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CARDINAL INVARIANTS OF THE TOPOLOGY
OF UNIFORM CONVERGENCE ON COMPACT SETS

ON THE SPACE OF MINIMAL USCO MAPS

L’. HOLÁ AND R.A. MCCOY

ABSTRACT. For a Baire space X the set of all minimal
USCO real-valued maps on X coincides with the space D∗(X)
of locally bounded densely continuous real-valued forms on
X. When X is a locally compact space, the space D∗

k(X)
of locally bounded densely continuous real-valued forms on
X, under the topology of uniform convergence on compact
sets, is a locally convex linear topological space. This paper
gives characterizations and bounds for the cardinal function
properties on D∗

k(X) of character, pseudocharacter, density,
weight, netweight and cellularity. Examples are given to show
how these properties can be the same or different. We answer
also some questions posed in [17].

1. Introduction. For Hausdorff spaces X and Y , a densely
continuous form from X to Y [12] is the closure in X ×Y of f � C(f),
where f is a function from X to Y such that the set of points C(f) in
X at which f is continuous is dense in X and where f � C(f) is the
restriction of f to C(f) (considered as a subset of X × Y ).

A densely continuous form can be considered as a set-valued map
that has a kind of minimality property found in the theory of minimal
USCO maps. These are maps, first appearing in complex analysis, that
have been studied in many papers; for example, see [5, 8].

The set D(X, Y ) of all densely continuous forms from X to Y contains
several subsets of interest. It contains the set C(X, Y ) of all continuous
functions from X to Y . If X is a Baire space and Y is locally compact
and second countable, then D(X, Y ) contains the functions from X to
Y that have closed graphs. If X is a Baire space and Y is a metric
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space, then D(X, Y ) contains the minimal USCO mappings from X to
Y .

By using results of Christensen [5], Saint-Raymond [22] and Drewnow-
ski-Labuda [8] we can see that if X is a metric Baire space, Y a Ba-
nach space and F : X → Y a minimal weakly USCO mapping (i.e.
F is USCO into (Y, weak)), then F is a densely continuous form from
X into (Y, weak). Starting with Christensen’s paper [5], a series of
“multi-valued Namioka theorems” were discovered [22, 16, 8]. These
theorems show that, under unexpectedly general assumptions on X and
Y , a minimal USCO map F : X → Y reduces to a (point-valued) func-
tion f on a dense subspace of X. There is also a connection between
differentiability properties of convex functions and densely continuous
forms as expressed via subdifferentials of convex functions, which are
a kind of convexification of minimal USCO maps, see [3].

An additional important and useful example of a densely continuous
form is a so-called Argmin multifunction, see [13].

If Y = R, the space of real numbers, then D(X, Y ) is denoted by
D(X). In this case, when X is a Baire space, D(X) can be identified
with the set of all equivalence classes of semi-continuous functions on
X under an appropriate equivalence relation [17].

Let Ck(X, Y ) denote the space C(X, Y ) with the topology of uniform
convergence on compact sets. This topology can be extended in a
natural way to a topology on D(X, Y ), whose topological space is
denoted by Dk(X, Y ) [12]. If Y = R, then Dk(X) and Ck(X) denote
Dk(X, Y ) and Ck(X, Y ), respectively. There is a growing literature
concerning topologies and convergences on spaces of set-valued maps,
such as D(X, Y ); for example, see [2, 7, 12 14, 17, 18].

The set D(X) has a subspace D∗(X) consisting of those densely
continuous forms in D(X) that are locally bounded; that is, bounded
on some neighborhood of each point of X [17].

The space D∗
k(X) is especially nice when X is locally compact because

it is then a locally convex linear topological space [17].

This paper continues the study of D∗
k(X) by looking at some cardi-

nal function properties of this space, such as the character, the pseu-
docharacter, the weight, the netweight and the density. This improves
on results in [17] and eliminates the need for the continuum hypothesis
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that was assumed in that paper. Also several examples are given to
illustrate the kinds of properties that D∗

k(X) can have.

