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QUADRIC, CUBIC AND QUARTIC CONES

ANATOLY B. KORCHAGIN AND DAVID A. WEINBERG

ABSTRACT. There are 2 irreducible quadric cones (real
and imaginary) required for obtaining the affine classification
of the 4 irreducible conic sections. According to Newton there
are 5 irreducible cubic cones required for obtaining his classifi-
cation of 59 irreducible cubic sections. In this historical survey
paper we show how it follows from Gudkov’s classification of
forms of real projective quartic curves that 1037 quartic cones
are required for obtaining a similar classification of irreducible
quartic sections. We also present the singular-isotopy classi-
fication of the unions of irreducible affine cubic curves with
their asymptotes, which consists of 99 classes. This classi-
fication sheds a new light on Newton’s famous classification
consisting of 78 species.

1. Conic sections. Menaechmus (ca. 350 B.C.) was the first to
describe a classification of real nonempty irreducible conic sections.
His approach was geometrical. He considered three kinds of cones:
acute, right and obtuse cones. For each of the cones, he drew a
plane perpendicular to a generator of the cone through a point of
the generator other than the vertex. For the acute, right and obtuse
cones, he obtained an ellipse, parabola and hyperbola, respectively. He
considered cones with one nappe, which are generated by a semi-line,
and thus his hyperbola only had one branch. If one considers a cone
generated by a line, then the cone of two nappes is obtained and the
second branch of the hyperbola appears. Usually one obtains ellipse,
parabola and hyperbola by intersecting one cone with various planes.

The next advance in the study of conic sections is connected with
the algebraization of the subject whereby a conic section is described
by an equation. Such an algebraization can be found in Conics by
Apollonius. For example, in the case of the parabola he proved that
for any point M lying on the parabola with vertex P the equation
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KM2 = 2 · LP · KP holds. If we denote the segments as KM = y,
LP = p, and KP = x then the equation can be written in the form
y2 = 2px, and the meaning of the segments becomes clear via this
notation.

The introduction of the Cartesian coordinate system and complex
numbers allowed a systematic algebraic approach to the classification
of cones and the classification of their plane sections based on an
exhaustive study of their equations. Now the sections become identified
with the solution sets of equations in two variables. These sections are
now called conic, cubic, quartic, quintic, . . . , curves, or curves of degree
two, three, four, five, . . . , respectively.

Two cones (two conic curves) are affine equivalent if there is an
invertible affine transformation of R3 (R2) that carries one cone onto
another (one conic curve onto another, respectively).

This equivalence relation leads to five standard forms of equations
of the quadric cones. If the polynomial in three variables that defines
such a cone is irreducible, then together with the real cone of two
nappes x2 + y2 − z2 = 0 the coordinate method suggests consideration
of an imaginary cone x2 + y2 + z2 = 0, whose real part consists only
of one point. If such a polynomial is reducible, then there are three
reducible cones: x2 + y2 = 0, which is the union of two imaginary
planes that intersect in a real line; x2 − y2 = 0, which is the union of
two intersecting real planes; and x2 = 0, which is a double real plane.
These five cones also represent the classification of the projective conic
curves: two irreducible and three reducible curves.

In the case of conic curves, the equivalence relation leads to nine
standard forms of equations. Note that we adhere to the traditional
projective point of view and consider only intersections of cones with
planes that do not pass through the vertex of the cones. Intersections
with irreducible cones give: ellipse x2 +y2−1 = 0, parabola y−x2 = 0,
hyperbola x2 − y2 − 1 = 0 and imaginary ellipse x2 + y2 + 1 =
0. Intersections with reducible cones give: two imaginary lines that
intersect in a real point x2 + y2 = 0, two imaginary parallel lines
x2 + 1 = 0, two real intersecting lines x2 − y2 = 0, two real parallel
lines x2 − 1 = 0 and a double line x2 = 0.
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2. Cubic sections. The introduction of the Cartesian coordinate
system in the early 17th century was one of the most dramatic events
in the history of mathematics. Even the classification of conic sections
was subject to a revision, as it found a new beauty in the form of
equations. Isaac Newton eagerly embraced the new coordinate method
and wrote his first manuscript on cubic curves in late 1667 (or early
1668) [33]. He returned to this subject again and again throughout his
life, obtaining at least three important classifications, consisting of 5,
59 and 78 equivalence classes.

His well-known classification containing 78 species (we call it the
78-classification) was completed in 1695 and published in 1704 in his
famous Enumeratio Linearum Tertii Ordinis [34] as an appendix to his
Treatise on Optics. In the 78-classification Newton takes into account
cubic curves together with their asymptotes and diameters. He shows
that the general equation of an irreducible cubic curve can be written
in one of the following canonical forms:

xy2 + ey = ax3 + bx2 + cx + d, xy = ax3 + bx2 + cx + d,

y2 = ax3 + bx2 + cx + d, y = ax3 + bx2 + cx + d

and divides these four classes into 14 genera and 78 species. In [34]
Newton described 72 of 78 species. Later six more species were added
to the 78-classification: four species by James Stirling [39] depicted in
Figure 1 and two by François Nicole [36] depicted in Figure 2 (we
continue Newton’s enumeration of species). Species 73 and 74 are
the eleventh and twelve ones in the genus of monodiametral redundant
hyperbolas1, species 75 and 76 are the third and fourth ones in the
genus of tridiametral redundant hyperbolas, species 77 and 78 are the
fifth and sixth ones in the genus of monodiametral parabolic hyperbolas.

