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ON THE JULIA SETS OF TWO
PERMUTABLE ENTIRE FUNCTIONS

LIANGWEN LIAO AND CHUNG-CHUN YANG

ABSTRACT. In 1958, Baker posed a question that if f and
g are two permutable transcendental entire functions, must
their Julia sets be the same? Since then several classes of
entire functions have been exhibited to support an affirmative
answer to the question. In this paper, we shall complement or
improve some of these results by exhibiting some new classes
of entire functions.

1. Introduction and main results. Let f be a nonconstant
entire function, and denote by f™ the nth iterate of f. The Fatou
F(f) set of f is the set of z € C (the whole complex plane) where
the family {f™} is normal in a neighborhood of z. Denote by J(f) the
complement of F(f), which is called the Julia set of f. An obvious
property of a Julia set for an entire or rational function f is that
J(f) = J(f™). More of the basic results of the iteration of rational
functions can be found in [3, 4, 11, 19] for transcendental entire or
meromorphic functions. Factorization theory of entire or meromorphic
functions is a subject which studies when an entire or meromorphic
function F' can be expressed as the composition of two or more simpler
entire or meromorphic functions. Here a function h is said to be simpler
than another function & means that h has a growth much slower than
that of k’s. If F' can be expressed as I' = f o g, then f and g are
called left and right factors of F', respectively. For more of the details,
developments and related results of the factorization theory, we refer
the reader to [5, 8]. As iteration is a special case of the composition,
from this it is easily understood that factorization theory and complex
dynamics are closely related to each other. An entire or meromorphic
function is called prime (pseudo-prime) f if, whenever f = goh for some
meromorphic functions g and h, then either g or h is linear (g rational
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or h polynomial). An entire or meromorphic function F' is called left-
prime if and only if, whenever F' = f o g with g transcendental, then f
must be linear. Moreover, we will say that a factorization is in entire
sense if only entire factors are to be considered in the compositions.

Julia [13] and Fatou [7] independently proved that for any two
rational functions f and g of degree at least two such that f and g
are permutable, i.e., fog = go f, then J(f) = J(g). Baker [2] raised
the following natural question:

Question 1. Let f and g be two transcendental entire functions. If
f and g are permutable, is J(f) = J(g)?

Baker [1] and Iyer [12] proved independently that, if a nonconstant
polynomial f is permutable with a transcendental entire function g,
then f(z) = e®m™)/75 4+ b, for some integers m,n € N and b € C.
Moreover, in [1], Baker also characterized all nonlinear entire functions
that are permutable with an exponential function and proved the
following two theorems.

Theorem A. Let g be a nonlinear entire function permutable with
f(2) = ae’* + ¢, (ab # 0,a,b,c € C). Then g = f" for some n € N.
Hence J(f) = J(g).

Theorem B. If f and g are transcendental entire functions and if oo
is neither a limit function of any subsequence of {f™} in a component
of F(f), nor of any subsequence of {g"} in a component of F(g), then

J(f) = JI(9)-

Note that, except Theorem A, all the results mentioned above require
some sort of conditions on both f and g. Recently as a further
investigation of Question 1, Ng [16] came up with the following:

Question 2. Is there a complete classification of all pairs of nonlinear
permutable entire functions?
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Ng [16] proved the following two theorems which impose conditions
on only one of the two permutable functions, say f.

Theorem C. Let f be a transcendental entire function which satisfies
the following conditions:

A1) f is not the form H o Q, where H is periodic entire and Q is a
polynomial.

A2) f is left-prime in entire sense.
A3) [ has at least two distinct zeros.

A4) There exists a natural number N such that for any complex
number ¢, the simultaneous equations f(z) = ¢, f'(z) = 0 has at most
N solutions.

AB) The orders of zeros of f' are bounded by M for some M € N.

Let g be a nonlinear entire function permutable with f. Then g(z) =
af™(z)+b, where a is a kth root of unity andb € C. Hence J(f) = J(g).

Theorem D. Let g be a nonconstant entire function and p a poly-
nomial with at least two distinct zeros. Suppose that f(z) = p(z)ed®)
is prime in entire sense. Then any nonlinear entire function g which
permutes with f is of the form g(z) = af™(z) +b, where a is a kth root
of unity and b € C. Hence J(f) = J(g).

