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A STUDY OF THE LIPPMANN-SCHWINGER
EQUATION AND SPECTRA FOR SOME
UNBOUNDED QUANTUM POTENTIALS

CHRISTOPHER WINFIELD

ABSTRACT. In this article we study the Modified Lipp-
mann—Schwinger equation for certain model potentials V' de-
fined on R3, not of Rollnik class, and solutions to the equation
in a weak sense. Further, we study the resolvent and the spec-
trum of the operator H = —A + ¢V in our model for nonzero
constants c. In particular, we find that, for sufficiently small
¢ > 0, H has no singular spectrum.

Introduction. This article involves the study of the integral opera-
tor

1
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for certain classes of real-valued functions V defined on R® where A,
operates on a Hilbert space of functions ¢ also defined on R?® and
where )\ is a complex parameter. Here V is regarded as the potential
for a (three-dimensional) Schrédinger operator H I, +V = —A+V.
We study a norm by Friedrichs [1] to develop a class of potentials V'
for which Ay is not a Hilbert-Schmidt operator for any real A, yet is
compact for all real .

We apply our study of the operators Ay to the so-called modified
Lippmann-Schwinger equation:

U@, k) = V(@) /2e "
(0.2) 1 / V()| 2eilsllz=vly (4y)1/2
4m Jrs lz — yl

Y(y, k)dy.
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1382 C. WINFIELD

with V1/2 %V |1/2(sgn V). Equation (0.2) arises in the study of Mgller
(wave) operators and of continuum eigenfunction expansions of the
operator H, +V on L?*(R?) [5, 6, 9, 15]. It is known [2, 3, 8, 11]
that, for k € R3, except possibly those of a set of Lebesgue measure
0, (0.2) has a unique solution ¥ (x, k) € L?(R?) when V € L'(R?) and
satisfies

V)|V (y
(0.3) / / V@)V ()| dx dy < oc.
R3 JR3 ‘37 - |2

So, to motivate our study of the operator (0.1), we provide a sketch
of proof. If V satisfies (0.3), then A}, : L*(R?*) — L?*(R?) is a
bounded operator. Indeed, it is a Hilbert-Schmidt operator and is,
hence, compact. After rearrangement, equation (0.2) can be written as

(0.4) (I + Al x) = [V (@) 26
where I denotes the identity operator on L?(R?). The result then
follows via the analytic Fredholm theorem, see Theorem VI1.41 of [11].

The condition (0.3) on V is satisfied if V € L _(R?) and V(z) =
O(e=“l?l) as |x| — oo for some positive o [2, 3]. Moreover, by Sobolev’s
inequality, this condition is also satisfied if V(x) € L'(R?) N L3/2(R?)
[11]. However, for some potentials, the operators A, may not be of
Hilbert-Schmidt class, yet may be bounded—even compact. Indeed,
using estimates from [1], see also [10], we demonstrate the existence of
locally bounded V' for which the operator A| is not Hilbert-Schmidt
for any k, yet is compact for all x.

The outline of this article is as follows: In Section 1 we introduce
modes of compactness for operators A, and check known results
for some simple, bounded potentials to motivate more complicated
examples. In Section 2 we introduce certain potentials of unbounded
essential range to be used throughout the rest of the article. The
associated operators A|,| are then shown to be compact but not Hilbert-
Schmidt. Using this model, in Section 3 we demonstrate the existence
of weak solutions of the Lippmann-Schwinger equation, and in Section 4
we study the spectrum of the Schrédinger equation.

1. Compactness of A for some bounded potentials. A
measurable function V(x) defined on R? is of Rollnik class [11, 12] if

def |V ||V )|
(1.1) IV Rotnix = / /R3 dx dy < oo.

|z =y
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And, for 0 < § < 1, using an operator norm from [1], we will say V is
of class cl (23) if

1.2 V|2, % s / / z)| dx dy < oo
(1.2) I ||25 z€ 3 N |2ﬁ‘y 2228

with cl(2) being the Rollnik-class potentials. Such classes are moti-
vated by norms from [1] which, for 0 < 8 < 1, are given by

def —
(13) T sup [ KoK .2 dedy,
z€RS3
for an integral operator 7' on L?*(R?)
To(x) = | K(z,y)¢(y)dy

R3

with integral kernel K.

