
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 35, Number 3, 2005

SPACES OF
λ-MULTIPLIER CONVERGENT SERIES

JUNDE WU, LINSONG LI AND CHENGRI CUI

ABSTRACT. In this paper, we introduce the quasi 0-gliding
hump property of sequence spaces and study a series of ele-
mentary properties of spaces of λ-multiplier convergent series.

1. Introduction. Let (X, T ) be a Hausdorff locally convex space,
X∗ the topological dual space of (X, T ) and λ a scalar-valued sequence
space. A series

∑
j xj in X is said to be λ-multiplier T -convergent if,

for each (tj) ∈ λ, there exists an x ∈ X such that the series
∑∞

j=1 tjxj

is T -convergent to x.

Let c00 be the scalar valued sequence space which are 0 eventually, the
β-dual space of λ to be defined by: λβ = {(uj) :

∑
j ujtj is convergence

for each (tj) ∈ λ}. It is obvious that if c00 ⊆ λ, then [λ, λβ] is a
dual pair with respect to the bilinear pairing [t̄, ū] =

∑
j ujtj , where

t̄ = (tj) ∈ λ, ū = (uj) ∈ λβ. Let τ (λ, λβ) denote the Mackey topology
of λ with respect to the dual pair [λ, λβ], i.e., the topology of uniform
convergent on all absolutely convex σ(λβ, λ)-compact subsets of λβ , and
k(λ, λβ) the topology of uniform convergent on all σ(λβ, λ)-compact
subsets of λβ. It is clear that k(λ, λβ) is stronger than τ (λ, λβ).

Lemma 1 [14]. Let c00 ⊆ λ and τ1 be a vector topology on λβ such
that τ1 is stronger than the coordinate convergence topology. Then the
following states are equivalent:

(1) B ⊆ λβ is τ1-compact;

(2) B ⊆ λβ is τ1-sequentially compact.
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Lemma 2 [17]. If (X, T1) is a sequentially complete locally convex
space and {xi} ⊆ X is a T1 convergent sequence, then the absolutely
convex closure of {xi} is a T1-compact set and is also a T1-sequentially
compact set.

It follows from Lemmas 1 and 2 easily that:

Lemma 3. If σ(λβ, λ) is a sequentially complete space, then
k(λ, λβ) = τ (λ, λβ).

A nonzero sequence {t̄(n)} in c00 is said to be a block sequence if
there exists a strictly increasing sequence {kn} of integers with k0 = 0
such that

t̄(n) = (0, 0, . . . , 0, t
(n)
kn−1+1, . . . , t

(n)
kn

, 0, . . . ).

The sequence space λ is said to have the signed-weak gliding hump
property if, given any t̄ = (ti) ∈ λ and any block sequence {t̄(n)}
with t̄ =

∑∞
n=1 t̄(n) (pointwise sum), then each strictly increasing

positive integer sequence {mk} has a further subsequence {nk} and
a signed sequence {θk} with θk = 1 or θk = −1, k ∈ N, such that
t̄ =

∑∞
k=1 θk t̄(nk) ∈ λ (pointwise sum) [3].

The sequence space λ is said to have the strong gliding hump property
if {t̄(n)} is a bounded block sequence. Then, for each strictly increasing
positive integers sequence, {mk} has a further subsequence {nk} such
that t̄ =

∑∞
k=1 t̄(nk) ∈ λ (pointwise sum) [8].

Let (λ, τ0) be a topological vector space, (λ, τ0) is said to be a K-
space, if for each j0 ∈ N, the coordinate mapping Ij0 of λ to scalar
field C, Ij0((tj)) = tj0 is continuous.

Let c00 ⊆ λ and t̄ = (ti) ∈ λ, denote t̄[n] = (t1, t2, t3, . . . , tn, 0, . . . ).
If, for each t̄ ∈ λ, {t̄[n]}n converges to t̄ with respect to the topology
τ0, then (λ, τ0) is said to be an AK-space.