Remark. For two permutable transcendental entire functions f and
g, one will not be able to conclude, in general, that either g and f are
linearly related or g = af™ + b for some n > 2. For instance, see [10],
let

f(z) = ic[exp <(4kg+23)ﬁi22> + exp (— (4]“8%)” 222)]

)= e (B 1) g (- 2D )]

where k is an integer. Then f(g) = g(f). Moreover, it is easily verified
that g # af + b for any constants a,b and as r — oo,
(4k + 3)m 2)

T(r,f) ~T(r,g) ~2T (r, exXp o5 iz
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where T'(r, h) denotes the Nevanlinna’s characteristic function of h, see
e.g., [9]. The above growth relationship between f and g also excludes
the possibility that g = af™ + b for any constants a,b and n > 2.

In this paper, we shall generalize Theorems A and D as well as
complement Theorem C.

Theorem 1. Let f be a transcendental entire function satisfying the
following conditions.

(B1) f’ has only one zero.

(B2) f is pseudo-prime.

(B3) f is not of the form H o Q, where H is periodic entire and Q a
polynomial with degree > 2.

(B4) f is not of the form (z —a)"e"?) 4+ A, where a is the zero of f',
n > 2 and h(z) is a transcendental entire function with infinitely many

zeros such that n + (z — a)h/(2z) has no zeros.

Let g be a nonlinear entire function which permutes with f. Then
g(z) = af™(z) + b, where a is a kth root of unity and b € C. Hence

J(f) = J(9)-

Theorem 2. Let f be a transcendental entire function satisfying the
following conditions.

(B'1) f" has only finitely many zeros.

(B'2) f is pseudo-prime.

(B’3) f is not of the form H o Q, where H is periodic entire and Q a
polynomial with degree > 2.

(B'4) f is not of the form p(z)"e"#) 4+ A, where p(z) is a nonconstant
polynomial, n > 2 and h(z) is a transcendental entire function with

infinitely many zeros such that np'(z)+p(2)h'(2) has only finitely many
zeros.

Let g be a nonlinear entire function which permutes with f. Then
9(z) = af™(z) + b, where a is a kth root of unity and b € C. Hence

J(f) = J(9)-



JULIA SETS OF TWO FUNCTIONS 1661

As a variation of Theorem C, we have

Theorem 3. Let f be a transcendental entire function which satisfies
the following conditions:

(C1) f' has at least two zeros.

(C2) For any complex number c, the simultaneous equations f(z) = ¢,
f'(2) =0 has only finitely many solutions.

(C3) f is not of the form H o Q, where H is periodic entire and Q a
polynomial of degree > 2.

(C4) f is left-prime in an entire sense.

Assume further that g is a nonlinear entire function satisfying the
following condition

(C5) For any complex number c, the simultaneous equations g(z) = ¢,
9'(2) =0 has only finitely many solutions.

If g is permutable with f, then g(z) = af™(z) + b, where a is a kth
root of unity and b € C. Hence J(f) = J(g).

Finally we shall prove the following result, which is a generalization
of Theorem D.

Theorem 4. Let f(z) = p(2)e®®) + a, where p(2) is a nonconstant
polynomial and not of the form p1(2)™, where p1(z) a polynomial and
n > 2, a(z) is a nonconstant entire function such that if p(z) = A(z—a)
then 14+(z—a)a/(z) has at least one and only finitely many zeros and a €
C. Suppose that f(z) is pseudo-prime in an entire sense. If a nonlinear
entire function g is permutable with f, then g(z) = a1 f™(z) + b1, where
ay s a kth root of unity and by € C. Hence J(f) = J(g).

2. Some lemmas.

Lemma 1 (Poon-Yang [17]). Let f and g be transcendental entire
functions such that g(z) = af(z) + b, a,b € C. If g permutes with f,
then J(f) = J(g).
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Remark. The proof of Lemma 1 is essentially that of Baker’s [1] which
dealt with the case that g = f +b.

Definition 1. Let F(z) be a nonconstant entire function. An entire
function g(z) is a generalized right factor of F', denoted by g < F, if
there exists a function f, which is analytic on the range of g, such that
F=fog. If h<fandh < g, we say that h is a generalized common
right factor of f and g.

Ng [16] obtained the following two lemmas by essentially adopting
the arguments used by Eremenko-Rubel [6, Theorem 1.1] in their
investigations of the existence of possible common right factors of two
transcendental entire functions.

