1,k#1
iwke€l,, hel;={1,2,...,l}

(C3) pj,on € C([0,00);[0,00)), im0 p;j(t) = limy_,o0 o4 (t) = o0,
jel, hel.

Consider the following boundary conditions:

ou;(z,1)

(2) aN + gi(z, t)ui(x,t) =0, (x,t) € 0N % [0,00), i€ Ly,
where N is the unit exterior normal vector to 99 and g;(x,t) is a

nonnegative continuous function on 9% x [0,0), i € I,,, and

(3) ui(z,t) =0, (z,t) €00 x[0,00), i€ L.

Definition 1.1. The vector function u(z,t) = {ui(x,t), us(z,t),...,
um(x,t)}7T is said to be a solution of the problem (1),(2) (or (1), (3)) if
it satisfies (1) in G = Q x [0, 00) and boundary condition (2) (or (3)).

Definition 1.2. The vector solution u(z,t) = {u(x,t), us(z,t),...,
um(x,t)}T of the problem (1), (2) (or (1), (3)) is said to be oscillatory
in the domain G = Qx [0, 00) if at least one of its nontrivial components
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is oscillatory in G. Otherwise, the vector solution u(zx,t) is said to be
nonoscillatory.

2. Oscillation of the problem (1), (2).

Theorem 2.1. If the differential inequality
l
(4) V() + ) Qut)V(on(t) <0, >0,
h=1

has no eventually positive solution, then every solution u(x,t) of the
problem (1),(2) s oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(z,t) = {ui(z,t),ua(z,t),... ,um(x,t)}7 of the problem (1), (2).
We assume that |u;(z,t)] > 0 for t > tg > 0, i € I,,. Let 0; =
sgnu;(x,t), Z;(x,t) = du;(z,t). Then Z;(x,t) > 0, (z,t) € QX [tg, 00),
i € I,. From (C3) there exists a number t; > tg such that Z;(z,t) > 0,
Zy(x,p;i(t)) > 0 and Z;(z,0n(t)) > 0 in Q X [t1,00), i,k € Iy,
jels hel.

Integrating (1) with respect to = over the domain 2, we have

d
7 Qui(l‘,t) dx = ai(t)/ﬂAui(x,t) dx
T Z Z Gikj (t) / Auy, (517, P (t)) dx
(5) k=1j=1 Q
m
- ;};/QQikh(l',t)uk(x,ah(t))dx7

t>t1, 1€,
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Hence, we have

d
— | Zij(x,t)dx = ai(t)/ AZ;(x,t)dx

m S 62 4
o +;;aikj(t)a/QAZ;C(:Z:,p](t))dx
l

ZZ/q’kh (z,t) Zik(x Uh( ))d

kD1 h=17/Q
t>t1, 1€l

Green’s formula and boundary condition (2) yield

0Z;(x,t)
AZ;(x,t dx:/ —-dS
/Q (=) oo ON

(7)
_ _/m gi(@, 8) Zi(, 1) dS < 0,
and
. 8Zk($7pj (t))
| sz peyan= [ L) as
(8) . /a 0w () Zula s 1)) S

t>t, t,kel,, jels,
where dS is the surface element on 0f).

Now combining (6)—(8), we obtain

(9)
_/ i(z,t dx—l—ZZamj 5 / gz, pi(t) Zi(x, pj(t)) dS
k=1j=1
+Zszh / (z, o4 (1)) da
l m
- Y ) [ Zdwon)da <o
h=1k=1,k#i

t>t1, i€ ILn.
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Therefore,

Set
Vi(t) = / Zi(x,t) dx, U;(t) :/ 9i(x, ) Z;i(x,t)dS, t>t1, i€ I.
Q o0

From (10) we have

V() + D laiii ()Ui(p; (1) = Y lain (0)|Un(p; (1))]
j=1

k=1
k#i
(11) l m
+> [Qiih(t)vi(ah(t)) - Cjikh(t)vk(ah(t))} <0,
h=1 k=1,k#i
t>t, iel,.
Let
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From (11) we have

(12)