2. Preliminaries. In what follows let X be a Hausdorff nontrivial
topological space, i.e., X is at least countable. The set D(X) of densely
continuous real-valued forms ([12, 17]) is defined by

D(X) = {f � C(f) : C(f) dense in X, f : X → R},
where f � C(f) is the closure of f � C(f) in X × R.

The densely continuous forms from X to R are not, in general,
functions mapping X into R. They may be considered as multi-
functions. For each x ∈ X and Φ ∈ D(X), define

Φ(x) = {t ∈ R : (x, t) ∈ Φ}.

A multi-function Φ from X to R is upper semi-continuous at x ∈ X
if for every open set U ⊂ R such that Φ(x) ⊂ U , there is an open
neighborhood G of x with Φ(z) ⊂ U for every z ∈ G. A multi-
function Φ is upper semi-continuous if it is upper semi-continuous at
every x ∈ X. Following [5] we say that Φ is a USCO map if it is
upper semi-continuous with nonempty compact values. If Φ ∈ D(X)
and A ⊂ X, we say that Φ is bounded on A [17] provided that the set
Φ(A) = ∪{Φ(x) : x ∈ A} is a bounded subset of R. Then Φ is locally
bounded provided that each point of X has a neighborhood on which
Φ is bounded. Now define D∗(X) to be the set of members of D(X)
that are locally bounded.

If Φ ∈ D∗(X), then Φ is a minimal USCO map. In fact, if Φ ∈ D∗(X),
then Φ(x) is a nonempty compact set for every x ∈ X. By a result of
Berge [4, p. 112] any multi-function with closed graph which has a
compact range is upper semi-continuous. Since upper semi-continuity
is a local property, every Φ ∈ D∗(X) is upper semi-continuous. Now
we can apply Theorem 4.7 in [8] to argue that every Φ ∈ D∗(X) is a
minimal USCO mapping.

Thus, if X is a Baire space, the set D∗(X) coincides with the set of
all minimal USCO real-valued mappings.

The topology of D∗
k(X) can be defined using the Hausdorff metric,

H, on the space of nonempty compact subsets of R. This metric is



232 L’. HOLÁ AND R.A. MCCOY

defined for nonempty compact subsets A and B of R by

H(A, B) = max{max{d(a, B) : a ∈ A}, max{d(b, A) : b ∈ B}},
where d(s, T ) = inf{|s − t| : t ∈ T}. Then, for each Φ in D∗(X),
compact set A in X and real ε > 0, define W (Φ, A, ε) to be the set of
all Ψ in D∗(X) such that

sup{H(Φ(a), Ψ(a)) : a ∈ A} < ε.

The family of all W (Φ, A, ε) is a base for the topology of D∗
k(X) [12].

The metrizability and complete metrizability of D∗
k(X) were studied in

[12, 13, 17].

The cardinal function properties of D∗
k(X) that are considered here

are mainly the cellularity, the density, the netweight and the weight.
These are defined, respectively, as the supremum of the cardinalities of
all pairwise disjoint families of nonempty open subsets, the minimum of
the cardinalities of all dense subsets, the minimum of the cardinalities
of all networks and the minimum of the cardinalities of all bases. For
a general space Z, these cardinal functions are denoted by c(Z), d(Z),
nw(Z) and w(Z), respectively. They are in general related by the
inequalities

c(Z) ≤ d(Z) ≤ nw(Z) ≤ w(Z).

When Z is metrizable,

c(Z) = d(Z) = nw(Z) = w(Z).

The metrizability of D∗
k(X) can be characterized with the following

property. The space X is hemi-compact provided that in the family
K(X) of all nonempty compact subsets of X, there is a countable
cofinal subfamily; that is, every member of K(X) is contained in some
member of the subfamily. Then the following theorem is shown in [13].

Theorem 2.1. The space D∗
k(X) is metrizable if and only if X is

hemi-compact.

Corollary 2.2. If X is hemi-compact,

c(D∗
k(X)) = d(D∗

k(X)) = nw(D∗
k(X)) = w(D∗

k(X)).
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Concerning complete metrizability of D∗
k(X), the following result was

proved in [13].