Lemma 2. Let f and g be two entire functions and z1,...,z; be
k > 2 distinct complex numbers such that
{ f(z1) = f(z2) =+ = fla) = A,
9(z1) = g(z2) = -+~ = g(z) = B.

Suppose that there exist monconstant functions fi and g1 such that
fiof = giog on Ui?:lUl-, where U; is some open neighborhood
containing z;. If f1 is analytic in a neighborhood of A and the order of
f1 at A is K < k, then there exists an entire function h, which depends
on f and g only and is independent of k and z;, with h < f, h < g.
Moreover, among the z;s, there exist at least m = [(k—1)/K] + 1
distinct points zp1, ... , Zpm such that h(zn1) = -+ = h(zpm)-

Lemma 3. Let f and g be two entire functions and {zi}ren an
infinite sequence of distinct complex numbers such that f(zx) = A and
g(z) = B for allk € N. Suppose that there exist nonconstant functions
f1 and g1 such that fio f = g1 09 on UX,U,, where U; is some open
neighborhood containing z;. If fi is analytic in a neighborhood of A,
then there exists a transcendental entire function h with h < f,h < g.

Lemma 4 (Ng [16]). Let h,k be transcendental entire functions.
Suppose that h has infinitely many zeros. Then for each n € N, there
exists a zero a, of h such that k(z) = a,, has at least n distinct roots
which are not zeros of h.
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The following is an easy consequence of the well-known Borel’s
theorem, see e.g., [14, p. 116].

Lemma 5. Let po(2),p1(2),-..,pn(2) be n + 1 polynomials and
91(2),92(2), ... ,gn(2) be n + 1 nonconstant entire functions. If the
following identity holds:

Zpi(z)egi(z) = po(2),
i=1
then po(z) = 0.

Lemma 6. Let f(z) = p(z)EBQ(Z), where p(z),q(z) are nonconstant
polynomials. Then f(z) is pseudo-prime.

Proof. Assume that f = goh, where g is transcendental meromorphic
and h is transcendental entire. It is easy to derive that g has at most
one pole which h omits. If g has one pole, say a, then h = e¥(*) 4 ¢
and g(w) = (g1(w))/(w —a)™. If g1 has a zero, then f has infinitely
many zeros. If g; has no zero, then f has no zero. All these situations
are contradicting with the assumption. If g is entire, it follows that
goh = p(2)e®®) with g(w) = (w—b)"e® ™) and h(z) = pa(2)e®(*) +-b,
where ps is a nonconstant polynomial and ¢;, g2 are two nonconstant
entire functions. Thus we have

goh= pQ(Z)nenqz(Z)em(pz(Z)) _ p(z)eeq(z),
It follows from this that
(1) 1) = g1 (p2(2)e™®) + nga(z) + A,

where A is a constant. Noting the growth of e?(*), we conclude that
both ¢; and g9 are nonconstant polynomials, which is impossible by
Lemma 5. O

3. Proofs of Theorems 1, 2, 3 and 4.

Proof of Theorem 1. First of all, we note the simple fact that if a
nonlinear entire function g is permutable with the transcendental entire
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function f, then g must be transcendental itself. From fog = go f we
have

f'(9(2))g'(2) = ¢'(f(2)) £ (2)-

Now we prove either g = f” which leads to J(f) = J(g) or there exists
a transcendental entire function H such that H < f and H < g. Let a
be the zero of f’. Now we will discuss the following four cases.

Case 1. ¢’ has no zero. Thus, both of f’ and f'(g) have only one
zero. Hence

F'(2) = (z = )",

9(z) —a=(z —a)e",

where h(z) and k(z) are nonconstant entire functions, n a positive
integer. If f — a has no zero, then f(z) —a = ¢™*). Since f(2)
is pseudo-prime, m(z) must be a polynomial. By condition (B3), we
obtain m(z) = ¢z + d. Thus we have, from Theorem A, g = f™ and
J(f) = J(g). If f —a has only one zero, then f —a = (z —a)*e™ ) for
some integer k. If k = 1, then

F1(z) = (1+ (z — a)hf (2))e ).

This contradicts f/(a) = 0. If k > 2, noting that f/(z) = (z—a)* 1 (k+
(z — a)hi(2))e" ) and f'(z) has only one zero, it is derived that
k + (z — a)h|(z) has no zero, i.e., there an entire function I(z) such
that k + (z — a)h(2) = €'®). If hy(z) is a polynomial, it is easy to
see that k + (z — a)h{(z) has at least one zero (# a). If hi(z) is
a transcendental entire function with only finitely many zeros, then
there exist a polynomial p(z) and an entire function m(z) such that
k + p(z)em®) = €*) which is impossible by Lemma 5. Thus hy(2)
is transcendental entire such that k 4 (z — a)h/(2) = €!®) with b/ (2)
having infinitely many zeros, which, however, contradicts the condition
(B4).