+ i { ; @i (t - i aikj(t)|Uk:(Pj(t))]}

l m m
'y { S g (OVilon(®) — 3 qkh(ﬂvk(ah(t))]} <0, >0
h=1 i=1

k=1
k#i
Noting that
> {q'nh OEDS (Iikh(t)vk(ah(t))}
=1 k=1
k#i

m
= (a0 (®) = Y2 @@ Va(on(6) + [a22n () = D Gian(®)| Vel (1))
= (=
R
[ @mn® = 37 @ ()| Vinlon (1))
m
> 1I<I%l<n {q”h(t) - qkzh(t)} Z sz(o—h(t))
&=
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Similarly we have

[aiis (U3 (1) = 3 laas (0| 1))

k=1
ki

i=1

aain a0~ 3 lanss 01 Y- Uiloy0)
- k=1 =1

= Aj(t)U(pj(t))a t>t, jels.

v

Then from (12), we get

s l
(13) V() + Y AU (p; (1) + Y Qu(t)V(on(t) <0, >t
j=1 h=1

It is easy to see that

m

Ulpi(t) = Ui(p;(t)) 20, t>t1, jelL.

i=1

Therefore,
l
V() + Y Qut)V(on(t) <0, t>t,
h=1

which contradicts the assumption that (4) has no eventually positive
solutions. This completes the proof. ]

We now give two lemmas which are useful for the proof of the
following results.

Lemma 2.1 [7]. Consider the differential inequality
(14) () + p(t)z(g(t)) < 0.

Assume that p € C(R;[0,00)), g € C(R;R), g(t) <t and g(t) is
nondecreasing, lim;_, o, g(t) = 0o and suppose that

t
(15) lim inf/ p(s)ds > l
B e

t—oo (t)
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Then the inequality (14) has no eventually positive solutions.

Lemma 2.2 [4]. Consider the differential inequality (14). Assume
that p,g € C([0,00); [0,00)), g(t) < t, t >0 and g(t) is nondecreasing,
lim;_, oo g(t) = 00, and suppose that when L <1 and 0 < K < 1/e the
following conditions hold

S+l 1-K-VI-2K K
H1 2 ’

(16) L
where
t t
K =lim inf/ p(s)ds, L =lim sup/ p(s) ds,
t=ee Jg() t—oo Jyg(t)

and py is the smaller root of the equation

= efr,

Then the inequality (14) has no eventually positive solutions.

Theorem 2.2. If there exists ho € I such that op,(t) <t, op,(t) is
nondecreasing in [0,00) and

t
1
(17) litrninf/ Qho(s)ds > .

—00 no (1)

then every solution u(x,t) of the problem (1), (2) is oscillatory in G.

Proof. We prove that the inequality (4) has no eventually positive
solution if the conditions of Theorem 2.2 hold. Suppose V() is an
eventually positive solution of the inequality (4). Then there exists a
number t; > ¢y such that V(on(¢)) > 0, t > t1, h € I;. Therefore, we
have

(18) V() + Qny )V (o (8) <0, &> ty.

By Lemma 2.1 we obtain that the inequality (18) has no eventually
positive solutions, which contradicts the fact that V'(t) > 0 is a solution
of the inequality (18).
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By using Lemma 2.2, the proof of the following theorem is similar to
that of Theorem 2.2 and we omit it.

Theorem 2.3. If there exists ho € I; such that op,(t) <t, op,(t) is
nondecreasing in [0,00) and suppose that when L <1 and 0 < K <1/e
the following conditions hold

— InM+1 1-K—-y\/1-2K-K
(19) Tt :
N 2

where
o t _ t
K= liminf/ Qro(s)ds, L= limsup/ Qho(s) ds,
t=00 Jopy (1) t—oo Jop,(t)
and A1 is the smaller root of the equation

A= e

Then every solution u(x,t) of the problem (1), (2) is oscillatory in G.

Theorem 2.4. If there exists hg € I} such that oy, (t) <t, op,(t) is
nondecreasing in [0,00) and

t
(20) lim sup/ Qny(s)ds > 1,

t—o0 ho (t)

then every solution u(x,t) of the problem (1), (2) is oscillatory in G.

Proof. As in the proof of Theorem 2.2 we obtain (18). Integrating
the inequality (18) from oy, (t) to t we have

(21) V() = V(op, (1) + /t Qno (8)V(one(s))ds <0, t>t;.