The union of curves in Figure 1 and Figure 2 with Newton’s curves
in Figures 1 77 from Enumeratio provides all pictures for the 78-
classification. The 78-classification is the deepest account and contains
practically all information about real cubic curves. We refer the reader
to the classic survey of Ball [2] on this subject and to the remarkable
introductions and footnotes of Whiteside, editor of The Mathematical
Papers of Isaac Newton [33 35]3.
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FIGURE 1.

From a modern perspective, the underlying problem with the coor-
dinate method is that while the group of affine transformations of R2

(projective transformations of RP 2) is big enough to give a finite clas-
sification of affine (projective, respectively) conics, these groups are too
small to give a finite classification of curves of degree three or higher.
Under these groups, the equivalence classes seem to fall into a finite
number of families, each of which contains cubic curves having the
same “form”.

For the equivalence relation determined by the group of invertible
affine transformations, it is a very elegant result that there are a finite

FIGURE 2.
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number of affine classes of conic curves. To obtain a finite classification
of curves of degree three or higher, it is necessary to consider a new
equivalence relation. Such an equivalence relation was intuitively clear
to Newton and his contemporaries. We would like to provide a number
of precise definitions in modern terms that lead to finite classifications
of cubic and quartic curves.

Let X denote the real affine plane R2, or the real projective plane
RP 2. Two curves C0 and C1 in X are called topologically equivalent if
there exists a homeomorphism of X that carries the pair (X, C0) onto
the pair (X, C1).

Two curves C0 and C1 in X are called isotopy equivalent if there
exists a homeomorphism of X isotopic to the identity that carries the
pair (X, C0) onto the pair (X, C1)4.

These two definitions have been the foundation of classifications of
nonsingular algebraic curves. But their application to singular curves
leads to only a coarse treatment of singular points; for example, in
the case of cubic curves, the curves y = x3 and y2 = x3 are isotopy
equivalent in R2 and moreover are isotopy equivalent to a triple line,
say x3 = 0. To obtain a more detailed classification, we shall require
that the isotopy preserve the singularities of a curve.

Two curves C0 and C1 without multiple components in X are called
singular-isotopy equivalent if they are 1) isotopy equivalent and 2) the
isotopy ϕt connecting C0 and C1 preserves the real singularities for
each curve Ct, where t ∈ [0, 1] or, in other words, if, for each singular
point, the restriction of ϕt|U to a small neighborhood U of the point is
a diffeomorphism.

If one wishes to classify a set of curves having only zero-modal
singularities, then this definition leads to a finite number of singular-
isotopy classes. Note that cubic curves without multiple components,
irreducible quartic curves, and unions of irreducible affine cubic curves
with their real asymptotes are examples of such sets of curves.

It is clear that isotopy equivalence follows from singular-isotopy
equivalence, and that topological equivalence follows from isotopy
equivalence, and that all three classifications of nonsingular curves co-
incide. In this sense, the singular-isotopy classification is situated be-
tween the affine and isotopy classifications. For irreducible affine conic
curves, the affine, topological, isotopy and singular-isotopy classifica-
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tions coincide. For all affine conic curves, the topological and isotopy
classifications coincide and contain 6 classes. It is easy to show that
1) the isotopy classification of all affine cubic curves contains 21 classes
[41] and 2) the isotopy classification of projective cubic curves contains
8 classes [30].

The notion of singular-isotopy equivalence lends a precise meaning
to Newton’s classification of irreducible cubic cones, containing five
singular-isotopy classes, and to his particular classification of irre-
ducible cubic curves that contains 59 singular-isotopy classes [35].

Although the 78-classification is very impressive, the elegance af-
forded to the affine classification of conics by the coordinate method is
unfortunately lost when applied to the cubic curves. It is cumbersome
in the sense of requiring a large number of calculations with regard to
the equations. These calculations are not exhibited in the Enumeratio,
but anyone wishing to understand and check this classification must do
all these calculations. We think that at the end of his investigations,
Newton realized that elegance could be restored by returning to the
geometric idea of ancient times.

The coordinate method gives rise to curves as geometrical interpreta-
tions of equations. On the other hand, homogenization of the equations
gives rise to cones. The latter phenomenon allowed Newton to classify
cones of degree three and to use them as the basis of a geometrical
classification of cubic sections.

It was Newton’s remarkable observation that all irreducible cubic
curves can be obtained from plane sections of five cubic cones. He
expressed this on at least two occasions: “And just as the circle
by projecting its shadow generates all conics, so the five divergent
parabolas by their shadows generate and exhibit all other curves of
second kind . . . , ” ([34, p. 635]), and “ . . . In this way the ancients
derived from the circle all figures of the second order and thence named
them conic sections . . . . So, too, all figures of higher orders can be
derived from certain simpler figures of the same order by means of
successive projections . . . . On this principle there is but a single class
of lines of second order, in that all may be derived from the circle; but
of the third order there are five kinds,” ([35, pp. 411, 413]).
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Felix Klein made the following remark about this in 1893: “His
[Newton’s] Enumeratio Linearum Tertii Ordinis shows that he had
a very clear conception of projective geometry; for he says that all
curves of the third order can be derived by central projection from five
fundamental types,” [29, p. 25].

There are five singular-isotopy classes of irreducible projective cubics,
which essentially coincide with Newton’s five cubic cones. Starting
from this point, we will not distinguish between cones with vertex at
the origin in R3 and projective curves in RP 2. We would like to stress
that Newton considered only irreducible cubics. There are perhaps two
reasons for this. First, a reducible cubic cone is simply a union of cones
of lower degrees. Second, reducible cones can lead to an undesirable
confusion of types; for example, the irreducible cone y2z = x3 is isotopy
equivalent to the reducible cone x3 = 0 in RP 2.