Let B be a bounded subset of (λ, τ0), if {t̄[n] : t̄ ∈ B, n ∈ N} is also
a bounded subset of (λ, τ0). Then (λ, τ0) is said to have the section
uniform bounded property.
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It is clear that if (λ, τ0) is a K-space and has the section uniform
bounded property, then for each bounded subset B of (λ, τ0) and
j0 ∈ N, sup{|tj0 | : (tj) ∈ B} < ∞.

Now, we introduce the following quasi 0-gliding hump property:

The sequence space (λ, τ0) is said to have the quasi 0-gliding hump
property if, for each bounded block sequence {t̄(n)} of (λ, τ0) and
each scalar sequence {sn} which converges to 0, then for each strictly
increasing positive integers sequence {mk} has a further subsequence
{nk} such that

∑∞
k=1 snk

t̄(nk) ∈ λ (pointwise sum).

We would like to show that many classical sequence spaces have the
quasi 0-gliding hump property:

Example 1. If c0 ⊆ S ⊆ l∞, then (S, ||.||∞) has the quasi 0-gliding
hump property.

Example 2. For each 0 < p < ∞, (lp, ||.||p) has the quasi 0-gliding
hump property.

In fact, for each bounded block sequence {t̄(n)} of (lp, ||.||p) and each
scalar sequence {sn} which converges to 0, there exist M > 0 and
a subsequence {snk

} of {sn} such that ||t(n)||p ≤ M, n ∈ N and∑
k |snk

|p < ∞. Thus,
∑

k snk
t(nk) ∈ lp. So (lp, ||.||p) has the quasi

0-gliding hump property.

In this paper, the space X(λ) = {(xj) : for every (tj) ∈ λ, the series∑
j tjxj is T -convergence} is said to be the λ-multiplier convergent

series space.

As we know, the study of the multiplier convergent series is an
interesting topic in functional analysis [2, 5, 7, 10, 13 16]. When
(X, T ) is a Banach space and λ = l∞, Bu and Wu in [4] introduced
and studied the bounded multiplier convergent series space X(l∞);
when (X, T ) is a Banach space and c0 ⊆ S ⊆ l∞, Aizpuru and Perez-
Fernandez in [1] introduced and studied the S-multiplier convergent
series space X(S).

Now, if (X, T ) is a locally convex space and λ has the quasi 0-gliding
hump property, we study the λ-multiplier convergent series space X(λ).
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We obtain a series of elementary properties of the space X(λ).

Let B be all bounded subsets of (λ, τ0), and P be all continuous
semi-norms of (X, T ), for each B ∈ B, P ∈ P and x̄ ∈ X(λ), define

(1) PB(x̄) = sup
{

P

( ∞∑
j=1

tjxj

)
: (tj) ∈ B

}
.

2. The uniform bounded principle on X(λ).

Theorem 1. If (λ, τ0) is a K-space and has the section uniform
bounded property and the quasi 0-gliding hump property, then for each
B ∈ B and P ∈ P, PB is a semi-norm of X(λ).

Proof. We only need to prove that, for each x̄ ∈ X(λ), PB(x̄) < ∞.
If not, we can find an x̄ ∈ X(λ) such that PB(x̄) = ∞. Thus, for
each M > 0, there exists (tj) ∈ B such that P (

∑
j tjxj) > M .

Let M = 1 + 1, we can pick t̄(1) ∈ B such that P (
∑

j t
(1)
j xj) >

1 + 1. Since the series
∑

j t
(1)
j xj is convergent, there exists a j1 ∈

N such that P (
∑∞

j=j1+1 t
(1)
j xj) < 1, so P (

∑j1
j=1 t1jxj) > 1. Let

M = sup{P (
∑j1

j=1 tjxj) : (tj) ∈ B} + 22 + 1. Since (λ, τ0) is a K-
space and (λ, τ0) has the section uniform bounded property, M < ∞.
Furthermore, we can find a (t(2)j ) ∈ B such that P (

∑
j t

(2)
j xj) > M ,

so P (
∑∞

j=j1+1 t
(2)
j xj) > 22 + 1. Similarly, since the series

∑
j t

(2)
j xj is

convergent, there exists a j2 ∈ N such that P (
∑j2

j=j1+1 t
(2)
j xj) > 22.