If f — a has at least two zeros, by comparing the zeros on both sides
of (f—a)og = (g—a)o f, we obtain that f —a has infinitely many zeros
and all zeros of (f — a) o g are the zeros of f — a, which is impossible
according to Lemma 4.
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Case 2. ¢’ has one and only one zero, say b. Thus, we have
g/(Z) _ (Z _ b)mek(z),

where k(z) is nonconstant entire function and m a positive integer.
Hence

(9(2) — )"0 (5 — Bymek) = (f(2) — bmek ) (z — a)reh(@),

It follows that either both of f —b and g — a have only finitely many
zeros or they have infinitely many common zeros. If f —b and g — a
have infinitely many common zeros, then by Lemma 3, there exists a
transcendental entire function H(z), which depends on f and g only,
with H < f, H < g. If f —b and g — a have only finitely many zeros,
then there exist polynomials p, ¢ and entire functions k, h such that

—a
f(z) = b=q(2)e".

If g(z) is constant, we have g = f™ and J(f) = J(g) by the same
arguments as are used in Case 1. Thus, we only need to consider the
case that ¢(z) is a nonconstant polynomial. If a # b, then g(z) — b has
infinitely many zeros. It follows from the facts (f —b)og=(g—b)o f
and f — b has finitely many zeros that there exist a zero B of f —b and
a zero A of g — b such that f(z) — A and g(z) — B have infinitely many
common zeros. Hence, by Lemma 3, there exists a transcendental entire
function H(z) (which depends on f and g only) with H < f, H < g.

Now we discuss the case that ¢(z) is a nonconstant polynomial and
a = b. In this case, we have p(f)e*) = g(g)e"9). If q(2) has a zero
different from a, then we see easily that p(z) has a zero A # a which is
different from a, and a zero B of ¢(z) such that f(z) — A and g(z) — B
have infinitely many common zeros. Hence, by Lemma 3, there exists
a transcendental entire function H(z), which depends on f and g only,
with H < f, H < g. Thus combining the above analysis, we have

F(z) —a=(z—a)y +ieh),
m—i—lek(z)

g(z)—a=(z~a)

where n > 1 and h(z) is a nonconstant entire function such that
n+ 14 (2 — a)h/(z) has no zero. By the same arguments used in
Case 1, we will arrive at a contradiction by the condition (B4).
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Case 3. ¢’ has k > 2 distinct zeros. Noting f'(g)g’ = ¢'(f)f’, there
exists a zero b of ¢’ such that f(z) = b and g(z) = a have infinitely many
common roots. Hence, by Lemma 3, there exists a transcendental entire
function H(z), which depends on f and g only, with H < f, H < g.

Case 4. ¢’ has infinitely many zeros. By Lemma 4, for any N > n+2,
there exists a zero ay of ¢’ such that f(z) = ay and g(z) = a has

at least N common roots z1,z3,...,2y5y. Thus, by Lemma 2, there
exists an entire function H, which depends on f and g only, with
H < g, H < g. Moreover, among z1, 29, ... ,zy, there exist at least

m = [N/(n + 1)] distinct points at which H takes the same value. Since
N as well as m can be arbitrarily large, H must be transcendental.

Combining the above four cases, we have that either (A) g = f",
J(f) = J(g) or (B) there exists a transcendental entire function H
such that H < f, H < g. In case (A), we have proved the theorem.
In case (B), f = fio H and g = g1 o H for some f; and g; which
are analytic on the range of H. By Little Picard’s theorem, H can
omit at most one complex number. If the range of H is C — {c}
for some ¢ € C, then H = ¢ + ¢"*) for some entire function h and
f(z) = fi(c+ €Y) o h(z). Since f(z) is pseudo-prime, h(z) must be
a polynomial. By assumption (B3), h(z) must be linear. Thus, f
and hence f’ both are periodic functions. It follows that f’ has either
infinitely many or no zeros, which contradicts the assumption that f’
has only one zero. So the range of H is the whole C. This implies
that both f; and g; are entire. Since f is pseudo-prime and H is
transcendental, f; must be a polynomial. If the degree of f; is greater
than 1, noting f’ has only one zero and the range of H is the whole
complex plane, it follows that f; = (w—b)™ and H(z) = (z —a)"e*().
Hence f(z) = A(z — a)™m+De(m+DEE) o+ B By applying the same
arguments as above, we shall arrive at a contradiction by condition
(B4). Thus, f; is linear. Then by adopting the same arguments used
in the proof of Theorem C, we have that g = af™ + b, where a is a kth
root of unity and b € C. Hence J(f) = J(g) by Lemma 1. This also
completes the proof. i