The first rigorous proofs that there are only five singular-isotopy
classes of irreducible cubic cones were attributed to Nicole and Clairaut,
December of 1731. However, there is evidence in the final Geometriæ
Libri Duo that Newton had such a proof because all of the important
ingredients are contained in his general equation y2 =(1/m)x3+n(x+a),
written in modern terms by Whiteside [35, p. 413]. The absence of the
y3-, xy2-, and x2y-terms in the equation means that Newton chooses
an inflection point of the curve at infinity such that the line at infinity
is tangent to the curve at this point and the y-axis passes through this
inflection point. He eliminates the xy- and y-terms for the purpose of
symmetry. From this equation Newton describes the five families of
cubic cones by selecting appropriate values of the parameters m and n.
We exhibit representatives of the five classes in Figures 3 7.

The Newton five cubic cone classification is the foundation for the
singular-isotopy classification of cubic curves. In the final Geometriæ
Libri Duo [35] Newton describes all 59 singular-isotopy classes (59-
classification) of cubic curves obtained from the five types of cubic
cones. In the 1690’s he arrived at the idea of the superiority of the
methods of the ancient Greeks. With the renewed inspiration of these
methods and possessing a thorough familiarity of the cubic curves, he
created this new classification in 1693 in unpublished work [33]. This
new classification, born of ancient conceptions, had a simple elegance
that turned out to be much closer in spirit to ideas that emerged in the
20th century. For each of the five types shown in Figures 3 7 Newton
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FIGURE 3.

enumerates all positions of lines that can be regarded as the line at
infinity and giving rise to different singular-isotopy classes of cubic
curves. The positions of these lines are shown in Figures 3 7. Each
set of cubic curves generated from one of the five cones Newton calls
a Genere (we save the Latin term). Thus, there are five Genera in
the 59-classification which contain 9, 14, 12, 9 and 15 singular-isotopy
classes, respectively [35]. Following Newton’s enumeration, we exhibit
representatives of the 59 classes in Figures 8 12, where we show in
parentheses the species numbers for the 78-classification. We also show
both linear and parabolic asymptotes5.

FIGURE 4.
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FIGURE 5. FIGURE 6.

3. Quartic sections. We have seen so far that in the case of conic
sections two irreducible cones generate the ellipse, parabola, hyperbola
and imaginary ellipse. In the case of degree three Newton created a new
scheme of classification, which we have identified as being based on the
singular-isotopy equivalence relation. In this scheme five cubic cones
generate all 59 singular-isotopy classes of irreducible affine cubic curves.
In this section we would like to address the question of how many
quartic cones are required for obtaining an analogous classification of
irreducible quartic curves.

FIGURE 7.
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FIGURE 8. The Primo Genere of Newton’s 59-classification.

In [31] we proved that the isotopy classification 1) of irreducible
projective quartic curves contains 42 classes, 2) of all projective quartic
curves contains 66 classes, 3) of affine quartic curves contains 647
classes, and that 4) the topological classification of pairs (R2, quartic
curve) contains 516 classes.

Irreducible quartic curves can have only the following singular points
[11, 12, 25]:

A1, A∗
1, A2, A3, A∗

3, A4, A5, A∗
5, A6, D4, D∗

4 , D5, E6, 2Aim
1 , 2Aim

2 .

The names of these singular points follow Arnold’s notation for singu-
larities [1] and Gudkov’s special convention [4]: 1) if there is no asterisk
in the notation of a point, then the point is real and all branches cen-
tered in it are real, 2) if there is an asterisk, then the point is real and
two branches centered in this point are complex conjugate, 3) if there
is an upper index im, then the point is complex (imaginary), 4) an
integer factor before a letter denotes the number of such points.
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FIGURE 9. The Secundo Genere of Newton’s 59-classification.
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FIGURE 10. The Tertio Genere of Newton’s 59-classification.

Notice that a new phenomenon has appeared for quartic curves:
complex singular points. Now we should distinguish between curves
with and without complex singular points. Singular-isotopy equivalence
does not take them into account. If one would like to take imaginary
singular points into account together with the real part of the curve,
then one can use the following definition.

Two curves C0 and C1 are called algebraic-isotopy equivalent if they
are 1) singular-isotopy equivalent and 2) the isotopy ϕt connecting C0

and C1 preserves the imaginary singularities for each curve Ct, where
t ∈ [0, 1].
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FIGURE 11. The Quarto Genere of Newton’s 59-classification.

If a curve doesn’t have imaginary singular points, then its singular-
isotopy and algebraic-isotopy classes are the same. In particular, the
singular-isotopy and algebraic-isotopy classifications of cubic curves
coincide because such curves don’t have imaginary singular points. This
definition provides a finite number of algebraic-isotopy classes of cubic
curves without multiple components and irreducible quartic curves with
both real and imaginary singular points because each singular-isotopy
class of these curves contains no more than three algebraic-isotopy
classes (there are three possible cases: the set of imaginary singular
points is either empty, or consists of {2Aim

1 }, or {2Aim
2 }). It is clear that

singular-isotopy equivalence follows from algebraic-isotopy equivalence.
In this sense the algebraic-isotopy classification is situated between the
affine and singular-isotopy classifications.
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FIGURE 12. The Quinto Genere of Newton’s 59-classification.

The singular-isotopy classification of irreducible projective quartic
curves without complex singular points contains 99 classes and was
proved in [25]. The additional 18 algebraic-isotopy classes of irreducible
quartic curves with complex conjugate singular points were studied
in [19, 20]. Thus, the algebraic-isotopy classification of irreducible
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projective quartic curves (117-classification) contains 117 classes. We
will continue this discussion in Section 3.1.