Thq (1)

Noting that V' (t) < 0, op,(t) < t, op,(t) is nondecreasing in [t1, 00),
from (21) we have

t

(22) V(1) = Vion (1) + V(on (1)) / Qny(s)ds <0, 1> t.

Ohg (1)
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Therefore,

: v
/Uhom Qo) ds < 1= Ty <1

And, hence,

t
limsup/ Qn,(s)ds <1,

t—o0 ho (t)

which violates the condition (20). This completes the proof of Theo-
rem 2.4.

3. Oscillation of the problem (1), (3). It is known that the
smallest eigenvalue o of the Dirichlet problem

{ Aw(z) + aw(z) =0 in Q,
w(z)=0 on 012,

where « is a constant, is positive and the corresponding eigenfunction
©(x) is positive in Q.

Theorem 3.1. If the differential inequality

s l
(23) V(1) + a0y 4OV (0 (1) + Y Qu(t)V(on(t) <0, t=>t
j=1 h=1

has no eventually positive solutions, then every solution of the problem
(1), (3) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution
u(z,t) = {ui(z,t),ua(z,t),... ,um(x,t)}7 of the problem (1), (3).
We assume that |u;(z,t)] > 0 for ¢ > ¢t > 0,0 € I,,. Let §; =
sgnu;(x,t), Z;(x,t) = d;u;(z,t). Then Z;(z,t) > 0, (z,t) € QX [tg, 00),
i € I,. From (C3) there exists a number t; > tg such that Z;(z,t) > 0,
Zi(z,pj(t)) > 0 and Z;(x,on(t)) > 01in Q x [t1,00), i,k € Iy, j € I,
hel.
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Multiplying both sides of (1) by ¢(z) > 0 and integrating with respect
to x over the domain €2, we have

(24)
dt Jg ui(z,t)p(z) do = ai(t) /Q Aui(z, t)p(x) dx
+ ];1 J; Qikj (t) /Q Auk(a; Pj (t)><,0(l‘) da
m 1
_ kz_l’;/ﬂqikh(x,t)w(x,ah(t))@(z) dz,
t> tla = Im
Therefore,

%/QZi(x,t)w(x)dx:ai(t)/QAZi(a:,t)@(x) dx

+Zaiij(t)/QAZi(fL',p]‘(t))(p({E) dx

(25) 33 () / AZi(x, p; (1)) o) da
k=1j=1 Q
ki

!
_hz_:l/QQiih(xvt)zz’(%ﬂh(t))w(x) dx

5_ m l
- iZZ/QQikh(w,t)zk(m,dh(t))w(l‘) dz,

k=1h=1
ki

t > 1, i € Ip,.

Green’s formula and boundary (3) yield

/AZi(x,t)ap(x)dx:/Zi(x,t)Aga(:c)dx
(26) Q Q

= —ao/ Zi(z,t)p(x) dx <0,
Q
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and

/AZk x,p;(t))p(z) de = / Zy(x, pi(t)Ap(z) dz
= a0 [ Zulapi(0)ela) da.

tZtla i,kEIm, JEIS

(27)

Now from (25), (26) and (27), we have

(28)
G | e thpta) o < Zaw ) [ 2o pie)eta) da
+0‘OZZ|‘W€J ‘/kapj (z)dx
k=1j5=1
k#1
1
-3 a0 JRCXAOECLE
m l
+3 Y @) [ Zilwon(t)e(o)de
k=1h=1 @
k#i
t >t 1€ 1,
Setting
Vi(t) = / Zi(x, t)p(x)de, t>1t1,i€ Iy,
Q
we have
(t) + o Z[aiij (t)Vi(p;(t) — Z |air; (8)| Vi (p;(2))]
=
29 l m
( ) + Z |:q”h Z Vk Uh ):| S 07
h=1 k=
k:#z

t>t1, i€ ILn.
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Let

From (29) we have

<30>
)+ Z { >~ [ausWes0) = > fas 0] }
k=1, ki
+zl:{§:|:quh f: Vk O'h ))}}SO,
h=1 = ;

t>1.