T will be said to be 26-bounded if (1.3) is finite. Indeed, a measurable
function V' is of class cl (2(3) if and only if the associated operator A
is 20-bounded: Note that ||T||lus = ||T'||]2 where || - ||us denotes the
Hilbert-Schmidt norm. Tt follows from (20.14) of [1] that integrals
(1.3) produce upper bounds on the L*(R3) operator norms of integral
operators T since

T[] < [IT|25

and, for the case 8 = 1, we have
TN < 11T ]sss -

Furthermore, we denote by ||T'||go the Holmgren norm of an integral
operator T which is defined by

HTHHOIE sup /|K x, z)| de.
Finally, we will denote, for positive a, the quantities

[T = " sup /|Ka: 2)|* dx.
z€R3
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It is easy to show that
(1.4) 171135 < [TN25 - [IT]]2-25-

For bounded potentials, V € B(R?), we find a range of p for which
Ve LP(R?) = V € cl(28) for some 0 < 8 < 1:

Proposition 1. Suppose V. € LP(R?) N B(R3) for some p <
(3/16)(1 + +/33) ~ 1.2646. Then, there exist positive numbers, [1(p)
and B2(p), such that B1(p) < B2(p) and that V € cl(25) whenever

Bi(p) < B < Ba2(p)-

Proof. Since V € B(R?), we need only to appraise

)|’V (y)|
sup/ / dx dy
z€R3 JR3 JR3 \x—y|25|y—z|2 28

as we determine p and ¢ for which V € LP(R?®) N LY(R?) implies
Ve cl(20).

Write
V(z)|? V(z)P V(z)P
JELC Ty g 7C TRy S - L
“T - y| lz—y|<1 |‘T - y| lz—y|>1 “T - y|
We have

v B
/ %diK sup [V(x)lﬁ/ Ix—yl‘zﬂdx]
lz—y|<1 |T Y| z€R3 lz—y|<1

and, using Holder’s inequality, we have for appropriate 8 < p < oo,

B
[ e,
lz—y|>1 "/E - y|

B/p 1-3/p
< {/ V()P dx} [/ (= y|(-200) /=) dx} .
le—y|>1 le—y|>1

Likewise,

V(y)l / V(y)l / V)l
BLA . SLA DI - W
/ ‘y_z‘272ﬁ ly—z|<1 ‘y_z‘272ﬁ ly—z|>1 |y_Z|272ﬁ
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with

[V (y)l 28—2
an [ Wy < s Vi) ly— 22 ay|;
ly—z|<1 |y _Z|2 28 yERS3 ly—z|<1

and, for appropriate ¢ > 1,

V(y)l [ / Y
e dy < V(y)|* dy
/|y—z21 ly — 2[>728 \y—z|21‘ W)l

1-1/q
X [/ ly — 2|(?0-Da/a—1 dy] )
ly—z|=>1

The convergence of integral (1.8) for all 0 < 8 < 1 is clear when
V e LI(R3) for 0 < g < 1.

We now determine for which p and § are the quantities (1.5)—(1.8)
finite when V € LP(R3) N B(R?). For any positive R,

(1.9) / |z —y|7" dr < oo,
lz—y|<R

for r < 3, and

(1.10) / |z —y|™"dx < o0
le—y|>R

for r > 3. Now, 20 < 2 and 2—283 < 2 for 0 < § < 1 so that (1.5) and
(1.7) are finite for any p and ¢, respectively. Moreover, from (1.9) and
(1.10), the quantities (1.6) and (1.8) are both finite provided that

206p
(1.11) =53
for p > B and
(2 —2B)q
(1.12) o1 8

for ¢ > 1.
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Now, for fixed p and ¢, we determine the range of [ for which
V € cl(20). Simultaneous inequalities (1.11) and (1.12) give

3p . [3—4q
1.1 —
(1.13) 2p+3<5<mgx{mm{ 5 ,qH,

where the maximum is taken over those q for which V € LI(R3);
namely, those ¢ such that ¢ > p. So, the statement of the proposition
then holds for

def  3p
and
ot 1 :0<p<1
ﬁ2(p)zc 3—p 3 O
— 1 — (1 .
o <p< (16)( +/33)

Corollary 1. Given p < 1, LP(R3) N B(R?) C cl(28) for every
Bi(p) <B < 1.

Proof. We have only to show that V' € ¢l(2) which follows from
Sobolev’s inequality. i

Remark 1.14. We note that, for V € L>(R?), an estimate on Riesz
potentials [13] shows that A, is bounded as an operator from L?(R?)
to LI(R3) for 1/qg=1/p —2/3 where 1 < p < 3/2.

To investigate the compactness of the operators A, for possibly
unbounded V', we will use the following

Lemma 1. Suppose that V € cl(28) N L (R3) for some 0 < 8 < 1.