The spirit of Newton’s approach to the classification of affine cubic
curves is to obtain a finite classification that closely follows the affine
classification. The famous 78-classification of Newton [34] is close to
the singular-isotopy classification of unions of cubic curves with their
real asymptotes, see the Appendix. His other 59-classification [35]
follows the ancient idea of obtaining affine cubics as sections of cubic
cones. Both classifications take into account singular and real inflection
points and the behavior of the curve at infinity.

In 1981 90, Gudkov and his students obtained the so-called classi-
fication of forms of irreducible projective quartic curves, which takes
into account the location of singular, real inflection and planar (stan-
dard local equation y = x4) points. Gudkov improved the definition of
the form of a quartic curve several times [5, 12, 19, 20]. Based on his
ideas, we will give one more improvement of the definition of the form
of a quartic curve.

Let A be the set of real points of an irreducible quartic curve.
Let {P1, . . . , Pk} be the set which is the union of the set of real
nonisolated singular points and the set of inflection and planar points
of the curve A. Let {Q1, . . . , Ql} be the set of isolated singular points
of the curve. Let A1, . . . , Am be the connected components of the
set A \ [(∪k

i=1Pi) ∪ (∪l
i=1Qi)]. It is clear that each component Ai is

homeomorphic to either an open interval or a circle. Let B1, . . . , Bn

be the connected components of the set P 2 \ [(∪k
i=1Pi) ∪ (∪m

i=1Ai)].
It is clear that each component Bj is homeomorphic to an open disk,
perhaps with holes (the number of holes can be zero). Let Ai ⊆ ∂Bj .
The component Ai is called convex with respect to Bj if for any point
R ∈ Ai, there exists a circular neighborhood U of R in RP 2 such
that, for any two points R1, R2 ∈ U ∪Ai, the open straight line interval
R1R2 ⊂ U belongs to Bj ; otherwise, the component Ai is called concave
with respect to Bj .

Two real projective curves C0 and C1 are said to represent the same
form if they are 1) algebraic-isotopy equivalent, 2) the isotopy ϕt

connecting C0 and C1 preserves the set of inflection and planar points
for each curve Ct where t ∈ [0, 1] and 3) the isotopy ϕt connecting C0

and C1 preserves the convexity or concavity of arcs of the curves with
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respect to corresponding components. The equivalence class in this
case is called a form of the curve.

It is clear that the number of forms of irreducible quartic curves is
finite because, as it follows from Klein’s formula [27], the number τ
of inflection points and the number π of planar points of a quartic
curve satisfy the inequality τ + 2π ≤ 8. It is clear that singular-
isotopy equivalence follows from equivalence of forms, and that the
classification of forms is situated between the affine and algebraic-
isotopy classifications.

Note that a) according to Klein’s formula [27], a cubic curve has
at most three real inflection points, and b) these inflection points are
collinear. These two facts provide requirement 2) in the previous defini-
tion of forms. Thus, for affine and projective cubic curves the singular-
isotopy, algebraic-isotopy (no imaginary points) and classification of
forms coincide and, in particular, the 59-classification becomes the clas-
sification of forms of affine cubic curves.

Note that a) according to Harnack’s theorem [26], a projective quartic
curve can have at most four connected components, b) according to the
Klein-Viro formula [27, 40] the maximum number of real inflection
points a quartic curve can have is eight and c) a planar point can
dissipate into two inflection points (real or imaginary).

The idea and spirit of the research on real quartic curves is due to
Gudkov. This research naturally falls into three big parts which we
describe in the following Sections 3.1 3.3.

3.1 Classification of coarse forms. In [11, 12] and [13 19], they
considered the arrangement of the real inflection points of an irreducible
quartic curve when the inflection points are in general position, i.e.,
these points do not coincide with each other (no planar points) and do
not coincide with singular points (no inflection points at a center of a
real branch at a singular point of the curve). Later in papers [6 10],
Gudkov called the forms of such curves coarse forms (or rough forms).
They proved that the 117 algebraic-isotopy classes of irreducible quartic
curves with inflection points in general position have 384 coarse forms
(= 349 forms with only real singular points + 35 forms with complex
ones [21])6.



QUADRIC, CUBIC AND QUARTIC CONES 1643

The classification of coarse forms of projective quartic curves was
given in [11, 12, 13 15].

3.2 Classification of special forms. In papers [6 10] and [21],
Gudkov completed the classification of the so-called special forms of
irreducible quartic curves. This involves the case when the inflection
points of a quartic curve are not in general position, i.e., either 1) two
inflection points coincide to form a planar point (in Gudkov’s nota-
tion Π), or 2) one real branch of an ordinary double point has an
inflection point at its center (in Gudkov’s notation A1

1) or 3) each of
two real branches at an ordinary double point has an inflection point
at its center (in Gudkov’s notation A2

1).

The scheme of the proof of the classification of forms is the following.

1) It follows from the 117-classification that there are 47 sets of
singular points that an irreducible projective quartic curve can have,
39 sets of which have only real singular points [25] and 8 sets have
the imaginary ones [21] (see the Table below). Each of the 47 sets has
representative curves in the 117-classification.

2) Denote the sum of the Milnor numbers of the singular points of a
curve as μ (the Milnor number of a curve). One can check that there
are seven values 0, 1, . . . , 6 for μ; and Gudkov divided the curves from
the 117-classification into seven divisions with respect to their Milnor
numbers.