As in the proof of Theorem 2.1, from (30) we obtain
s l
(1) + a0 Y A; OV (pi(1) + > Qut)V(on(t) <0, >t
j=1 h=1

The above inequality shows that V(t) = >", V;(t) > 0 is an
eventually positive solution of the inequality (23), which contradicts
the assumption that (23) has no eventually positive solutions. This
completes the proof of Theorem 3.1. O

The proofs of the following theorems are similar to that of Theo-
rem 2.2, Theorem 2.3 and Theorem 2.4.

Theorem 3.2. If there exists jo € I, such that p;,(t) < t, p;,(t) is
nondecreasing in [0,00) and

t
1
(31) liminfao/ Aj,(s)ds > =
P

t
—oe Jo (t)

Then every solution u(x,t) of the problem (1), (3) is oscillatory in G.

Theorem 3.3. If there exists jo € Is such that pj,(t) < t,
pjo(t) is nondecreasing in [0,00) and suppose that when L1 < 1 and
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0 < K; < 1/e the following conditions hold

2 S 1-F —\1-2K, - K,
- _

M 2 ’

t t
K, = litm inf ag / Aj,(s)ds, Ly = limsup g / Aj,(s)ds,
— 00 p;j

Pio (t) t—oo
and vy 1s the smaller root of the equation

Koy,
v=ett

then every solution u(x,t) of the problem (1), (3) is oscillatory in G.

Theorem 3.4. If there exists jo € I such that p; (t) <t, p;,(t) is
nondecreasing in [0,00) and

t
(33) lim sup ao/ Aj,(s)ds > 1,
p

t—oo Jo (t)
then every solution u(x,t) of the problem (1), (3) is oscillatory in G.

Theorem 3.5. If the conditions of Theorem 2.2 hold, then every
solution u(zx,t) of the problem (1), (3) is oscillatory in G.

Theorem 3.6. If the conditions of Theorem 2.3 hold, then every
solution u(z,t) of the problem (1), (3) is oscillatory in G.

Theorem 3.7. If the conditions of Theorem 2.4 hold, then every
solution u(zx,t) of the problem (1), (3) is oscillatory in G.
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4. Examples.

Example 4.1. Consider the system of parabolic equations

(34)
0 _ T
5% ui(z,t) = Aug(z,t) + (1 + e ) Aug (2, t — 5)
e ™2 Aug(x, t — g) - (1+e Huy(z,t —m)

—e Mug(x,t — ),

0 1
5 ug(z,t) = (14 ™) Aus(x, t) + geftAul(x,t - g)

4
+§e’”/2Auz(x, t— g) — e tuy(z,t —7)

—(1+e Mug(z,t —m), (x,t) € (0,7) % [0,00),

with boundary condition

B
(0,t) = —u;(m,t) =0, t>0,i=1,2.

(35) o

Yo
ox "

Heren =1, m=2,s=1,1=1,a1(t) = 1, a;11(t) = 1 + €71,
aro1(t) = €72, pi(t) = t—(7/2), qu (@, 1) = 1+e™", quoa (w,t) = e,
o1(t) =t —m, as(t) =1+ €™, an1(t) = (1/3)e " tage = (4/3)e " te™/2,
@11(z,t) = et qoor(z,t) = 1+ e ™, Q = (0,7). It is easy to see
that the conditions of Theorem 2.2 are verified. Thus all solutions
of the problem (34), (35) are oscillatory in (0,7) x [0,00). In fact,
uy(z,t) = coszsint, ug(w,t) = —e " coswsint is such a solution.

Example 4.2. Consider the system of parabolic equations

(36)
%ul(:mt) = 3Auy(z,t) + Auy (2, — 3%) + Aug(z,t — %T)
—duy (z,t — ) — (=2)ug(z,t — ),
0 9 1 37
En uz(x,t) = EAug(x,t) + EAul(ac,t - 7)

+2Aug(x,t — 3;) —3uy(z,t — ) — dug(z,t — ),
(x,t) € (0,m) x [0,00),
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with boundary condition

(37) ui(0,8) = wy(m,t) =0, t>0,i=1,2.

It is easy to see that all conditions of Theorem 3.7 are fulfilled. Then
every solution of the problem (36), (37) oscillates in (0,7) x [0,00). In
fact, uy(z,t) = sinx cost, us(x,t) = sinxsint is such a solution.

Acknowledgments. The authors thank the referee for his valuable
comments on this paper.
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