Then, the associated operator A, is compact.

Proof. Let 0 < g, (z) <1 be defined by

(1.15) 9n(@) = {(1) i i: >R
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Then, for each R > 0 we define the operators A,

R|R

elrllz=yl |V (2)[/2g, () V (y) /2
|z —y|

AT A o P(2) = /

9r(z—y)o(y) dy.

Now, using the changes of variables u = y — z and r = |u|, we obtain

/ IV (@)g, @IV (y ”gi(z—y)dyd:c

y\2

V(z)||V(
N LT
|z|<R J|u|<R |ul

/ / / )|V (x + rw)|dr dw dez.
lz|<R JS2

(V(@)* + (V(z + rw))?
2 b
we have, for each 7 € [0, R] and for each w € S?,

Since
[V (@)||V(z+rw)| <

/ |V(x)\|V(a:+rw)|d:c§1/2/ V@) + V(@ + rw)? da
|z|<R |z|<R

S/ |V (z)|* d.
|z|<2R
So, by the Fubini-Tonelli Theorem, for all R > 0,
1/2
1A, rllus < \/E(/ V(x)|2dx> .

z|<2R
Therefore, for such R, A, g is of Hilbert-Schmidt class and is, hence,
compact. Clearly, |[A).|—
dominated convergence theorem,

im [[Ae] = Aju,rll2s = 0

and, hence, in the L?(R3) operator norm,

Jim [|[A}c| = Ajep,rl] = 0.
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This shows that A, is the operator-norm limit of compact operators
and is therefore compact. ]

‘We now provide a necessary condition for bounded, central potentials
to be of class cl(23): V is said to be a central potential if there is a
function V, defined on R, such that V(z) = V(|z|). For r = |z| we
state the following

Proposition 2. A bounded, central potential V € cl(28) only if the
associated function V satisfies

V(r) € LY RT; dr) 0 LP(RY; 72720 dr).

Proof. For each z, we use the Fubini-Tonelli theorem and a change
of coordinates to obtain

)P IV)lV ()] —”?
|V||25 / /m o — y[?P|y — 2228 dzx dy
_ V(r)Pr?
1.1 > 1-5 )
(1.16) > 4w|V (2)] /0 (R+1)7 dr

v
W,
i<k Y — 2|

Likewise, choosing R so large that

/ Vi(@)? dr 5 > 0,
|z|<R

we have

. VIV W) dy .

V1l 2 4 /R T eI /WR V@l
o 1— > V(T)T2

= 47|V (2)] gé/o R (o 772 dr

Choosing z, not a root of V', and sufficiently large R, it is clear that,
since V is bounded, (1.16) is finite only if V(r) € L#(R*;72720 dr) and
that (1.17) is finite only if V(r) € LY(R™; dr). o

(1.17)
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Our object, which we postpone until the next section, will be to con-
struct cl (2/3)-class potentials which are not Rollnik-class. To motivate
those constructions, we first consider operators Ay for certain bounded

potentials given by
def

V(@) % (14 af) .
(Such potentials are well-studied in, for instance, the study of Mgller
operators [4, 6, 7, 17].)

Proposition 3. V,(z) € cl(28) if and only if v > (3/3) — 2. Hence,
V,y € cl(20) for each 3/(y+2) < 5 < 1.

Proof. By Proposition 2, V,, € cl(23) only if

3
’y>max{——2,l}.
g

Yet, (3/8) —2 > 1 for any 0 < 8 < 1 and, hence, v > (3/8) — 2.
Conversely, V € LP(R3) if and only if p > 3/v; and, by Proposition 1
we have V, € cl(20) for p < [36/(3 —28)]. The combined inequalities
give v > (3/8) — 2, and the proof is complete. o

Remark 1.18. The associated operator A, is already known to be
compact, indeed Hilbert-Schmidt, for V,(z) = V(|z|) as in Proposi-
tion 3 via Sobolev’s inequality for v > 2.

Remark 1.19. It follows immediately from Proposition 3 that the
associated operator A, is bounded for v > 1 which is already known
(4]

2. Compactness of A, for some unbounded potentials.
We now introduce a class of potentials which admits functions which
do not decay as |z| — oo to construct potentials of various classes
cl(26). Consider functions that are supported on U2 | By, for Lebesgue
measurable sets EFj, satisfying the following properties:

(i) The sets Fj, are disjoint, and for k # [ the distance d(E}, E;)
between sets Ej and E; satisfies

calk =1 < d(Eg, E;) < calk — 1|
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for some positive constants ¢; and cs, independent of k& and [.
(ii) There are positive constants C7, C2 and b such that for every k
the Lebesgue measure p(Ey) of Ej, satisfies

C1k™" < u(Ey) < Cok™.