Proof of Theorem 2. We first prove that either g = f™ and J(f) =
J(g) or there exists a transcendental entire function H such that H < f
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and H < g. If f' has only one zero, then we have done that in
the proof of Theorem 1. If f’ has at least two distinct zeros, then
f'(9)g = ¢ (f)f" implies that ¢'(f) has infinitely many zeros and ¢’
has at least one zero. If ¢’ has only finitely many zeros, it is derived that
there exist a zero A of ¢’ and a zero B of f’ such that f — A and g— B
has infinitely many common zeros. Hence there exists a transcendental
entire function H such that H < f and H < g. If ¢’ has infinitely many
zeros, it is derived that there exists a transcendental entire function H
such that H < f and H < g, by applying the same arguments as in
Case 4 above. The conclusion follows by applying similar arguments as
used in the proof of Theorem 1. a

Proof of Theorem 3. We first prove that there exists a transcendental
entire function i such that h < f and h < g. In this case, again note
that ¢ is transcendental and from fog = go f that

(2) F(9(2)g'(2) = g'(f(2)) f'(2).

Now we will discuss the following three cases.

Case 1. ¢'(f(2)) has only finitely many zeros. In this case, ¢’ has at
most one zero. Since f’ has at least two zeros and g is transcendental,
f'(g(2)) has infinitely many zeros. It follows that f’ has infinitely many
zeros. Thus, by Lemma 4, for any N € N, there exists a zero ay of
f/ such that g(z) —ay = 0 has at least N distinct roots which are not
zeros of f’ thus are zeros of ¢’(f(z)). This is a contradiction.

Case 2. ¢'(z) has only finitely many zeros, but ¢’(f(z)) has infinitely
many zeros. In this case, ¢’(z) has at least one zero. Let b be a zero of
g'. By comparing the zeros of the both sides of (2), we see that f(z)—b
and f’(g(z)) has infinitely many distinct common zeros, say {z, }nenN.
Note that f(z,) = b implies f(g(zn)) = 9(f(2n)) = g(b). Thus, for all

neN
{ fg(zn)) = 9(b),
f'(g(zn)) = 0.
By condition (C2), there exist a subsequence {z,x}7>, and a constant
B such that
{ g(an) =B,
f(an) =b.
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Thus, by Lemma 3, there is a transcendental entire function h such
that h < f, h < g.

Case 3. ¢’ has infinitely many zeros. If there exists a zero ay of ¢’
such that f(z) —ar = 0 and f’(g(z)) = 0 have infinitely many common
roots, i.e., there is a sequence of {z,},—1 such that

{ f(zn) = ag,
f'(9(zn)) = 0.

Noting f(g(zn)) = 9(f(2n)) = g(ax) and, by the same discussion as in
Case 2, one can conclude that there is a transcendental entire function
h such that h < f, h < g.

If, for any zero aj of ¢’, f(z) —ar = 0 and f'(g(z)) = 0 have only
finitely many common roots, then for ay, all (except finitely many)
zeros of f — ay are the zeros of ¢’. Thus, by Nevanlinna’s second
fundamental theorem, we have

27(r, f)

(3) ZW( ) +S(r, f) < _< ;) +S(r, f) +0(1)
T(r,g') +S(r, f)+ O(1) < T(r,g) + S(r, f) + S(r,g) + O(1).

It this case, for all (at most except 2) zeros by of f’, g(z) — by and
g'(f(2)) have infinitely many common zeros. Otherwise, there exist 3
zeros of f') say by, b, b3, such that all (except finitely many) zeros of
g — by, k =1,2,3, are the zeros of f’. Thus, by Nevanlinna’s second
fundamental theorem, we have

27(r, g)

kﬁ: ( = bk>+s(’f) N( f_) S(r,g)+0O(1)

<T(r, f')+ S(r,9)+ O) < T(r, )+ S(r, f)+ S(r, 9)+ O(1).