3) For each curve from the 117-classification, he calculates the class
m∗ and the number w of inflection points of the curve using Plücker’s
formulas

m∗ = m(m − 1) −
p∑

j=1

κ(zj) and w = 3m(m − 2) −
p∑

j=1

h(zj),

where m is the degree of the curve, m∗ is the class of the curve,
z1, . . . , zp is the collection of all its singular points, κ(zj) is the class
of the singular point zj and h(zj) is its Hess (the multiplicity of the
intersection of the curve with its Hessian at the point zj [11]).
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4) Using the Klein-Viro formula [40]

m −
∑

P1

[Ord (P1) − 1] −
∑

P2

Ord (P2)

= m∗ −
∑

P1

[Ord∗(P1) − 1] −
∑

P3

Ord∗(P3),

where the first and third sums run over all branches P1 with real centers
and real tangent lines, the second sum runs over all branches P2 with
real centers and imaginary tangent lines, the fourth sum runs over all
branches P3 with imaginary centers and real tangent lines, Ord (P ) is
the order of the branch P and Ord∗(P ) is the order of the dual branch,
he calculates for each curve the invariant

I = τ + 2t = m∗ − 4 +
∑

P1

[Ord (P1) − 1] +
∑

P2

Ord (P2),

where τ is the number of real inflection points and t is the number
of isolated double tangent lines of the curve. For quartic curves this
invariant has a maximum value of 8. Thus, the number of nonnegative
integer solutions of the equation

τ + 2t = I,

for τ and t is no more than 5.

5) For each curve of the 117-classification and for each solution of
the equation τ + 2t = I, he enumerates the admissible forms with all
possible arrangements of inflection and planar points.

6) Finally, Gudkov either constructs a projective quartic curve having
the same form or proves that such a form does not contain a quartic
curve.

7) Gudkov’s construction of projective quartic forms is based on
Shustin’s inequality

p∑

j=1

b(zj) ≤ 11,

where now z1, . . . , zp is the collection of planar and singular points
of the curve and b(zj) is Brusotti number of zj [38]. In particular,
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b(Π) = 3, b(Ak) = b(A∗
k) = k−1, b(A1

1) = 4, b(A2
1) = 6, b(Dk) =

b(D∗
k) = k−1, b(E6) = 5.

Gudkov’s classification of forms begins with the enumeration of the
sets of singular points that a projective quartic curve can have. He enu-
merates all such sets and then applies the Klein-Viro formula [27, 40],
Shustin’s inequality [38] and Plücker’s formulas to calculate the possi-
ble numbers of inflection points and double tangent lines of a quartic
curve with a fixed set of singular points. Shustin’s inequality describes
the condition that allows one to perturb independently the singular
points of an irreducible algebraic curve. Gudkov used Shustin’s in-
equality for the construction of quartic curves. Without this inequality,
the construction would be much more complicated.

This classification of special forms of irreducible quartic curves con-
tains 653 forms (= 629 forms with only real singular points + 24 forms
with complex ones [21]). As an auxiliary result of his method, Gudkov
in [6 10] rederived the classification of coarse forms and corrected mis-
takes that were made in [11 19]. Thus the total number of all forms
of irreducible projective quartic curves is 1037 forms (= 653 special +
384 coarse forms).

This is the fourth number in the sequence a1 = 1, a2 = 2, a3 = 5,
a4 = 1037, . . . , giving the number of irreducible cones that are required
for obtaining all cone sections for degree d = 1, 2, 3, 4, . . . , respectively.
Now we have the answer to the question posed at the beginning of
this section. In retrospect, there is a thread of history that connects
Menaechmus and Apollonius of ancient Greece to Newton and to
Gudkov. On the most superficial level, there is an intriguing sequence
of numbers the number of cones required for each degree. The deep
part is what is behind the numbers; the ultimate view of structure and
beauty is contained in the proofs.

As a supplementary result of his method, Gudkov supplied each
form of quartic curve with the so-called singular lines, if any. A real
projective line is called a singular line with respect to a quartic curve
or simply a singular line if either 1) the line is tangent to the quartic
curve at two distinct real points lying on the same complete real branch
of the quartic curve (double tangent line), or 2) the line is tangent
to the quartic curve at two complex-conjugate points (double isolated
tangent line), or 3) the line is tangent to the quartic curve at a planar
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point, or 4) the line is tangent to a real quadratic branch at a singular
point, or 5) the line is tangent to a real cubic branch at a singular
point, or 6) the line passes through two singular points of the quartic
curve, or 7) the line is a double tangent at a singular point of the
quartic curve. These lines in Gudkov’s classification of forms play a
role which is methodologically analogous to the asymptotes in Newton’s
78-classification.

To summarize the exposition on Gudkov’s classification, we present a
table where μ is the Milnor number of a curve f , Sing (f) is the set of
singular points of the curve f , T is the number of types from the 117-
classification with the set of singular points Sing (f), S is the number
of special forms, C is the number of coarse forms.

Note that in [6] and [7], Gudkov calculated and included the numbers
of types and the numbers of special and coarse forms in statements of
his theorems. In [8 10], there are no numbers of special and coarse
forms; in some theorems, he lists pictures of forms, in some of them, he
presents pictures of the main special forms and restricts his explanation
to the phrase: “ . . . and there exist the special and coarse forms that
can be obtained by means of formal deformations of the special forms.”
We counted that there are 653 special and 384 coarse forms in [6 10]
and [21]7.

3.3 Stratification of the space of quartic curves. In [22 24]
Gudkov and Polotovskii proved that the set of projective quartic
curves of the same algebraic-topological type represents one stratum
(connected component) in the space RP 14 of all quartic curves. There
are two definitions of the algebraic-topological type given in [23] and
[24]: one for irreducible and another for reducible quartic curves. We
cite both of them. They use the following notation. If RP 14 denotes
the space of all quartic curves and A ∈ RP 14, then they denote as
RA ⊂ RP 2 the set of real points of the curve A.

“We say that two irreducible curves A, B ∈ RP 14 have the same
(algebraic-topological) type if 1) the curves A and B have the same
collections of singular points, 2) there exists a diffeomorphism d :
RP 2 → RP 2 such that d(RA) = RB, and the diffeomorphism d carries
the (real) singular points of the curve A onto the singular points of the
same type of the curve B” [23].
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TABLE. Gudkov’s classification of forms of projective quartic curves.

