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SOME NEW IYENGAR TYPE INEQUALITIES

FENG QI, PIETRO CERONE AND SEVER S. DRAGOMIR

ABSTRACT. Some new Iyengar type inequalities for an
integral are obtained by using the generalized Taylor formula
with integral remainder.

1. Introduction. Let f(x) be a differentiable function on a closed
interval [a, b] such that

∣∣∣f ′(x)
∣∣∣ ≤ M . Then

(1)
∣∣∣∣
∫ b

a

f(x) dx− (b − a)[f(a) + f(b)]
2

∣∣∣∣ ≤ (b − a)2M
4

− [f(b) − f(a)]2

4M
.

In 1938, Iyengar [16] established inequality (1) by using a geometric
approach. So, we call (1) the Iyengar inequality.

Using the Rolle and Lagrange mean value theorems, the following
inequalities were obtained naturally and simply in [27], producing a
refinement of the Iyengar inequality (1).

Theorem A. Let f(x) be continuous on the closed interval [a, b] and
differentiable in the open interval (a, b), and let m ≤ f ′(x) ≤ M for
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x ∈ (a, b). If f(x) is not a constant, then we have

(2)
mM(b − a)2 + 2(b − a) (Mf(a) − mf(b)) + (f(a) − f(b))2

2 (M − m)

≤
∫ b

a

f(x) dx

≤ −mM(b − a)2 + 2(b − a) (mf(a) − Mf(b)) + (f(a) − f(b))2

2 (M − m)
.

For f ′(x) integrable on [a, b], the inequalities in (2) were obtained
independently by Agarwal and Dragomir in [2] using the Hayashi
inequality. They expressed the result (2) as

(3)
∣∣∣∣
∫ b

a

f(t)dt − (b − a)
f(a) + f(b)

2

∣∣∣∣
≤ [f(b) − f(a) − m(b − a)][M(b − a) − f(b) + f(a)]

2(M − m)
.

In [3], the inequalities in (2) and in (3) were derived in a different
manner and rearranged as

∣∣∣∣
∫ b

a

f(x)dx − b −a

2
[f(a) + f(b)]

∣∣∣∣ ≤ (b −a)2

2(M − m)
(S − m)(M − S)

(4)

≤ M − m

2

(
b −a

2

)2

,(5)

where S = f(b) − f(a)/(b − a).

In the papers [28, 29], using the Taylor formula for functions with
a single variable or several variables, the Iyengar inequality (1) was
generalized as follows.

Theorem B [28]. Let f(x) be a differentiable function of Cn ([a, b])
satisfying N ≤ f (n+1)(x) ≤ M for x ∈ (a, b). Denote

Sn(u, v, w) =
n−1∑
k=1

(−1)k

k!
ukf (k−1)(v) + (−1)n w

n!
un(6)
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and
∂kSn

∂uk
= S(k)

n (u, v, w).(7)

Then, for any t ∈ [a, b], we have when n is odd,

(8)
n+2∑
i=0

(−1)i

i!

(
S

(i)
n+2(a, a, N) − S

(i)
n+2(b, b, N)

)
ti ≤

∫ b

a

f(x) dx

≤
n+2∑
i=0

(−1)i

i!

(
S

(i)
n+2(a, a, M) − S

(i)
n+2(b, b, M)

)
ti;

and when n is even,

(9)
n+2∑
i=0

(−1)i

i!

(
S

(i)
n+2(a, a, N) − S

(i)
n+2(b, b, M)

)
ti ≤

∫ b

a

f(x) dx

≤
n+2∑
i=0

(−1)i

i!

(
S

(i)
n+2(a, a, M) − S

(i)
n+2(b, b, N)

)
ti.

We may deduce both Theorem A and the following result as special-
izations of Theorem B.

Theorem C [29]. Let f(x) be differentiable on the closed interval
[a, b], and N ≤ f ′′(x) ≤ M for x ∈ (a, b). Then

(10)

N(b3 − a3)
6

+

{
f(a) − f(b) + bf ′(b) − af ′(a) + [N(a2 − b2)]/2

}2

2 [(a − b)N − f ′(a) + f ′(b)]

≤
∫ b

a

f(x) dx − bf(b) + af(a) +
b2f ′(b) − a2f ′(a)

2

≤ M(b3 − a3)
6

+

{
f(a) − f(b) + bf ′(b) − af ′(a) + [M(a2 − b2)]/2

}2

2 [(a − b)M − f ′(a) + f ′(b)]
.