(i) For every 1/2 < B’ < 1, there is a positive constant Cgy,
depending only on 3, such that, for every k,

/ |z —y| 72 da < Cp u(Ey)
Ey

uniformly for y € Ej.

(iv) There is a positive constant D such that, for every k, the
diameter, diam (E}), of Ej, satisfies diam (Ey) < D.

For fixed b > 0, the collection of sets

1

B = { (@1, 02,20) 1 \fad +ad <L k<ar <k+ 55}

E_{(”” r2,73) IR+ 0 < 2 ki <z <k:+_1}
k = 1,42,43) - 2 3 27 Skb 1 1kb

for k =1,2,3,... satisfy criteria (i)—(iv) and the property that E, C E},
for all k.

We now construct model potentials which are not Rollnik-class yet
are 2(3-class and, in fact, C*°(R3)-class. Let Xi(x) be a nonnegative,
C>(R?3)-class function such that X;(z) = 1 for all z € E; and
supp X1 C F1. Then, define for k =1,2,3,...

and

Xk () P ((x1 — k)K" + 1,29, 73)

and

V() €3 X () k2.
k=1

We note that supp V,p C UpZ, E) and that, for each k, supp X C Ej
and V, p(z) = k° for all x € Ej.
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Given 0 < 8 < 1, we determine parameters a and b for which V, ; are
of class cl (23). First, we introduce some notation: Given two functions,
f and g, the expression f < g means that there is a positive constant
¢ such that |f| < ¢|g| uniformly on the domain of both f and g and
f =< g means that both f < g and g < f hold. We are now ready to
state

Proposition 4. Given 0 < 8 <1 and 0 < a < 283 — 1, we have the
following estimates forl € Z:

1
jo—28+1 0<6<§

ke 1
Zmﬁ Pl i f=g (I — o0).
) 1

“ §<6<1

We note that these sums diverge for every | when o > 25 — 1.

Proof. From standard sum and integral estimates along with a change
of variables, we find, for 0 < 8 < 1,

LS B U )l
N
k£l

(2.1) :laﬂ—w/ (w+21) dw
11w A

1 o'}
< jati=28 [/ w2 dw —|—/ w28 dw}
1/1 1

The second integral of (2.1) is finite for o < 23 — 1 while

1
1 0< B <=
A 2

1
/ w2 dw << Inl :ﬂ:% (I — o0).
1/ o1 1
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The combined estimates prove the claim. a
Write -
Vas(@)” =D (Xe(2)) k.
k=1

Now, supposing that z € E; for some [ (for otherwise V, (%) = 0), for
some constant § > 0, depending only on 3, and for k # [,

/ (Xk(x))'@ﬂ de < 6 - ke u(Ey)

(2.2) x—2z26" T k—1]?8
: kaﬁ b
~ k=128’
and, for k =1,
g 1% < 5.198
(2.3) /(Xl(x)) mdm <017 p(Er)
5 laﬁ—b.

Let us set Ay, as the associated operator (0.1) with V' = V4 ;. We now
apply estimates (2.2) and (2.3) along with Proposition 4 to estimate
[[Ajxl]g and [|A}.|]1—p for 0 < B < 1/2, thereby making estimates for
1/2 < f < 1 immediate.

For some positive constant 5, depending only on 3, we have the
following estimates uniform for z € Uj° E;: For 0 < § < 1/2 and
af—b—20 < —1,

V@V () of—b
a, a, dr < & laﬁ b laﬁ laﬁ
/ FEFE { *%w—uw

k#l
S l2aﬁ7b + llJraﬁfbeﬁ . laﬁ

< l2aﬁ—b+1—2ﬁ;
for a(1 — ) —b < —1 (noting that 1/2 <1 -3 < 1)
VPl P () B} a(1-B)—b
s s a(l1-8)—b  ja(1-p) a(lfﬁ)
/ |z — 2|28 s 6{1 ! +Z < |k—120=0) ]
k;ﬁl
< l2a(l—ﬁ)—b + la(l—ﬂ)—b . la(l—ﬁ)

< l2a(1fﬁ)7b;
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finally, for 6 =1/2 and a/2 — b < —1,

VR @)V () b
a, a, dr < 5 la/? b la/2 la/2
[ { i Z \k - l|

k£l
< emb 4 e/27b a2

<1971 +1nl).