Inductively, we can obtain a bounded block sequence {t̄(n)
0 } such that

(2) P

( ∞∑
j

t
(n)
0j xj

)
> n2,

where t̄
(1)
0 = (t(1)0j ) = (t(1)1 , t

(1)
2 , . . . , t

(1)
j1

, 0, . . . ), t
(2)
0 = (t(2)0j ) = (0, . . . ,

0, t
(2)
j1+1, t

(2)
j1+2, . . . , t

(2)
j2

, 0, . . . ), . . . . Let s(n) = (t̄(n)
0 )/n, it follows from

the quasi 0-gliding hump property of (λ, τ0) that there exists a subse-
quence {s(nk)} of {s(n)} such that

∑
k s(nk) ∈ λ (pointwise convergent).
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Note that (xj) is λ-multiplier convergent, so we have

lim
k

P

( jk∑
j=jk−1

s
(nk)
j xj

)
= 0.

This contradicts (2) and so the theorem holds.

Similarly, we can prove the following:

Theorem 2. If (λ, τ0) is a K-space and has the section uniform
bounded property and the quasi 0-gliding hump property, then for each
bounded subset B of (λ, τ0) and each (uj) ∈ λβ, sup{|∑j ujtj | : (tj) ∈
B} < ∞.

Theorem 1 showed that if (λ, τ0) is a K-space and has the section
uniform bounded property and the quasi-0-gliding hump property, then
X(λ) equipped by the all semi-norms {PB : B ∈ B, P ∈ P}, is a locally
convex Hausdorff space. We denote the locally convex topology of X(λ)
by TB.

Let M(λ, X) denote the bounded linear operators mapping (λ, τ0) to
(X, T ). Theorem 1 showed that for each x̄ ∈ X(λ), x̄ ∈ M(λ, X). Now
we establish a uniform boundedness principle on (X(λ), TB). That is:

Theorem 3. If c00 ⊆ λ, (λ, τ0) is a K-space and has the section
uniform bounded property and the quasi 0-gliding hump property, then
(X(λ), TB) has the uniform boundedness property, i.e., if {x̄(α) : α ∈
Λ} ⊆ X(λ) is pointwise bounded on λ, then {x̄(α) : α ∈ Λ} ⊆ X(λ) is
uniformly bounded on each bounded subset of (λ, τ0), i.e., {x̄(α) : α ∈ Λ}
is TB-bounded.

Proof. Without loss generality, we may assume {x̄(α) : α ∈ Λ} ⊆
X(λ) is a sequence {x̄(n)} of X(λ).

If the conclusion is not true, there exists a P ∈ P and a B ∈ B such
that

(3) sup{PB(x̄(n)) : n ∈ N} = ∞.



1048 J. WU, L. LI AND C. CUI

Thus, for each M > 0, there exists an n ∈ N such that PB(x̄(n)) > M .
Let M = 1+1. We can pick a x̄(n1) such that PB(x̄(n1)) > 1+1. By the
definition of PB that there exists a t̄(1) ∈ B and P (

∑
j t

(1)
j x

(n1)
j ) > 1+1.

Since the series
∑

j t
(1)
j x

(n1)
j is convergent, there exists a j1 ∈ N such

that P (
∑∞

j=j1+1 t
(1)
j x

(n1)
j ) < 1, so P (

∑j1
j=1 t

(1)
j x

(n1)
j ) > 1. Let M =

sup{P (
∑j1

j=1 tjx
(n)
j ) : (tj) ∈ B, n ∈ N}+

∑n1
n=1 PB(x̄(n))+22+1. Note

that since c00 ⊆ λ and {x̄(n)} is pointwise bounded on λ, for each j ∈ N,
{x(n)

j }n is a bounded subset of (X, T ). Thus, since (λ, τ0) is a K-space
and has the section uniform bounded property, Theorem 1 implies that
M < ∞. Furthermore, we can find a x̄(n2) such that PB(x̄(n2)) > M .
So there exists a t̄(2) ∈ B such that P (

∑
j t

(2)
j x

(n2)
j ) > M . It follows

from the definition of M that n2 > n1 and P (
∑∞

j=j1
t
(2)
j x

(n2)
j ) > 22 +1.