No. µ Sing (f) T S C Theorem

1 6 3A2 1 0 1 10 [6]

2 6 A6 1 0 1 11 [6]

3 6 A2 � A4 1 0 1 12 [6]

4 6 E6 1 1 2 13 [6]

5 6 A2 � 2Aim
2 1 0 1 1 [21]

6 5 A1 � 2A2 2 1 3 14 [6]

7 5 A∗
1 � 2A2 1 0 1 15 [6]

8 5 A2 � A∗
3 1 0 1 16 [6]

9 5 A2 � A3 2 0 2 17 [6]

10 5 A1 � A4 1 1 2 18 [6]

11 5 A∗
1 � A4 1 1 2 19 [6]

12 5 A5 2 1 3 20 [6]

13 5 A∗
5 2 1 3 21 [6]

14 5 D5 2 1 3 22 [6]

15 5 A1 � 2Aim
2 1 0 1 2 [21]

16 5 A∗
1 � 2Aim

2 2 1 3 3 [21]

17 4 D4 2 1 3 23 [6]

18 4 D∗
4 1 3 3 24 [6]

19 4 A1 � A∗
3 1 2 2 25 [6]

20 4 A∗
1 � A∗

3 2 3 4 26 [6]

21 4 A∗
1 � A3 2 1 3 27 [6]

22 4 A1 � A3 4 4 7 28 [6]

23 4 2A∗
1 � A2 1 1 2 29 [6]

24 4 A1 � A∗
1 � A2 1 5 4 30 [6]

25 4 2A1 � A2 3 5 7 31 [6]

26 4 2A2 3 2 5 32 [6]

27 4 A4 2 3 5 33 [6]

28 4 2Aim
2 3 2 5 4 [21]

29 4 2Aim
1 � A2 2 1 3 5 [21]

30 3 3A∗
1 2 6 5 1 [7]

31 3 A1 � 2A∗
1 1 12 6 2 [7]



1648 A.B. KORCHAGIN AND D.A. WEINBERG

TABLE. (Continued).

32 3 2A1 � A∗
1 2 17 9 3 [7]

33 3 3A1 5 10 12 4 [7]

34 3 A∗
1 � A2 2 10 8 5 [7]

35 3 A1 � A2 4 23 15 6 [7]

36 3 A∗
3 3 8 8 7 [7]

37 3 A3 6 11 14 8 [7]

38 3 A1 � 2Aim
1 2 3 4 6 [21]

39 3 A∗
1 � 2Aim

1 3 6 7 7 [21]

40 2 2A∗
1 3 31 14 8, 9 [8]

41 2 A1 � A∗
1 3 62 22 11,13,14 [8]

42 2 2A1 7 65 32 16 22 [8]

43 2 A2 4 29 19 24,26 28 [8]

No. µ Sing (f) T S C Theorem

44 2 2Aim
1 4 11 11 8 [21]

45 1 A∗
1 5 74 30 2 6 [9]

46 1 A1 6 124 43 8 13 [9]

47 0 ∅ 6 110 42 1 6 [10]

Total 117 653 384

“We say that two reducible (real projective plane) quartic curves A
and B have the same (algebraic-topological) type if 1) the curves A
and B have irreducible (over C) components of the same degree and
multiplicity, 2) the number of pairs of imaginary complex-conjugate
irreducible components of the curves A and B is the same, 3) the
curves A and B have the same collections of isolated singular points

FIGURE 13.
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FIGURE 14.

(including imaginary singular points), 4) there exists a homeomorphism
γ : RP 2 → RP 2 such that γ(RA) = RB, and the irreducible
components of the curves A and B, which correspond to each other
under the homeomorphism γ, have the same multiplicity” [24].

One can check that the definition of the algebraic-topological type
and our definition of algebraic-isotopy equivalence, both applied to
irreducible quartic curves, produce the same equvalence classes. We
already counted that there are 117 such algebraic-topological classes.
In [24] Gudkov and Polotovskii proved that there are 95 algebraic-
topological types8 of reducible quartic curves. Thus, there are 212
strata in the space RP 14 of quartic curves. By the way, they proved in
[24] that the set of projective conic (cubic) curves of the same algebraic-
topological type represents one stratum in the space RP 5 (RP 9) of all
conic (cubic, respectively) curves. There are 5 and 15 strata of them,
respectively.

Note that Bruce and Giblin [3] proved that the stratification of the
space CP 14 of all complex projective quartic curves consists of 54
strata, of which 20 correspond to irreducible curves, 26 to reducible
curves with no multiple components and 8 to curves with multiple com-
ponents. Also note that if we rewrite mutatis mutandis the definition
of singular-isotopy equivalence for quartic curves, then it follows from
their work, there are 20 singular-isotopy classes of irreducible complex
projective quartic curves.



1650 A.B. KORCHAGIN AND D.A. WEINBERG

According to V.A. Rokhlin’s remark (item 4.1 in [37]), the fact that
each isotopy class of projective nonsingular quartic curves represents
one stratum was known to Klein [28, p. 112]. Rokhlin found an example
of two projective nonsingular quintic curves that represent the same
isotopy class but belong to distinct strata in the space RP 20 of quintic
curves, see item 3 in [37].

We hope the reader shares our sense of wonder over how a point
of light shining in Ancient Greece has illuminated the development of
ideas about equations, curves and cones in the 17th and 20th centuries.
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Appendix

In this section we present the singular-isotopy classification of unions
of irreducible affine cubic curves with their asymptotes. This classi-
fication is the natural extension of Newton’s 78-classification. With
respect to this singular-isotopy classification, there are three sorts of
species to consider.