Since these estimates provide a finite supremum for [ € Z*, we have
that for 0 < § < 1/2 the quantities [[A},|]i—s and [|A}.|]s are both
finite if 24 —b+1—26 < 0 and 2a(1 — ) —b < 0 and that [|A},|]1/2
is finite if a — b < 0.

We are now ready to prove

Theorem 1. Given 0 < 3 < 1, there are functions of the form Vg
which are cl (2/3)-class, but not Rollnik-class. Indeed, for each such 3,
numbers a > 0 and b > 0 may be chosen so that the associated operator
A\ is compact but not Hilbert-Schmidt.

Proof. First, we will show that, given any a > 0 and b > 0 for which
a —b > —1/2, the function V, is not of Rollnik class. We note that,
since Ej, C Ej, for each k, given D as in property (iv) and y € Ey,

Er C{u+y:|ul < D}.

So,
/ |Vab ||Va2b )| dxdy
|z —y|
/ |Vabu+y||Vab( )|dudy
Jul?

// |Vab u+y)2||va b( )| du dy
|u|<D |ul

D kas1 Xe(u+y)Xa(y) (kD) "
Z/u|<D D2 a dy
Z/ > ok>1 Xee(u ‘;g)xk(y)(k)% dudy
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> > () e

k=1
T 2 oo
> . 2(a7b) .
> (3p) 2*
k=1
Now, to find non-Rollnik potentials V; ; for which Lemma 1 applies,

we seek nonnegative numbers a and b which satisfy the following
simultaneous inequalities:

(2.4) 208+1—-23<b
(2.5) 2a(1 —B) < b
(2.6) a+%>b

for 0 < 8 < 1. The lefthand sides (LHS) of inequalities (2.4)—(2.6)
compare as follows:

LHS (2.4) < LHS (2.6) when a > [(1/2—-208)/(1 —203)] for 0 <
8 < 1/4, when ¢ > 0 for 1/4 < B < 1/2, and when a <
[(26-1/2)/(26—1)]for 1/2< B < 1.

LHS (2.5) < LHS (2.6) when 0 < a < [(1/2)/(1 =208)] for 0 < 3 <
1/2 and when a > 0 for 1/2 < 5 < 1.

So, given 0 < B < 1, let b satisfy
max {LHS (2.4), LHS (2.5)} < b < LHS (2.6)

for which in the following cases consistent solutions exist:
i) [(1/2—28)/(1—28)] < a < [(1/2)/(1—28)] for 0 < < 1/4;
ii)a>0for1/4 < <1/2
iii) @ > 0 for § =1/2;
iv)and, 0 <a < [(280-1/2)/(28—1)] for 1/2 < 3 < 1.

Remark 2.7. We note that, for a and b as above, V, , ¢ L1(R3).

Remark 2.8. In case iii) above, the associated operator A s
bounded in Holmgren norm but not in Hilbert-Schmidt norm.
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3. Weak solutions to the Lippmann-Schwinger equation. In
this section we will analyze solutions to equation (0.2) in an abstract
sense, vis-a-vis [5], for a general subclass of cl (23)-class potentials. We
proceed using the following result, whose proof closely follows part II
of the proof of Theorem XI.41 from [11]:

Theorem 2. Given V € cl(20) for some 0 < 8 < 1, the operator
Al +1 is invertible on L2(R3) for all |k| except, perhaps, for |k|* € &,
where £ is a certain set of Lebesgue measure zero.

Proof. We consider Ay for complex A. From the estimate (20.8) of
[1], we find
(4m)[| Ax|I*
V4 Be—2BIm A|lz—y| |1/ v 1-B o(—2+28)Im A|y—z|
< oy [ Wl VIV
RO |z —y|*Ply — 2|

dzx dy
z€ERS3

<|IVI3s-

So, by Fubini’s theorem and Morera’s theorem, A, is an analytic,
operator-valued function defined on the upper half-plane, ImA >
0. (See the first two paragraphs of Section 4 in [2] for details.)
Furthermore, since

[[Ax; — Ax,ll2s < 2[[Aol|2

for any real numbers A\; and A9, we have by the Lebesgue dominated
convergence theorem and the mean value theorem that ||Ax||os is
continuous for A on the real axis, Im A = 0, and, hence, so is [|A,]|.
Similarly, one can show that

lim  [|Ay][ =0

Im A—+oco
where the limit is independent of ReA. Therefore, there is a positive
number 7, for which (A + I)~! is analytic whenever Im A > 7,. Now,
the statement of the theorem follows from a version of the analytic
Fredholm theorem (see Proposition of page 101 in [11] and the two

paragraphs which follow) whereby the exceptional set £ C R is closed
and of Lebesgue measure 0. ]



1396 C. WINFIELD

Remark 3.1. As in [11], we likewise note that, by the Riemann-
Lebesgue lemma, the set £ is bounded.