Since the series
∑

j t
(2)
j x

(n2)
j is convergent, there exists a j2 ∈ N and

j2 > j1 such that P (
∑∞

j=j2+1 t
(2)
j x

(n2)
j ) < 1, so P (

∑j2
j=j1+1 t

(2)
j x

(n2)
j ) >

22. Inductively, we can obtain a bounded block sequence {t̄(k)
0 } of

(λ, τ0) and a subsequence {x̄(nk)} of {x̄(n)} such that

P

( ∑
j

t
(k)
0j x

(nk)
j

)
> k2, k ∈ N.

Let s̄(k) = (t̄(k)
0 )/k. Then we have:

(4) P

( ∑
j

s
(k)
j x

(nk)
j

)
> k, k ∈ N.

By the Hahn-Banach theorem we can obtain a sequence of continuous
linear functionals {fk} of (X, T ) such that ||fk||P = sup{|fk(x)| : x ∈
X, P (x) ≤ 1} ≤ 1 and

(5) fk

( ∑
j

s
(k)
j x

(nk)
j

)
= P

(∑
j

s
(k)
j x

(nk)
j

)
> k, k ∈ N.

That {fk} is an equicontinuous sequence is obvious. Now, we consider
the infinite matrix [(fi)/i(

∑
j s

(k)
j x

(ni)
j )]ik. For each k ∈ N, since
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{x̄(n) : n ∈ N} is pointwise bounded and {fk} is an equicontinuous
sequence,

lim
i

fi

i

( ∑
j

s
(k)
j x

(ni)
j

)
= 0

is obvious. If {kp} is an increasing sequence from N, it follows from the
quasi 0-gliding hump property of (λ, τ0) that there exists a subsequence
{kpm

} of {kp} such that
∑

m s̄(kpm ) ∈ λ. Noting that {x̄(n) : n ∈ N} is
pointwise bounded and {fk} is an equicontinuous sequence, we have

lim
i

fi

i

( ∑
m

∑
j

s
(kpm )
j x

(ni)
j

)
= 0.

From the basic matrix theorem of Antosik and Mikusinski [9], it follows
that

lim
k

fk

k

( ∑
j

s
(k)
j x

(nk)
j

)
= 0.

This contradicts (5), and the theorem is proved.

Now we present an example to show the necessity of the gliding hump
assumptions in Theorem 1 and Theorem 3.

Example 3. Let λ = (c00, ||.||∞) and C be the complex numbers
field. Then λ is a K-space and has the section uniform bounded
property, but λ does not have the quasi 0-gliding hump property. The
λ-multiplier convergent series space C(λ) is the space of all complex
numbers sequences ω. Let x̄ = (j)∞j=1 and ej denote the sequence whose
jth coordinate is 1 and other coordinates are 0. Then x̄ ∈ C(λ) and
B = {ej : j ∈ N} is a bounded subset of (c00, ||.||∞). But PB(x̄) = ∞.
This shows that Theorem 1 and Theorem 3 do not hold.

3. The completeness and Banach-Steinhaus property of
X(λ). At first, we study the sequentially completeness of X(λ). We
have:
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Theorem 4. If c00 ⊆ λ, (λ, τ0) is a K-space and has the section
uniform bounded property and the quasi 0-gliding hump property, and
(X, T ) is a sequentially complete Hausdorff space, then (X(λ), TB) is
also a sequentially complete space.

Proof. Let {x̄(n)} be a TB-Cauchy sequence. It follows from the
sequential completeness of (X, T ) that there exists a x̄(0) = (x(0)

j )

satisfying x
(0)
j = limn x

(n)
j for each j ∈ N. Now, we only need

to prove that x̄(0) = (x(0)
j ) ∈ X(λ). For arbitrary ε > 0 and

t̄ = (tj) ∈ λ, note that (λ, τ0) has the section uniform bounded
property, so B = {t̄[l] − t̄[k] : k, l ∈ N} ∈ B. Since {x̄(n)} is a TB-
Cauchy sequence, there exists n0 ∈ N such that when m, n ≥ n0, for
any k, l ∈ N,

P

( l∑
j=k

tj(x
(m)
j − x

(n)
j )

)
<

ε

3
.