In recent years, Qi, Guo, Zhang and Cui, using the mean value
theorems for functions with a single variable or several variables,
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generalized the Iyengar inequality to those involving bounds of higher
order derivatives, with norm bounds, for weighted multiple integrals,
and the like. See [8, 12, 13, 15], [27 30] and [32].

Meanwhile, Agarwal, Cerone, Dragomir and Wang proceeded in
an alternate direction, utilizing the Hayashi inequality or Steffensen
inequality, generalizing Iyengar’s inequality to those involving higher
derivatives, weighted integrals, and so on. See [2 6] and [10].

The Iyengar inequality (1) has been researched by many mathemati-
cians, and there is much literature devoted to it. Please refer to the
references in this paper. Before elaborating on the contributions of the
current article, it is useful to present some background notations and
definitions.

Definition 1. A sequence of polynomials {Pi(t, x)}∞i=0 is called
harmonic if it satisfies the following Appell condition

(11) P ′
i (t) � ∂Pi(t, x)

∂t
= Pi−1(t, x) � Pi−1(t)

and P0(t, x) = 1 for all defined (t, x) and i ∈ N.

It is well known that Bernoulli polynomials Bi(t) can be defined by
the following expansion

(12)
xetx

ex − 1
=

∞∑
i=0

Bi(t)
i!

xi, |x| < 2π, t ∈ R,

and are uniquely determined by the following formulae

B′
i(t) = iBi−1(t), B0(t) = 1;(13)

and

Bi(t + 1) − Bi(t) = iti−1.(14)

Similarly, Euler polynomials can be defined by

(15)
2etx

ex + 1
=

∞∑
i=0

Ei(t)
i!

xi, |x| < π, t ∈ R,
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and are uniquely determined by the following properties

E′
i(t) = iEi−1(t), E0(t) = 1;(16)

Ei(t + 1) + Ei(t) = 2ti.(17)

For further details about Bernoulli polynomials and Euler polynomi-
als, please refer to [1, 23.1.5 and 23.1.6] and [34]. Moreover, some new
generalizations of Bernoulli numbers and polynomials can be found in
[14, 18 20, 31].

There are many examples of harmonic sequences of polynomials. For
instance, [3, 7, 21], for i a nonnegative integer, t, τ, θ ∈ R and τ �= θ,

Pi,λ(t) � Pi,λ(t; τ ; θ) =
[t − (λθ + (1 − λ)τ )]i

i!
,(18)

Pi,B(t) � Pi,B(t; τ ; θ) =
(τ − θ)i

i!
Bi

(
t − θ

τ − θ

)
,(19)

Pi,E(t) � Pi,E(t; τ ; θ) =
(τ − θ)i

i!
Ei

(
t − θ

τ − θ

)
.(20)

As usual, let Bi = Bi(0), i ∈ N, denote Bernoulli numbers. From
properties (13) (14) and (16) (17) of Bernoulli and Euler polynomials,
respectively, we can obtain easily that, for i ≥ 1,

(21) Bi+1(0) = Bi+1(1) = Bi+1, B1(0) = −B1(1) = −1
2
,

and, for j ∈ N,

(22) Ej(0) = −Ej(1) = − 2
j + 1

(2j+1 − 1)Bj+1.

It is also a well-known fact that B2i+1 = 0 for all i ∈ N.

In [21], the following generalized Taylor formula was established.
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Theorem D. Let {Pi(x)}∞i=0 be a harmonic sequence of polynomials.
Further, let I ⊂ R be a closed interval and a ∈ I. If f : I → R is any
function such that f (n)(x) is absolutely continuous for some n ∈ N,
then, for any x ∈ I, we have
(23)

f(x) = f(a) +
n∑

k=1

(−1)k+1
[
Pk(x)f (k)(x) − Pk(a)f (k)(a)

]
+ Rn(f ; a, x),

where

(24) Rn(f ; a, x) = (−1)n

∫ x

a

Pn(t)f (n+1)(t)dt.