Theorem 2.3. Let X be a locally compact hemi-compact space.
Then D∗

k(X) is completely metrizable.

Theorem 2.4. If X is a locally compact hemi-compact space, then
D∗

k(X) is a completely metrizable locally convex linear topological space.

It is known [23] that if two infinite-dimensional completely metrizable
locally convex linear topological spaces have the same density, then they
are homeomorphic. The density for such D∗

k(X) is established in the
next section.

A partial characterization for the netweight of D∗
k(X) is given in [17].

This involves a cardinal function on X called the peripheral k-network
weight of X. Define a family, P, of subsets of X to be a peripheral k-
network for X provided that for every regular open subset U of X and
every compact subset A of U , there exists a P ∈ P such that P ⊆ U
and every net in U that clusters at some point of A is cofinally in P .
Now the peripheral k-network weight of X, pknw (X), is the minimum
cardinality of a peripheral k-network for X. In general,

pknw (X) ≤ |τ (X)| ≤ 2w(X),

where |τ (X)| is the cardinality of the topology of τ (X) of X and if X
is regular, then

w(X) ≤ pknw (X).

A topological space X is Volterra [10] if for each pair f, g : X → R
of functions such that C(f) and C(g) are both dense in X the set
C(f) ∩ C(g) is dense in X.

Of course every Baire space is Volterra and there are Volterra spaces
which are not of second category, hence not Baire [11].

Theorem 2.5. For every Volterra space X, nw (D∗
k(X))≤ pknw (X).

If X is locally compact, then nw (D∗
k(X)) = pknw (X).
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Proposition 2.6. The set C(X) of continuous real-valued functions
on X is closed in D∗

p(X), the space D∗(X) equipped with the topology
of pointwise convergence.

Proof. Let Φ ∈ D∗(X) be in the closure of C(X) in D∗
k(X). It is

easy to verify that Φ(x) is a singleton set for every x ∈ X. Thus, Φ is
a function with closed graph which is locally bounded, i.e., Φ ∈ C(X).

Thus C(X) is closed also in D∗
k(X).

The following example shows that Proposition 2.6 does not hold
in Dp(X), the space D(X) equipped with the topology of pointwise
convergence.

Example 2.7. Put X = {0} ∪ {1/n : n ∈ N} with the natural
topology. Define the function f : X → R as follows: f(0) =
0, f(1/n) = 0 if n is even and f(1/n) = n if n is odd. It is easy
to verify that f ∈ D(X) since C(f) = X \ {0} and f = f � C(f). For
every n ∈ N, let fn be the continuous function from X to R defined as
follows: fn(x) = f(x) if x ∈ [1/n, 1]∩X and fn(x) = 0 otherwise. It is
easy to see that {fn : n ∈ N} pointwise converges to f , but of course
f is not continuous at 0.

3. New theorems. The pseudocharacter and the diagonal degree of
D∗

k(X) can be expressed by using the so-called weak k-covering number
of X. The weak k-covering number of X is defined to be

wkc (X) = ℵ0 + min
{
|β| : β ⊂ K(X),

⋃
β = X

}
.

The diagonal degree of X is

Δ(X)= ℵ0+min
{
|G| : G is a family of open sets in X×X,

⋂
G= ΔX

}
,

where ΔX is the diagonal in X × X.
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Theorem 3.1. For every regular space X, Ψ(D∗
k(X)) = Δ(D∗

k(X)) =
wkc (X).

Proof. To prove that wkc (X) ≤ Ψ(D∗
k(X)), let f be the zero function

on X. Put Φ = f � C(f) = f . Let {W (Φ, At, εt) : At ∈ K(X), εt >
0, t ∈ T} be such that

Φ =
⋂

{W (Φ, At, εt) : t ∈ T} and |T | ≤ Ψ(D∗
k(X))}.