1. Species 37 and 38 represent the same singular-isotopy class.

2. Each of the following 67 species represents a single singular isotopy
class, all of which are distinct: 2, 3, 6, 8, 11, 12, 15 19, 21 36, 39 78.

3. Each of species 1, 4, 5, 7, 9, 10, 13, 14, and 20 represents more
than one singular-isotopy class.

We now consider the third case in detail. Let us recall Newton’s def-
initions of various components of cubic curves. He writes: “I call a
branch hyperbolic which infinitely approaches some asymptote, . . . ”
([35, p. 593]). And “ . . . we shall call a hyperbola . . . circumscribed
when it cuts the asymptotes and embraces the parts cut off in its fold,
double-kinded when it is inscribed in one of its infinite branches and
circumscribed in the other, . . . , conchoidal when it is applied along the
asymptote with a concave vertex and divergent branches, snaky when
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it cuts its asymptote with an inflection and is extended either way in
opposing branches, . . . .” ([35, pp. 597 and 599]).

It remains to answer the following questions. First, does the circum-
scribed hyperbola in species 1, 4, 5, 10, 13, and 14 (see Figures 12.5.15,
10.3.12, 11.4.9, 12.5.10, 10.3.8, 11.4.6 in this paper or Figures 1 (or 2),
7, 8, 17, 20, and 209 in [34], respectively), or the double-kinded hyper-
bola in species 7 (see Figure 9.2.11 in this paper or Figure 9 (or 10) in
[34]), or the conchoidal hyperbola in species 20 (see Figure 12.5.4 in
this paper or Figure 27 in [34]) intersect two sides, pass through the
vertex or fail to intersect the sides of the triangle whose sides are seg-
ments of the asymptotes? We enumerate the singular-isotopy classes
in a manner that corresponds to Newton’s enumeration of species in
the 78-classification as follows: 1.i, 4.i, 5.i, 7.i, 10.i, 13.i, 14.i, and 20.i
where i = 1, 2, 3 refers to ‘intersects two sides’, ‘passes through the
vertex’, and ‘does not intersect the sides’, respectively. And second,
can the snaky hyperbola in species 9 be placed as shown in Figure 14?

Note that Newton considers a similar question: he distinguishes
species 26, when the snaky hyperbola does not pass through the triple
point of intersection of asymptotes, from species 27, when it does.

Theorem. The singular-isotopy classes of species 1.i, 4.i, 5.i,
7.i, 10.i, 13.i, 14.i, and 20.i where i = 1, 2, 3 and species 9.i where
i = 1, . . . , 7 are realizable by cubic curves.

Proof. 1) Choose a point A on the nonoval component of the projec-
tive cubic X depicted in Figure 7 such that the point A is different from
an inflection point of X. Draw two tangent lines through the point A
that are tangent to the nonoval component, say at points B and C.
Draw the line BC and denote the third point of intersection of the line
BC and curve X as D. If D happens to be an inflection point of X,
then choose, in a small enough neighborhood (in X) of point A, another
point and repeat the construction one more time to obtain D, which
is not an inflection point of X. Draw the tangent line to the curve X
passing through the point D. Let the line BCD be the line at infinity
for the affine plane R2 = RP 2 \ BCD. The tangent lines to the curve
X at points B, C, and D become the asymptotes of the cubic curve
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X in R2. It is easy to see that the curve together with its asymptotes
realize the species 1.2.

If U is a small enough circular neighborhood (in R2) of A, then the
set U \X consists of two connected components one of which is convex
and the other nonconvex. If we choose a new point A in the convex
(nonconvex) component and repeat the previous construction, then we
obtain species 1.1 (and 1.3, respectively).

2) The species 4.1-3, 5.1-3, 7.1-3, 9.1-7, and 20.1-3 are constructed in
a similar way from the projective cubic curves depicted in Figures 5, 6,
4, 7, and 7, respectively.

3) The projective curve X with the equation xy2 = −(x + z)(x +
2z)(x + 3z) looks in the affine chart {z = 1} like the curve 5.2(39)
depicted in Figure 12 and has an inflection point D = (0 : 1 : 0). The
curve X is invariant with respect to the involution α : RP 2 → RP 2,
α(x : y : z) = (x : (−y) : z). Draw two tangent lines from the point
A = (−1 : 0 : 1) ∈ X to the nonoval component of X and denote
the points of tangency as B and C. One can see that α(A) = A and
α(B) = C, and then the line BC (parallel to the axis {x = 0} in the
affine chart {z = 1}) passes through the point D (in RP 2). Let the
line BCD be the line at infinity for the affine plane R2 = RP 2 \BCD.
The tangent lines at points B, C, and D become the asymptotes of the
cubic curve X in R2. It is easy to see that the curve together with its
asymptotes realize the species 10.2.

If we choose a new point A in the interval (−1,−1 + ε) (or in
(−1− ε,−1)) of the axis {y = 0} in the affine chart {z = 1}, where ε is
a small enough positive number, and repeat the previous construction,
then we obtain species 10.1 (and 10.3, respectively).

4) The species 13.1-3 and 14.1-3 are constructed in a similar way from
the projective cubic curves xy2 = −(x + z)(x + 2z)2 and xy2 = −(x +
z)(x2 + z2) depicted in Figures 10.3.2(43) and 11.4.2(45), respectively.