If we set in (23) and (24) Pn(t) = (t − x)n/n!, then we obtain
directly the classical Taylor formula with remainder of integral form.
Generalized Taylor formulae from product Appel polynomials were
considered in [4] which involve the product of polynomials satisfying
the Appel condition (1).

In this article, using the generalized Taylor formula (23), we will
derive some new Iyengar type inequalities for an integral of functions
with a single variable, which generalize some related known results
obtained in [8, 12, 13, 15, 16, 27, 28, 32], for example.

2. Some integral identities. In this section we establish two
identities involving integrals which form the basis for the procurement
of our main results.

Theorem 1. Let {Pi(x)}∞i=0 and {Qi(x)}∞i=0 be harmonic sequences
of polynomials. If f : [a, b] → R is a function such that f (n)(x) is
absolutely continuous for some n ∈ N, then we have the following
generalized Taylor identity

(25) (n+1)
∫ b

a

f(x) dx

= b

n∑
k=0

q(k, k; b)− a

n∑
k=0

p(k, k; a) +
n∑

k=1

k∑
i=1

[
p(i, i−1, a) − q(i, i−1; b)

]
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+ t

n∑
k=0

[
p(k, k; a) − q(k, k; b)

]
+

n∑
k=1

k∑
i=1

[
q(i, i − 1, t) − p(i, i − 1; t)

]

+
∫ t

a

(t − s)p(n, n + 1; s) ds +
∫ b

t

(t − s)q(n, n + 1; s) ds,

where t ∈ [a, b] and

p(l, m; x) = (−1)lPl(x)f (m)(x),(26)

q(l, m; x) = (−1)lQl(x)f (m)(x)(27)

for any nonnegative integers 0 ≤ l ≤ n and 0 ≤ m ≤ n+1 and x ∈ [a, b].

Proof. Let t be a parameter such that a ≤ t ≤ b. Then

(28)
∫ b

a

f(x) dx =
∫ t

a

f(x) dx +
∫ b

t

f(x) dx.

From the generalized Taylor formula (23), for x ∈ [a, b], it follows that

f(x) =f(a)+
n∑

k=1

(−1)k+1
[
Pk(x)f (k)(x)−Pk(a)f (k)(a)

]
+Rn,P (f ; a, x),

(29)

f(x) =f(b)+
n∑

k=1

(−1)k+1
[
Qk(x)f (k)(x)−Qk(b)f (k)(b)

]
+Rn,Q(f ; b, x).

(30)

Integration by parts gives us∫ t

a

Pk(x)f (k)(x) dx =
[
Pk(t)f (k−1)(t) − Pk(a)f (k−1)(a)

]

−
∫ t

a

Pk−1(x)f (k−1)(x) dx.

Clearly, we can apply the same procedure to the term
∫ t

a
Pk−1(x)×

f (k−1)(x) dx. So, by successive integration by parts, we obtain

(31) (−1)k

∫ t

a

Pk(x)f (k)(x) dx

=
k∑

i=1

(−1)i
[
Pi(t)f (i−1)(t) − Pi(a)f (i−1)(a)

]
+

∫ t

a

f(x) dx.
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Similarly, we have

(32) (−1)k

∫ b

t

Qk(x)f (k)(x) dx

=
k∑

i=1

(−1)i
[
Qi(b)f (i−1)(b) − Qi(t)f (i−1)(t)

]
+

∫ b

t

f(x) dx.

Integrating both sides of formula (29) over the interval [a, t] and
utilizing identity (31) yields

(33)

(n+1)
∫ t

a

f(x) dx = (t−a)
n∑

k=0

(−1)kPk(a)f (k)(a)

+
n∑

k=1

k∑
i=1

(−1)i+1
[
Pi(t)f (i−1)(t)−Pi(a)f (i−1)(a)

]

+ (−1)n

∫ t

a

∫ x

a

Pn(s)f (n+1)(s) ds dx.

Similarly, integrating both sides of the result (30) over the interval [t, b]
and using the identity (32) gives

(34)

(n+1)
∫ b

t

f(x) dx = (b−t)
n∑

k=0

(−1)kQk(b)f (k)(b)

+
n∑

k=1

k∑
i=1

(−1)i+1
[
Qi(b)f (i−1)(b)−Qi(t)f (i−1)(t)

]

+ (−1)n

∫ b

t

∫ x

b

Qn(s)f (n+1)(s) ds dx.