Since x̄(n0) ∈ X(λ), there exists p0 ∈ N such that when p, q ∈ N and
p, q ≥ p0,

P

( q∑
p

tjx
(n0)
j

)
<

ε

3
.

On the other hand, since x
(0)
j = limn x

(n)
j for each j ∈ N, there exists

m0 ∈ N such that m0 > n0 and

P

( q∑
p

tj(x
(m0)
j − x

(0)
j )

)
<

ε

3
.

So, when p, q ≥ p0, we have:

(6)

P

( q∑
p

tjx
(0)
j

)
≤ P

( q∑
p

tj(x
(m0)
j − x

(n0)
j )

)
+ P

( q∑
p

tj(x
(m0)
j − x

(0)
j )

)

+ P

( q∑
p

tjx
(n0)
j

)
≤ ε.

This shows that x̄(0) = (x(0)
j ) ∈ X(λ). The theorem is proved.
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Theorem 5. Let c00 ⊆ λ, (λ, τ0) be a K-space and have the section
uniform bounded property and the quasi 0-gliding hump property, (X, T )
a sequentially complete Hausdorff space. If (λ, k(λ, λβ)) is an AK-
space, then (X(λ), σ(X(λ), λ)) is sequentially complete, i.e., if {x̄(n)} ⊆
X(λ) and, for each t̄ = (tj) ∈ λ, {∑j tjx

(n)
j }n is a Cauchy sequence of

(X, T ), then x̄(0) = (x(0)
j ) ∈ X(λ), and {x̄(n)} pointwise converges to

x̄(0) = (x(0)
j ) on λ. Here x̄(0) = (x(0)

j ) is such that x
(0)
j = limn x

(n)
j for

each j ∈ N.

Proof. It follows from (6) that we only need to prove that, for each
(tj) ∈ λ, P ∈ P and ε > 0, there exist k0 and n0 when k, l ≥ k0 and
m, n ≥ n0,

P

( l∑
j=k

tj(x
(m)
j − x

(n)
j )

)
< ε.

If not, there exist strictly increasing positive integer sequences {kq},
{lq}, {mq}, {nq}, and ε0 > 0, P ∈ P such that

P

( lq∑
j=kq

tj(x
(mq)
j − x

(nq)
j )

)
≥ ε0.

By the Hahn-Banach theorem that we can obtain a sequence of contin-
uous linear functionals {fq} of (X, T ) such that

||fq||P = sup{|fq(x)| : x ∈ X, P (x) ≤ 1} ≤ 1,

and

(7) fq

( lq∑
j=kq

tj(x
(mq)
j − x

(nq)
j )

)
= P

( lq∑
j=kq

tj(x
(mq)
j − x

(nq)
j )

)
≥ ε0.

For each q ∈ N, let z̄(q) = (z(q)
j ) = (x(mq)

j − x
(nq)
j ). Then, by

the condition of Theorem 5, for each (tj) ∈ λ, limq

∑
j tjz

(q)
j = 0.

Note that, for each q ∈ N and (tj) ∈ λ, since the series
∑

j tjz
(q)
j

is convergent in (X, T ), the series
∑

j tjfq(z
(q)
j ) is also convergent,
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so (fq(z
(q)
j )) ∈ λβ. It follows from ||fq||P = sup{|fq(x)| : x ∈ X,

P (x) ≤ 1} ≤ 1 and limq

∑
j tjz

(q)
j = 0 that

lim
q

( ∑
j

tjfq(z
(q)
j )

)
= 0.

So, {fq(z
(q)
j )}q ⊆ λβ is a σ(λβ, λ)-sequentially compact set. It follows

from Lemma 1 that {fq(z
(q)
j )}q ⊆ λβ is also a σ(λβ, λ)-compact set.

Since (λ, k(λ, λβ)) is an AK-space,

lim
q

fq

( lq∑
j=kq

tj(x
(mq)
j − x

(nq)
j )

)
= lim

q

lq∑
j=kq

tjfq(z
(q)
j ) = 0.