Corollary. The singular-isotopy classification of the unions of affine
irreducible cubic curves with their asymptotes consists of 99 classes.
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ENDNOTES

1. The species 74 is described in manuscript [33] on page 55 in the section entitled
Its Seven Forms. In this section Newton enumerates seven items which he calls
Forms. In the Form 5 Newton describes three curves and refers to three figures
5, 9 and 13 which are not present in the manuscript. With respect to Newton’s
description these three curves represent species 74, 15 and 29 of the 78-classification
[34]. This is a remarkable place in the manuscript [33]; Newton obviously describes
(sic!) species 74, omitted in [34].

2. Note that Newton in [33] in the section entitled De Formis Septimæ Speciei

on page 64 writes: “Septima Species habet sex(70) formas: . . . ” (the translation on

page 65: “The seventh species has six(70) forms: . . . ”), but there are only four forms

in the draft manuscript. The (70) refers to the editor’s footnote remark (in [33]):
“Read ‘quatuor’ (four). Newton is perhaps thinking of the six forms of species 6.”
We think that the number six is correct because there should be here exactly two
more curves in omitted Form 5 and Form 6, added by Nicole later. Namely, in this
section Newton considers the equation bxy2 = gx2 +kx+ l. His description of Form
1 is correct. To obtain the right description of Form 2 and Form 3, it is necessary
to add the omitted condition bg > 0. The description of Form 4 is also correct.
The omitted Form 5 and Form 6 should be (in our edition) as follows.

Form 5. If the roots of the quadratic polynomial gx2 + kx + l are of the same
sign and bg < 0, then we have the oval and two hyperbola-parabolic branches lying
on opposite sides of the asymptote, see our Figure 2, Species 78.

Form 6. If the roots are equal and bg < 0, then we have the isolated double point
and two hyperbola-parabolic branches lying on opposite sides of the asymptote, see
our Figure 2, Species 77.

3. There is the same misdrawing in [Fig] 15 on page 74 of [33] and in Figure 7
on page 604 of [34]. The left hyperbola must be double-kinded: the top branch is
inscribed and the bottom branch is circumscribed (see also Appendix).

4. In the literature on real algebraic geometry, another definition of isotopy
equivalence in RP 2 is used. Two curves C0 and C1 in RP 2 are called isotopy
equivalent if the pairs (RP 2, C0) and (RP 2, C1) are topologically equivalent. This
definition is equivalent to our definition of topological equivalence in RP 2 above
because every homeomorphism from RP 2 to RP 2 is isotopic to the identity map.

5. A parabolic asymptote of a curve C is the osculating conic to the curve C at
its point of tangency with the line at infinity. The multiplicity of intersection of a
curve with its parabolic asymptote at the infinite point is greater than or equal to
5. Parabolic asymptotes were presented by Newton perhaps for the first time in his
figures, see [33, pp. 80 81].

6. According to Gudkov’s remark [4], Zeuthen [42] constructed all 42 existing
coarse forms of nonsingular quartic curves, but didn’t prove that one of the
admissible curves cannot be realized by a quartic curve.

7. The number of coarse forms we counted differs from the number 396 of
coarse forms shown in [5] and from the number 382 of coarse forms shown in
[32]. According to Polotovskii and Nebukina (private communication), Gudkov
made some special distinctions in certain specific cases. He considered the unions
of curves with some of their special lines and counted such a union as a form of
the curve. For example, Gudkov distinguished between the six unions shown in
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Figure 13, where each projective quartic curve consists of an oval and two nonoval
branches intersecting at a point of type A1, inflection points are marked and two
singular lines tangent lines to the branches at the singular point are present. We
obtain these curves by means of deformations of three special forms of Figure 25
from [9].

In her Ph.D. thesis [32], Nebukina (Gudkov was her advisor) applied the definition
of the form given in [19] and proved, in particular, that these six quartic curves
(without singular lines) represent the same coarse form. According to our definition
of form of a quartic curve, the curves in Figures 13.1, 3 and 5 represent the same
coarse form, but the curves in Figures 13.2, 4 and 6 represent another coarse form.
We apply our definition of form in the Table.

8. The numbers 92, 93, and 96 of the algebraic-topological types of reducible
projective quartic curves shown in [22 24], respectively, are not correct (private
communication with Polotovskii).

9. Newton applies the same Figure 20 both to his species 13 and 14. He does not
specify the double isolated point of species 13 in Figure 20.
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Curve, Math. Ann. 10 (1876), 199 209.

28. , Gessamelte Mathematische Abhandlungen, Bd. 2, Berlin, 1922.

29. , Lectures on mathematics, the Evanston Colloquium, Amer. Math.
Soc., Providence, RI, 1911, (copyright by Macmillan and Co., 1893).

30. A.B. Korchagin, The 1-st part of Hilbert’s 16-th problem: History and main
results, Texas Tech Univ., Math. Series 19 (1997), 85 140.

31. A.B. Korchagin and D.A. Weinberg, The isotopy classification of affine
quartic curves, Rocky Mountain J. Math. 32 (2002), 255 347.



1656 A.B. KORCHAGIN AND D.A. WEINBERG

32. G.F. Nebukina, Forms of curves of the fourth order, Ph.D. Thesis,
Lobachevsky Univ. at Nizhny Novgorod 7 (1976), 1994, pp. 402 469.

33. I. Newton, Analysis of the properties of cubic curves and their classification
by species, in The mathematical papers of Isaac Newton (D.T. Whiteside, ed.),
Cambridge Univ. Press, vol. 2, 1968, pp. 3 89.

34. , Enumeratio linearum tertij ordinis, in The mathematical papers
of Isaac Newton (D.T. Whiteside, ed.), Cambridge Univ. Press, vol. 7, 1976,
pp. 565 645.

35. , The final ‘Geometriæ libri duo’, in The mathematical papers of Isaac
Newton (D.T. Whiteside, ed.), Cambridge Univ. Press, vol. 7, 1976, pp. 402 469.
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