Now, combining (33) and (34) and utilizing (28) produces

(n+1)
∫ b

a

f(x) dx = b
n∑

k=0

(−1)kQk(b)f (k)(b) − a
n∑

k=0

(−1)kPk(a)f (k)(a)

(35)

+
n∑

k=1

k∑
i=1

(−1)i+1
[
Qi(b)f (i−1)(b) − Pi(a)f (i−1)(a)

]
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+ t
n∑

k=0

(−1)k+1
[
Qk(b)f (k)(b) − Pk(a)f (k)(a)

]

+
n∑

k=1

k∑
i=1

(−1)i
[
Qi(t) − Pi(t)

]
f (i−1)(t)

+ (−1)n

[ ∫ t

a

∫ x

a

Pn(s)f (n+1)(s) ds dx

+
∫ b

t

∫ x

b

Qn(s)f (n+1)(s) ds dx

]
.

Further, interchanging the order of integration for the last two terms
in (35) leads to

(36)
∫ t

a

∫ x

a

Pn(s)f (n+1)(s) ds dx =
∫ t

a

(t − s)Pn(s)f (n+1)(s) ds,

(37)
∫ b

t

∫ x

b

Qn(s)f (n+1)(s) ds dx =
∫ b

t

(t − s)Qn(s)f (n+1)(s) ds.

Substituting (36) and (37) into (35), rearranging and introducing the
notation in (26) and (27) produces the identity (25). The proof is
complete.

Remark 1. If we set

(38) Pi(s) = Qi(s) =
(s − x)i

i!

for i a nonnegative natural number in (29) and (30) from the very start,
then following the same procedure as in the proof of Theorem 1, we
would obtain

∫ t

a

f(x) dx =
n∑

i=0

f (i)(a)
(i+1)!

(t−a)i+1 +
1

(n+1)!

∫ t

a

(t−s)n+1f (n+1)(s) ds,

(39)

∫ b

t

f(x) dx = −
n∑

i=0

f (i)(b)
(i+1)!

(t−b)i+1 +
1

(n+1)!

∫ b

t

(t−s)n+1f (n+1)(s) ds,

(40)
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the combination of which produces

(41)

∫ b

a

f(x) dx =
n∑

i=0

f (i)(a)
(i + 1)!

(t − a)i+1 −
n∑

i=0

f (i)(b)
(i + 1)!

(t − b)i+1

+
1

(n + 1)!

∫ b

a

(t − s)n+1f (n+1)(s) ds.

The following result is a particularization of Theorem 1 but, because
of its intrinsic importance, is denoted as a theorem in its own right
rather than a corollary.

Theorem 2. Let {Pi(x)}∞i=0 be a harmonic sequence of polynomials.
If f : [a, b] → R is a function such that f (n)(x) is absolutely continuous
for some n ∈ N, then we have the following identity

(42) (n+1)
∫ b

a

f(x) dx

= b

n∑
k=0

p(k, k; b) − a

n∑
k=0

p(k, k; a) −
n∑

k=1

k∑
i=1

[
p(i, i−1; b) − p(i, i−1; a)

]

− t
n∑

k=0

[
p(k, k; b)−p(k, k; a)

]
+

∫ b

a

(t−s)p(n, n+1; s) ds,

where t ∈ [a, b] and p(l, m; x) = (−1)lPl(x)f (m)(x), x ∈ [a, b], for any
nonnegative integers 0 ≤ l ≤ n and 0 ≤ m ≤ n + 1.

Proof. This follows from taking Pi(s) = Qi(s) for 0 ≤ i ≤ ∞ and
s ∈ [a, b] in Theorem 1.

Remark 2. If we set
(43)

Pi(s) =
[s − (λb + (1−λ)a)]i

i!
and Qi(s) =

[s − (µb + (1−µ)a)]i

i!
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in identity (25), then

(44) (n+1)
∫ b

a

f(x) dx

=
n∑

k=0

(b−a)k

k!
[
b(µ − 1)kf (k)(b) − aλkf (k)(a)

]

−
n∑

k=1

k∑
i=1

(b−a)i

i!
[
(µ − 1)if (i−1)(b) − λif (i−1)(a)

]

− t

n∑
k=0

(b−a)k

k!
[
(µ − 1)kf (k)(b) − λkf (k)(a)

]

+
n∑

k=1

k∑
i=1

(−1)i

i!
{
[t − (µb+(1−µ)a)]i−[t−(λb+(1−λ)a)]i

}
f (i−1)(t)

+
(−1)n

n!