Remark 3.2. Given a potential of the form ¢V where V' € cl (23) for
some 0 < 3 <1 and ¢ > 0 is sufficiently small, [[A},|| can be made so
small that (A, + I)~" exists for all |s|; in which case, £ is empty.

In the next theorem we consider, for certain measure spaces, solutions
to equation (0.2) as weak limits. For k2 ¢ £, define for m = 1,2,... the
bounded operators G| m dZEf(AM + I)71g,, on L?(R3?) for functions
gr as in (1.15). Suppose V1/2¢inz ¢ x* the dual space of a closed
subspace X of L*(R?), and let de:Cf(AM + I)(X) (which, since A
is compact, is also a closed subspace of L*(R?)). We construct weak
solutions to (0.2) in the sense that G}, . (V1/2ei%2) converges almost
everywhere to a function g € 2*. Indeed, we state

Theorem 3. For all |k|? ¢ £, the sequence of operators GTKI m JOT
m=1,2,..., converges in the weak-x sense to an operator

G*: X" — 9"
In particular, G*(e*OV1/2) € 9*.

Proof. Choose functions w € %) and v € X*. Then, gd:ef(AM +
I)~1(w) € X and, therefore, for each m

[ Grin@au@) s = | o@gn(e)Ap+1) w)ia) da

R3
- / 0(2)gm (2)g(z) de
R3

The result now follows by the Lebesgue dominated convergence theo-
rem. o

(3.3)

Before we state the next result, we make the following definitions.
We will denote by C, s the open cone given by

e Z -
Cmsd—f{x : ‘Tln > 5}
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for some —1 < § < 1 and for some unit vector n € R3. Given 6, a
function ¢(x) will be said to be rapidly decreasing on the cone C,; s if,
for every positive integer j,

lim  sup  |zf|¢(z)] =0
lz|—00 (z.n)/|z|>6

and the expression f ~ h on C, s will mean that the difference f — h
is rapidly decreasing on C,;s. Finally, a function f is said to be
polynomially bounded if f(x) < (1 + |z])* for some o > 0.

In the context of Theorem 3, we find asymptotic relationships between
certain functions g(z) and the associated functions w(z) for large

r % |z|. Defining F ='V1/?g, for |x|? ¢ £ J{0} we state

Theorem 4. Suppose that V(x) € C=(R?) is polynomially bounded
and that F' as above is supported in the complement of a cone Cy ;5
where, for some v > 3, F satisfies

d? )
< 2\—(v+i7)/2
‘deF‘ S(A+79)

on R? for each j = 0,1,2,... . Then, w(z) ~ g(x) on C_, s for any &'
such that § < §’ < 1.

Proof. For a given cone C, 5, we will show that w(z) = g(x) + ¢(z)
where ¢(z) = A, |(g)(x) is rapidly decreasing on C_, 5. To this end,
it suffices to show that, for |k|? ¢ £ U {0},

cilsllo—yl
Tk (9)(z) & /R3 WF@) dy

is rapidly decreasing on C_, 5. For w (x/r), x # 0, fixed, we intro-

duce the variable u % (y/r) — w, and we define s(iZEf|u\ and v (u/s)
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to write

Tiwi (9)(2) = Tjx) (9) (rw)

eirlsllo—(y/r)]
= / —F F(y)dy
R

=
—/e”::UI F(r(w+u)r*du

— 2 / / eir\m\ssF(r(w + 51/)) ds dQ(l/)
S2\Cy,5 YO

Now, by the Lebesgue dominated convergence theorem and the Fubini-
Tonelli theorem, it suffices to show that

(3.4) /OOO emFlss P (r(w + sv)) ds

rapidly decreases, as r — oo, uniformly in v. Supposing r > 1, it

follows by induction and the chain rule that, for each j = 0,1,2,...
def

with 0 = ¢ — 6,
& ri(s9T2 +1)
a5 PP I S e T as vr ye
< ri(s2+1)

(3.5) (1+7r2(s —1)2 4 20r2s)(v+3)/2

(09 ()] sz
T /(A 2s) D2 0 < s <2
<(s+1)*77

uniformly for r > 1. In (3.5) we use that w-v > 1 —d forw € C_, 5
and sv € supp F'. Therefore,

d—j [sF(r(w+ sv))] € L*(R, ds)

d s ’
for each j and, hence, it follows from the Riemann-Lebesgue lemma

that the integral (3.4) indeed rapidly decreases, as r — o0; so the
result is now immediate. O
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We apply this result to some non-Rollnik, cl (23)-class potentials: We
state

Corollary 2. For V = V,; as in Theorem 1, the conclusion of
Theorem 1 holds for any g € S(R?).