(4)

IA
IN

Combining (3) and (4), we obtain

T(r,f)+T(r,g) <S(r f)+S(r,9) + O(1),
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which is impossible. Now if, for some zero by of f' and some zero a,,
of ¢’, g— by and f — a,, have infinitely common zeros, then f — a,, and
1'(g(2)) have infinitely many common zeros, which contradicts with the
assumption. Thus, for some fixed by, there exist a sequence of zeros
{am}2_; of ¢’ and a sequence {z,,}5°_; such that

{f(zm)—am =0,
9(zm) — b = 0.

Thus we have

{g(am) =9(f(zm)) = f(9(zm)) = f(br),
g'(am) =0,

which contradicts the condition (C5). Combining the above three cases,
it can be concluded that there exists a transcendental entire function
h such that h < f and h < g. Noting that f is left-prime and not of
the form f = H o @), where H is a periodic function, ) a polynomial
and by arguing similarly as in the proof of Theorem 1, there exist
entire functions f; and g such that f = f; o h, ¢ = g1 o h. Moreover,
f1 must be linear as f is left-prime and h is transcendental. Hence,
h=f"ofandg=giofi'of=gsof where go = g1 o f; ', Since
g = g1 0 h, it follows that, for any constant ¢, g1(z) — ¢ and ¢/ (z)
have only finitely many common zeros. Otherwise, g(z) — ¢ and ¢'(2)
have infinitely many common roots, which is impossible according to
condition (C5). It is derived that g2(z) — ¢ and g5(z) have only finitely
many common zeros, for any complex number ¢. From fog = go f, we
have fogso f =go0 fo f. Noting that the ranges of f and h are the
same, which is the whole complex plane, we have fogs = gso f on C.
If go is nonlinear, then f, g2 satisfy the conditions in the theorem. By
repeating the same arguments, we can find an entire function g3 such
that go = g3 o f and g = g3 o f2. By using arguments similar to the
proof of Theorem C, we can derive that ¢ = af™ + b, where n is an
integer, a a kth root of unity and b € C. Hence J(f) = J(g).

Proof of Theorem 4. If p(z) has at least two distinct zeros, then
p(g9(2)) has infinitely many zeros. It follows from p(g(z))e®9(*) =
(9 —a)o f(z) that (g — a) o f(2) has infinitely many zeros. Thus there
exist a zero A of p(z) and a zero B of g — a such that f(z) — B and
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g(z) — A have infinitely many common zeros. Again by Lemma 3,
there exists a transcendental entire function h such that h < f and
h < g. If p(z) has only one zero, then f(z) = (z — b)"e®(®*) + a and
(g—b)"e9) = (g—a)o f. Now if g—a has at least two distinct zeros, by
applying the same arguments as above, we conclude that there exists
a transcendental entire function A such that h < f and h < g. If
g — a has only one zero, say c, then g(z) = (z — ¢)™e**) 4 a, where
k(z) is a nonconstant entire function. Thus, f o g = g o f implies that
(g —b)"e®9) = (f — )™ If b # a, then g(z) — b has infinitely
many zeros which are also the zeros of f(z) — c¢. Hence there exists
a transcendental entire function h such that h < f and h < g, by
Lemma 3. If ¢ # a, we will arrive at the same conclusion. If a = b = ¢,
then