( ∫ t

a

(t−s)[s − (λb + (1 − λ)a)]nf (n+1)(s)ds

+
∫ b

t

(t−s)[s − (µb + (1 − µ)a)]nf (n+1)(s) ds dx

)
.

If we set

(45) Pi(s) = Qi(s) =
[s − (λb + (1 − λ)a)]i

i!

in formula (42), then

(46)

(n+1)
∫ b

a

f(x) dx =
n∑

k=0

(b−a)k

k!
[
b(λ−1)kf (k)(b) − aλkf (k)(a)

]

−
n∑

k=1

k∑
i=1

(b−a)i

i!
[
(λ−1)if (i−1)(b)−λif (i−1)(a)

]

− t

n∑
k=0

(b−a)k

k!
[
(λ−1)kf (k)(b) − λkf (k)(a)

]

+
(−1)n

n!

∫ b

a

(t−s)[s−(λb +(1−λ)a)]nf (n+1)(s) ds.
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Taking λ = 0 or λ = 1 in (46) yields expansions about b and a,
respectively. Namely,

(47)

(n+1)
∫ b

a

f(x) dx = b

n∑
k=0

(a−b)k

k!
f (k)(b) −

n∑
k=1

k∑
i=1

(a−b)i

i!
f (i−1)(b)

− t

n∑
k=0

(a−b)k

k!
f (k)(b)

+
1
n!

∫ b

a

(t−s)(a−s)nf (n+1)(s) ds.

or
(48)

(n+1)
∫ b

a

f(x) dx =
n∑

k=1

k∑
i=1

(b−a)i

i!
f (i−1)(a) − a

n∑
k=0

(b−a)k

k!
f (k) (a)

+ t
n∑

k=0

(b − a)k

k!
f (k) (a)

+
1
n!

∫ b

a

(t−s)(b−s)nf (n+1)(s) ds.

Remark 3. If the assumption is made that

(49) Pi(s) = Pi,B(s; b; a) =
(b − a)i

i!
Bi

(
s − a

b − a

)

for nonnegative integer i, then from Theorem 1, straightforward cal-
culations and utilizing the properties (21), (22) together with the fact
that B2i+1 = 0 for i ∈ N produces

(n+1)
∫ b

a

f(x) dx

=
[
bf(b) − af(a)

] − 1
2
(b − a)

[
af ′(a) + bf ′(b)

]

+
[n/2]∑
k=1

(b−a)2k

(2k)!
B2k

[
bf (2k)(b) − af (2k)(a)

]
+

n

2
(b−a)

[
f(a)+f(b)

]
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−
n∑

k=2

[k/2]∑
i=1

(b − a)2i

(2i)!
B2i

[
f (2i−1)(b) − f (2i−1)(a)

]

− t

{[
f(b) − f(a)

] − 1
2

(b − a)
[
f ′(a) + f ′(b)

]

+
[n/2]∑
k=1

(b − a)2k

(2k)!
B2k

[
f (2k)(b) − f (2k)(a)

]}

+
(a − b)n

n!

∫ b

a

(t − s)Bn

(
s − a

b − a

)
f (n+1)(s) ds,

where [x] denotes the Gauss function, whose value is the largest integer
not exceeding x.

Remark 4. Suppose that in Theorem 2

(51) Pi(s) = Pi,E(s; a; b) =
(a − b)i

i!
Ei

(
s − b

a − b

)

for nonnegative integer i, then, by direct calculation and utilizing (21),
(22) and B2i+1 = 0 for i ∈ N, we obtain

(n+1)
∫ b

a

f(x) dx = af(a) + bf(b)+
[(n+1)/2]∑

k=1

2(1−4k)(b−a)2k−1

(2k)!

(52)

× B2k

[
af (2k−1)(a)+bf (2k−1)(b)

]

+
n∑

k=1

[(k+1)/2]∑
i=1

2(4i − 1)(b − a)2i−1

(2i)!