This contradicts (7) and so the theorem is proved.

We know that when λ has the signed-weak gliding hump property,
σ(λβ, λ) is a sequentially complete space and τ (λ, λβ) is an AK-space
[9]. Thus, by Lemma 3 and Theorem 5 we have:

Corollary 1. Let c00 ⊆ λ, (λ, τ0) be a K-space and have the section
uniform bounded property, the quasi-0-gliding hump property and the
signed-weak gliding hump property, (X, T ) be a sequentially complete
Hausdorff space. Then (X(λ), σ(X(λ), λ)) is sequentially complete.

Next, we study the Banach-Steinhaus property of X(λ).

We will say that the sequence space (λ, τ0) has the quasi Banach-
Steinhaus property, if {u(n)} ⊆ λβ is pointwise convergent to u(0) ∈ λβ

on λ, then for each B ∈ B, {u(n)} converges to u(0) uniformly on B.

Let (X, ||.||) be a normed space. We will say that X is a Grothendieck
space if each weak∗ convergent sequence in X∗ is weakly convergent [1].

Let M be a subspace of X∗∗ such that X ⊆ M ⊆ X∗∗. We will say
that X is M-Grothendieck if each weak∗ convergent sequence in X∗ is
σ(X∗,M) convergent [1].

Example 4. If c0 ⊆ S ⊆ l∞ and (S, ||.||∞) is an l∞-Grothendick
space, then (S, ||.||∞) has the quasi Banach-Steinhaus property.
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In fact, it follows from [1] that l∞ ⊆ S∗∗, so the condition that
(S, ||.||∞) is a l∞-Grothendick space is meaningful. Note that Sβ = l1.
Since (S, ||.||∞) is an l∞-Grothendick space, using the Schur lemma
[11] it is easy to prove that (S, ||.||∞) has the quasi Banach-Steinhaus
property.

Theorem 6. Let c00 ⊆ λ, (λ, τ0) be a K-space and have the sec-
tion uniform bounded property and the quasi 0-gliding hump property.
If (λ, τ0) has the quasi Banach-Steinhaus property and (X, T ) is a se-
quentially complete Hausdorff space, then (X(λ), TB) has the Banach-
Steinhaus property, i.e., if {x̄(n)} ⊆ X(λ) and, for each t̄ = (tj) ∈ λ,
{∑j tjx

(n)
j }n is a convergence sequence, then there exists an x̄(0) =

(x(0)
j ) ∈ X(λ) such that {x̄(n)} is TB converges to x̄(0) = (x(0)

j ).

Proof. It follows from Theorem 4 that we only need to prove that
{x̄(n)} ⊆ X(λ) is a TB-Cauchy sequence. If not, there exist a P ∈ P,
a B ∈ B, an ε > 0, and a strictly increasing sequence {nk} ⊆ N such
that

PB(x̄(nk) − x̄(nk+1)) ≥ ε, k ∈ N.

So, there exists a sequence (t(k)
j ) ∈ B such that

(8) P

( ∑
j

tj(x
(nk)
j − x

(nk+1)
j )

)
≥ ε, k ∈ N.

For each k ∈ N, let z̄(k) = (z(k)
j ) = (x(nk)

j − x
(nk+1)
j ). It is clear

that z̄(k) ∈ X(λ) and, for each (tj) ∈ λ, limk

∑
j tjz

(k)
j = 0. By the

Hahn-Banach theorem again we can obtain a sequence of continuous
linear functionals {fk} of (X, T ) such that ||fk||P = sup{|fk(x)| : x ∈
X, P (x) ≤ 1} ≤ 1, and

(9) fk

(∑
j

t
(k)
j z

(k)
j

)
≥ ε, k ∈ N.

Similarly, as in Theorem 5 for each k ∈ N, (fk(z(k)
j )) ∈ λβ, and, for each

(tj) ∈ λ, it follows from ||fk||P = sup{|fk(x)| : x ∈ X, P (x) ≤ 1} ≤ 1
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and limk

∑
j tjz

(k)
j = 0 that

lim
k

( ∑
j

tjfk(z(k)
j )

)
= 0.