(5) f(2) = (z = a)"e*™® +q,
(6) 9(z) = (z = a)"e"? +q,

where n > 1 and m > 1. If n > 2, this contradicts with the assumption.
If n = 1, then by the assumption, f’ has at least one and only finitely
many zeros, which are different from a (a Picard exceptional value of
9). Thus, f'(9)9’ = ¢'(f)f' implies that ¢'(f) has infinitely many zeros.
If ¢’ has only finitely many zeros, it is easy to derive that there exists
a transcendental entire function h such that h < f and h < g. If ¢
has infinitely many zeros, by applying arguments similar to that used
in Case 4 in the proof of Theorem 1, we can conclude that there exists
a transcendental entire function h such that h < f and h < g. The
last case is that g — a has no zero. It is derived that, if f is not of the
form (5), then there exists a transcendental entire function h such that
h < fand h <g. If fis of the form (5), then f’ has at least one zero
different from a, which will lead to the same conclusion. By combining
the above cases, we conclude that there exist a transcendental entire
function h and functions f; and g; which are analytic on the range
of h. Since h is transcendental entire, h omits at most a finite value.
If h omits a finite complex number ¢, then h(z) = ¢+ e**(*), where
a1(z) is a nonconstant entire function. Then G(w) = fi(c + €v) is
transcendental entire and periodic and f(z) = G o a1(z). Noting f is
pseudo-prime, a;(z) must be nonconstant polynomial. Thus G either
has infinitely many or no a-points at all, so does f. This contradict
with the hypothesis that f has finitely many a-points. Thus, the range
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of h is whole complex plane and fi, g; are entire. Noting that f is
pseudo-prime and h is transcendental, f; must be a polynomial. If
f1 — a has at least two distinct zeros, then f has infinitely many a-
points, a contradiction. Thus, f;(w) = A(w — ¢)¥ +a. If k > 2, it is
derived from p(z)e®®) = A(h(z) — ¢)* that h(z) = p1(2)e***) + ¢ and
p(z) = Apy(2)¥; this contradicts the assumption. Hence, f; is linear.
Repeating the arguments in the proof of Theorem C, one can conclude
that g(z) = a1 f™(2) + b1, where a; is a kth root of unity and b, € C,
and hence J(f) = J(g).

4. Corollaries.

Corollary 1. Let f be a transcendental entire function such that
f' has only one zero and f is prime in an entire sense. Let g be a
nonlinear entire function permutes with f, then g(z) = af™(z) + b,
where a is a kth root of unity and b € C. Hence J(f) = J(g).

Corollary 1 is an easy consequence of Theorem 1, and from it we have
the following generalization of Theorem A.

Corollary 2. If g is a nonlinear entire function permutable with
f(z) = (a12 + b1)e™* + by, (a1,a2,b1,b2 € C, ag # 0, a1,by are not
zero at the same time), then g(z) = af™(z) + b, where a is a kth root
of unity and b € C. Hence J(f) = J(g).

As an application of Theorem 1, we have

Corollary 3. Let f be a transcendental entire function of finite order
such that f' has only one zero and f is not of the form AeBPG—®" 1 C,
where A #0, B#0, n > 2. Let g be a nonlinear entire function which
permutes with f. Then g(z) = a1 f™(2) + b1, where a1 is a kth root of
unity and by € C. Hence J(f) = J(g).

Proof. First of all, it is known that if f is of finite order and f’ has
only one zero, then f is pseudo-prime. In order to apply Theorem 1, we
need to show that f satisfies the condition (B3). Otherwise, we have



1672 L. LIAO AND C.-C. YANG

f(z) = fi(¢(z)), where f; is periodic and ¢(z) is a polynomial with
degree > 2. Noting that f’ has only one zero and ¢’ has at least one
zero, we conclude immediately that f] has at most one zero. Since f]
is periodic, f] cannot have any zeros. It follows that f](w) = e®1®+b1,
From this it is easy to derive that ¢(z) = aa(z — a)™ + be. Thus
f(z) = fioq = AeB=2" L C. By the assumption, n can only be
equal to 1, and the conclusion follows immediately by Theorem A.
O

As an illustration of Corollary 3, we have

Corollary 4. If g is a nonlinear entire function permutable with the
function f:

1= [ maretas

where a € C and p(z) is a nonconstant polynomial and p(z) #
A(z — a)"™ + B, for any constants A, B, then g(z) = a1 f"(2) + b1,
where a1 is a kth root of unity and by € C. Hence J(f) = J(g).

The following result follows immediately from Theorem 4.

Corollary 5. Let f(z) = p(2)e?*)+a, where p, q are two nonconstant
polynomials, p(z) is not of the form py(2)™, where p1(z) is a polynomial,
n > 2 and a € C. If a nonlinear entire function g is permutable with f,
then g(z) = a1 f™(z) + b1, where a1 is a kth root of unity and by € C.
Hence J(f) = J(g).

By an application of Theorem 4 and Lemma 6, we have

Corollary 6. Let f(z) = p(z)eeq(z) +a, where p(z),q(z) are noncon-
stant polynomials, p(z) has at least two distinct zeros and is not of the
form p1(2)™, where p1(z) is a polynomial and n > 2, a € C. If nonlin-
ear entire function g is permutable with f, then g(z) = a1 f™(z) + by,
where a1 is a kth root of unity and by € C. Hence J(f) = J(g).
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