× B2i

[
f (2(i−1))(a) + f (2(i−1))(b)

]

− t

{
af(a) + bf(b) +

[(n+1)/2]∑
k=1

2(4k− 1)(b −a)2k−1

(2k)!

× B2k

[
f (2k−1)(a) + f (2k−1)(b)

]}

+
(b − a)n

n!

∫ b

a

(t − s)En

(
s − b

a − b

)
f (n+1)(s) ds,
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where [x] also denotes the Gauss function as in Remark 3.

3. Some new Iyengar type inequalities. In the work that
follows, we adopt the notation:

(53)

Γ
P

= sup
x∈[a,b]

p(n, n + 1; x) = sup
x∈[a,b]

{
(−1)nPn(x)f (n+1)(x)

}
,

γ
P

= inf
x∈[a,b]

p(n, n + 1; x) = inf
x∈[a,b]

{
(−1)nPn(x)f (n+1)(x)

}
,

ΓQ = sup
x∈[a,b]

q(n, n + 1; x) = sup
x∈[a,b]

{
(−1)nQn(x)f (n+1)(x)

}
,

γQ = inf
x∈[a,b]

q(n, n + 1; x) = inf
x∈[a,b]

{
(−1)nQn(x)f (n+1)(x)

}
,

Γ = sup
x∈[a,b]

f (n+1)(x), γ = inf
x∈[a,b]

f (n+1)(x),

where the definitions (26) and (27) have been used.

Suppose f(x) is an n-times differentiable function on the closed
interval [a, b] and f (n+1)(x) exists on (a, b). Let

(54) M = Γ = sup
s∈(a,b)

f (n+1)(s), N = γ = inf
s∈(a,b)

f (n+1)(s).

Then, from (41), we can deduce Theorem B and Theorem C, the results
obtained in [28] and [29].

Bounds may also be obtained in terms of the traditional Lebesgue
norms for f (n+1) ∈ Lp([a, b]), 1 ≤ p < ∞. Specifically, if f (n)(x)
is absolutely continuous on the closed interval [a, b], then, for any
t ∈ [a, b], it follows from (41), that

(55)
∣∣∣∣
∫ b

a

f(x) dx −
n∑

i=0

f (i)(a)
(i + 1)!

(t − a)i+1 +
n∑

i=0

f (i)(b)
(i + 1)!

(t − b)i+1

∣∣∣∣
≤ (t − a)n+2 + (b − t)n+2

(n + 2)!

∫ b

a

∣∣∣f (n+1)(s)
∣∣∣ ds.

Also, as a simple consequence of Hölder inequality, if f (n+1) ∈
Lp([a, b]) for a positive number p > 1, then, for any t ∈ [a, b], we
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have

(56)
∣∣∣∣
∫ b

a

f(x) dx −
n∑

i=0

f (i)(a)
(i + 1)!

(t−a)i+1 +
n∑

i=0

f (i)(b)
(i + 1)!

(t−b)i+1

∣∣∣∣

≤ (t−a)n+1+(1/q) + (b−t)n+1+(1/q)

(n + 1)! q
√

nq + q + 1

(∫ b

a

∣∣∣f (n+1)(s)
∣∣∣p ds

)1/p

,

where q satisfies 1/p + 1/q = 1.

Note that inequality (56) has been proved in [12, 13].

Let {Pi(x)}∞i=0 and {Qi(x)}∞i=0 be two harmonic sequences of poly-
nomials. If f : [a, b] → R is a function such that f (n)(x) is absolutely
continuous for some n ∈ N, then, from identity (25), it is easy to obtain
the expression

(57)
1
2

[
(a − t)2γ

Q
− (b − t)2Γ

P

]

≤ (n+1)
∫ b

a

f(x) dx + a
n∑

k=0

p(k, k; a) − b
n∑

k=0

q(k, k; b)

−
n∑

k=1

k∑
i=1

[
p(i, i − 1, a) − q(i, i − 1; b)

] − t

n∑
k=0

[
p(k, k; a) − q(k, k; b)

]

−
n∑

k=1

k∑
i=1

[
q(i, i − 1, t) − p(i, i − 1; t)

]

≤ 1
2
[
(a − t)2ΓP − (b − t)2γQ

]
.