Proof. We need only to show that all derivatives of V,; are polyno-
mially bounded. Using the chain rule,

o’ Y
—_— Xk(x) = kb (— Xl) ((,Tl + 1)kb — k,LL'Q,LL'g)
dx) dx)

and

o 2 b
8—1-{ Xk(l‘) = (a—:Eg Xl) ((Il + l)k - k7$271‘3)

for I = 2,3 so that for any 3-index variable a = (a1, a2, a3),
|09 X5 ()] < k0109 Xk ().

Now, for C' = sup,¢ g, |05 X1 ()|, and for hy denoting the characteristic
function of the set Ej, we have

o0

Z k409 Xk ()

k=1

< D k07 Xk ()]
k=1

|07 Vap ()] =

(3.6) o
= DR @) (1 + DR — ko, )|
k=1
<Y kR (x)
k=1
so that

OVan(x) S (1 +|z|)llelte. g
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4. Resolvent and spectrum of H. We now consider operators
of the form H = H, + ¢V, with real, nonzero (coupling) constants
c and potential V,; as above. With fixed a and b, we estimate L?

inner products of the form (f, R(\)g) for appropriate f and g where

R()) is the resolvent operator for H, given by R(\) Cl=Cf(H — )"t We

then apply these results in the study of the spectrum of H. First, we
consider the operator B), defined by

iV |z—y|
) = VY20 eV
(Bale) = Vi) [ et do

and seek a closed subspace H of L?(R?) for which the operator-valued
function By takes values in £(H; L?(R?)). (We will take v\ to have
positive imaginary part for A € C\ [0,00).) In particular, we proceed
to construct such a space of the form H = L?(R3;dv) for a measure
v equivalent to Lebesgue measure. To this end, we find a class of
functions ¢ € L%(R?) for which supp$ = R? and By(¢) € L?*(R3).
Indeed, we have

Proposition 5. There are measurable functions ¢ which are positive
throughout R? for which the operator-valued function

(4.1) A— Byo¢

takes values of Hilbert-Schmidt class for each X\ € [0, 00).

In (4.1), ¢ represents the operation of multiplication by the func-
tion ¢.

Proof. Denote by S, the set

def
S, = {(y1,y27y3)|y1 >0,4/y3 +43 < 7”}

and write ¢ in the form ¢2(y) = ¢1(y) + ¢2(y) where supp ¢; C Sz and
supp ¢ C R?\ Sz. Denote by D the set

def
D= {(yuyz,yz)IO <y <Ly +yi< 3}
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and for k € N define Dy %' {y — (k —1,0,0) | y € D}. Let ¢; be the
function, positive-valued on Ss, given by

W) =S I Du(y)
=1

for a > a + 2 where ©; denotes the characteristic function of the set
D;. We compute according to a change of variables as before

//Xl |2 ddI</47T/ X1(x) dr dx
)

= 47TT'0M(E1)
where 7 = diam (D U El). For k > 2,

[ <//’“ dedy

M(Ql)
(k —-1)?
_ 9 (Ey)
-1

So,
kCu(E
// |m—y\2 dxdy<47rr0,u(E1 )+ 97 E %;2)

which is finite for b — a > —1.
Now, for k >,
Xe(z 4+ (1 —1,0,0)) < Xp—141(x)
so that, for [ > 2,

/ Zk>lk Xk (7)Di1(y)

Iﬂc—y\2

dx dy

// > oG+ DX 41 (2)Di(y) g dy

|z —yl?

// Do (G /D) + 1) X1 (2)D1(y)

\a? —yl?

// ab (7 dxdy

dz dy
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For k <,

// ENDBD) 4y < 14 K)(D1)/(1/4)

Ix— |2

so that

(4.3) //Z = () Dily )dxdygéll““,u(El)u(CDl).

ks —yl2

Therefore, by (4.2) and (4.3) we have that, for some positive constant
C independent of [,

(4.4) // w de dy < C1°*

and, hence, the integral

=

Next, we consider functions ¢, with the following properties:

J;dy

T — |2

converges.