So, {fk(z(k)
j )}k ⊆ λβ is pointwise convergent to 0. Thus, by the quasi

Banach-Steinhaus property of (λ, τ0),

lim
k

( ∑
j

t
(k)
j fk(z(k)

j )
)

= lim
k

fk

( ∑
j

t
(k)
j z

(k)
j

)
= 0.

This contradicts (9) and so the theorem is true.

It follows from Examples 1 and 4 and Theorem 6 that:

Corollary 2 [1]. If c0 ⊆ S ⊆ l∞ and (S, ||.||∞) is an l∞-Grothendick
space, (X, ||.||) is a Banach space and, if {x̄(n)} ⊆ X(λ) and, for each
t̄ = (tj) ∈ S, {∑j tjx

(n)
j }n is a convergence sequence, then {x̄(n)} is

norm convergent to x̄(0) = (x(0)
j ) ∈ X(S), where x̄(0) = (x(0)

j ) is such

that x
(0)
j = limn x

(n)
j for each j ∈ N.

4. The uniform convergent property of X(λ).

Finally, we study when B ∈ B and (tj) ∈ λ, under what conditions
the series

∑
j tjxj converges uniformly with respect to (tj) ∈ B.

The sequence space (λ, τ0) is said to have the uniform convergent
property if, for each σ(λβ, λ)-sequentially compact subset F of λβ and
each B ∈ B, the series

∑
j ujtj converges uniformly with respect to

(uj) ∈ F and (tj) ∈ B.

Ronglu Li and Minhyung Cho in [6] proved the following important
conclusion:

Lemma 4 [6, Theorem 1]. If the sequence space (λ, τ0) has the section
uniform bounded property and the strong gliding hump property, then
(λ, τ0) has the uniform convergent property.
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Example 5. If c0 ⊆ S ⊆ l∞ and (S, ||.||∞) is an l∞-Grothendick
space, then (S, ||.||∞) also has the uniform convergent property.

Theorem 7. Let c00 ⊆ λ, (λ, τ0) be a K-space and have the section
uniform bounded property and the quasi 0-gliding hump property. If
(λ, τ0) has the uniform convergent property, then for each x̄ = (xj) ∈
X(λ) and B ∈ B, the series

∑
j tjxj converges uniformly with respect

to (tj) ∈ B.

Proof. If not, there exist an ε0 > 0, a P ∈ P, a sequence {t̄(k)} ⊆ B
and two strictly increasing subsequences {jk} and {lk} of N satisfies
that

P

( lk∑
j=jk

t
(k)
j xj

)
≥ ε0, k ∈ N.

By the Hahn-Banach theorem again we can obtain a sequence of
equicontinuous continuous linear functional {fk} of (X, T ) such that

(10) fk

( lk∑
j=jk

t
(k)
j xj

)
≥ ε0, k ∈ N.

Let A1 be the σ(X∗, X) closure of {fk}. Then, by the famous
Alaogue-Bourbaki theorem, A1 is a σ(X∗, X)-compact subset of X∗

[12]. Since x̄ ∈ X(λ), for each (tj) ∈ λ, the series
∑

j tjxj is convergent.
So for each f ∈ X∗, we have

f

( ∑
j

tjxj

)
=

∑
j

tjf(xj).

Consider the linear operator X̄ : X∗ → λβ for X̄(f) = (f(xj))j .
It follows from X̄(f)(t̄) =

∑
j tjf(xj) that the linear operator: X̄ :

X∗ → λβ is σ(X∗, X) − σ(λβ, λ) continuous. So the image X̄(A1)
of A1 is a compact subset of (λβ, σ(λβ, λ)). By Lemma 1, X̄(A1) is
also a sequentially compact subset of (λβ, σ(λβ, λ)). It follows from
the uniform convergent property of (λ, τ0) that the series

∑
j tjfk(xj)

convergent uniformly with respect to (tj) ∈ B and k ∈ N. This
contradicts (10) and the theorem is proved.
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