Let {Pi(x)}∞i=0 be a harmonic sequence of polynomials. If f : [a, b] →
R is a function such that f (n)(x) is absolutely continuous for some
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n ∈ N, then we have the following inequalities

1
2
[
a2γ

P
− b2Γ

P

] −
{
bΓ

P
− aγ

P
− ∑n

k=0

[
p(k, k; b) − p(k, k; a)

]}2

2
(
γ

P
− Γ

P

)
(58)

≤ (n+1)
∫ b

a

f(x) dx − b

n∑
k=0

p(k, k; b) + a

n∑
k=0

p(k, k; a)

+
n∑

k=1

k∑
i=1

[
p(i, i − 1; b) − p(i, i − 1; a)

]

≤ 1
2
[
a2Γ

P
− b2γ

P

] −
{
bγ

P
− aΓ

P
− ∑n

k=0

[
p(k, k; b) − p(k, k; a)

]}2

2
(
Γ

P
− γ

P

) .

In fact, (58) follows from the identity (42) and maximizing or mini-
mizing a quadratic polynomial in t.

Let {Pi(x)}∞i=0 be a harmonic sequence of polynomials. If f : [a, b] →
R is a function such that f (n)(x) is absolutely continuous for some
n ∈ N, and defining

U := max
s∈[a,b]

|Pn(s)| ,

V := max
s∈[a,b]

∣∣∣f (n+1)(s)
∣∣∣ ,

and

W := max
s∈[a,b]

∣∣∣Pn(s)f (n+1)(s)
∣∣∣ ,

then, from (42), maximizing or minimizing a quadratic polynomial in
t yields

(59)

{
(a + b)UV − ∑n

k=0

[
p(k, k; b) − p(k, k; a)

]}2

4UV − a2 + b2

2
UV

≤
{
(a + b)W − ∑n

k=0

[
p(k, k; b) − p(k, k; a)

]}2

4W − a2 + b2

2
W

≤ (n+1)
∫ b

a

f(x) dx − b

n∑
k=0

p(k, k; b) + a

n∑
k=0

p(k, k; a)
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+
n∑

k=1

k∑
i=1

[
p(i, i − 1; b) − p(i, i − 1; a)

]

≤ a2 + b2

2
W −

{
(a + b)W +

∑n
k=0

[
p(k, k; b) − p(k, k; a)

]}2

4W

≤ a2 + b2

2
UV −

{
(a + b)UV +

∑n
k=0

[
p(k, k; b) − p(k, k; a)

]}2

4UV .

Remark 5. Now it is clear that, if estimating the following general
integral remainders

(60)
∫ t

a

(t − s)p(n, n + 1; s)ds +
∫ b

t

(t − s)q(n, n + 1; s) ds,

and

(61)
∫ b

a

(t − s)p(n, n + 1; s) ds

that appear in (25) and (42), then using better and more appropriate
techniques than previously gives rise to more accurate Iyengar type
inequalities.
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17. J.-Ch. Kuang, Chángyòng Bùděngshì (Applied inequalities), 2nd ed., Hunan
Education Press, Changsha, 1993. (in Chinese)

18. Q.-M. Luo, B.-N. Guo, F. Qi and L. Debnath, Generalizations of Bernoulli
numbers and polynomials, Internat. J. Math. Math. Sci. 59 (2003), 3769 3776.
RGMIA Res. Rep. Coll. 5 (2002), no. 2, Art. 12, 353 359. Available online at
http://rgmia.vu.edu.au/v5n2.html.

19. Q.-M. Luo, F. Qi and L. Debnath, Generalizations of Euler numbers and
polynomials, Internat. J. Math. Math. Sci. 61 (2003), 3893 3901. RGMIA Res.
Rep. Coll. 5 (2002), suppl., Art. 4. Available online at http://rgmia.vu.edu.au/
v5(E).html.

20. , Relationships between generalized Bernoulli numbers and polynomials
and generalized Euler numbers and polynomials, Adv. Stud. Contemp. Math.
(Kyungshang) 7 (2003), 11 18. RGMIA Res. Rep. Coll. 5 (2002), no. 3, Art. 1,
405 412. Available online at http://rgmia.vu.edu.au/v5n3.html.



SOME NEW IYENGAR TYPE INEQUALITIES 1015
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33. P.M. Vasić and G.V. Milonanović, On an inequality of Iyengar, Univ.
Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544 576 (1976), 18 24.
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