¢2 S Ll(CO)
where
def 2 2
Co = {(z1, 22, 73) |21 < O}U (21,2, 23)[w1 = 0, 2421 </23 4 23 0
and
¢2(.’L') < e—(k+1)|w‘2
on

1 / 1
de—ef{(:cl,xg,xgﬂxl>0,2+k—+1x1< $2+£C <2+E$1}

for each k € N, respectively.
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Since d(FE%,Co) > k, we have, for some positive constant C', indepen-
dent of k,

1
dxd < — u(E dy < Ck™02
e sy < e [ sty <

so that

/C/R ‘x_ |2 dd <ZC/kb a+2
0

k=1
which is finite for b —a > —1.

For z € supp V' and y € Ci_1 for k > 2, we estimate |z — y|: It is not
difficult to show that for x = (x1,1,0) and y = (y1,2 + (1/k)y1,0)

g () ]

11
> 5@l 1%

and, by the symmetry of these sets about the positive x1-axis, the same
estimate (4.5) holds for all y € Cx_1 and x € supp V.

Now, for y € Cr_1, we have that ¢o(y) < e~*(4+v?) and that

Xi(x) / 2k? 2k%u(Ey)
dr < dr < .
/El lz—yl? " T Jg (L+2)?2 T (1+1)?

So, we compute, using cylindrical coordinates with r? = y3 + 43,

// 2+ /k)  p—k(4-yi)
dgc dy < 27r/ / / rdrdy; dx
“T - y|2 2+ (w1 /(k+1)) 1+1‘1)

Tu(Ee”
ST+ 1)2

0o 2 2
B2l (o ¥ _ (9 YL —ky? g
L6t e
067416
S T2
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for some positive constant C' independent of [ and k. Hence, for each [,

//U:ll Ci |(x)y2 dydx<Z//C Irc— |2 ) dw dy
—leZ et < li

for C = C/(e* —1).
It follows that, for b —a > —1,

// Vap(z)d2(y) dz dy
= ¢ lr—yl?

also converges, and we are done. ]

Now, given ¢ as in Proposition 5, define the Hilbert space

def{f € L*(R?): i; € L2(R3)}.

Since ¢(z) € L2(R3), H ¢ L'(R?) N L?(R3). Hence, functions f € H,
are of Rollnik class and satisfy | f|'/? € L?(R?). Therefore, the operator
|fIY/2(Hy — X)~"Y£|'/? is of Hilbert-Schmidt class. This immediately
gives

Proposition 6. Given f € H, the function X — (f, (Ho—X\)"1f) is
uniformly bounded for A € C\ [0, 00).

Noting that H is dense in L2(R3), we apply the criteria of Theorem
XIII.19 [11] to demonstrate the absence of singular spectrum, oging (H),
of H with V' = ¢V, ; for certain nonzero constants c.

Theorem 5. Let 0 < s <t be chosen so that [s,t]NE = @.

a) If (I+ A\/X)*l is uniformly bounded for X\ in a complex neighbor-
hood containing [s,t], then oging(H) (\[s,t] = &.
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b) If ¢ is chosen so that the integral operator A\, satisfies for some
0<p<1
1A []25 <1

for some, hence for all, k, then ogng (H) = @.

Proof. Tt suffices to show that (f, R(A)f) is uniformly bounded for
Re\ € [s,] as such for Im A > 0. Choose f € H and note that Bs o ¢
and (I+A /5)~'oByog are each Hilbert-Schmidt (bounded) operators.
For A ¢ [0, 00),

By = Va,b(HO — )\)71

so that, by using an identity from Section XI.6 [11], we obtain for
A¢o(H)
(H=XN)""=(H,—N)""=(Bs) o[l +A ] " oBy.

Therefore, for Im A > 0,

(f,(H=NT1) = (f. (Ho = N)7H)

-~(me(rasmen(2)
(el asmenlZ))

With Proposition 5 in hand, the result of part a) follows since B) o ¢
and Bj o ¢ are each uniformly bounded in A.

To prove part b), we note that [|[A x| < [|[Axll2s < 1, so that
(I+ A x) ! is uniformly bounded in A. o

Remark 4.7. We note that the absence of singular spectra for our
operators H = H, + cV,, may be shown simply by applying Stone’s
formula merely for a dense subspace of functions f. Yet, the method
above produces an actual weighted Hilbert space on which (f, R(\)f)
for ITm A > 0 extends continuously to [0,00) \ €.
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