We claim that X = ∪{At : t ∈ T}. Suppose that there is x ∈ X \
∪{At : t ∈ T}. Let V be an open set in X such that x ∈ V ⊂ V ⊂
X \∪{At : t ∈ T}. Let g be a function from X to R such that g(z) = 1
for z ∈ V and g(z) = 0 otherwise. The set C(g) is dense in X; thus,
Γ = g � C(g) ∈ D∗(X) and

Γ ∈
⋂

{W (Φ, At, εt) : t ∈ T},

a contradiction since Γ(x) = 1 and Φ(x) = 0. Thus

wkc (X) ≤ |T | ≤ Ψ(D∗
k(X)) ≤ Δ(D∗

k(X)).

To prove that Δ(D∗
k(X)) ≤ wkc (X), let β ⊂ K(X) be such that

wkc (X) = |β| and ∪β = X.

For every A ∈ β and n ∈ N put

GA,n =
⋃

{W (Φ, A, 1/n) × W (Φ, A, 1/n) : Φ ∈ D∗(X)}

and we claim that
⋂

{GA,n : A ∈ β, n ∈ N} = ΔD∗(X).

Let Σ, Φ ∈ D∗(X) be such that Σ 
= Φ. Thus there is z ∈ X such that
Σ(z) 
= Φ(z). We can suppose that there is y ∈ Σ(z) \ Φ(z); the other
case is symmetric. Let ε > 0 be such that S4ε[y]∩Φ(z) = ∅, where by
Sη[a] we mean {s ∈ R : |s − a| < η}. Since Φ is upper semi-continuous
at z, there is an open set O ⊂ X such that z ∈ O and Φ(v)∩S3ε[y] = ∅

for every v ∈ O.
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Let g : X → R be such that the set C(g) is dense in X and
Σ = g � C(g). Thus there is s ∈ C(g) such that s ∈ O and g(s) ∈ Sε[y].
The continuity of g at s implies that there is an open set V ⊂ O with
s ∈ V and g(l) ⊂ Sε[y] for every l ∈ V ; then Σ(l) ⊂ Sε[y] for every
l ∈ V . Now, s ∈ ∪β; thus, there is A ∈ β with V ∩ A 
= ∅. Let
n ∈ N be such that 1/n < ε/2. Suppose that there is Γ ∈ D∗(X)
such that (Σ, Φ) ∈ W (Γ, A, 1/n)× W (Γ, A, 1/n). Let t ∈ V ∩ A. Then
Σ(t) ⊂ S2ε[y] and Φ(t)∩S3ε[y] = ∅. Thus Γ(t) ⊂ Sε/2[Σ(t)] ⊂ S5ε/2[y]
and simultaneously Γ(t) ∩ S5ε/2[y] = ∅, a contradiction.

Remark. If X is a Tychonoff space, then the pseudocharacter and
the diagonal degree of Ck(X) coincide with the pseudocharacter and
the diagonal degree of D∗

k(X), since by [19] we have Ψ(Ck(X)) =
Δ(Ck(X)) = wkc(X).

Corollary 3.2. Let X be a regular space. The following are
equivalent:

(1) Each point of D∗
k(X) is a Gδ-set;

(2) Each compact subset of D∗
k(X) is a Gδ-set;

(3) D∗
k(X) has a Gδ-diagonal;

(4) X is almost σ-compact, i.e., there is a countable family β ⊂ K(X)
with ∪β = X.

The character and π-character of D∗
k(X) can be expressed by using a

generalization of the concept of X being hemi-compact. The k-cofinality
of X is defined to be

kcof (X) = ℵ0 + min{|β| : β is a cofinal subfamily of K(X)}.

To define the π-character of X, we first need a notion of a local π-base.
If x ∈ X, a collection η of nonempty open subsets of X is called a local
π-base at x provided that for each open neighborhood U of x, there
exists a V ∈ η which is contained in U . Define the π-character of X by

πχ(X) = ℵ0 + sup{πχ(X, x) : x ∈ X},

where πχ(X, x) = min{|η| : η is a local π-base at x}.
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Theorem 3.3. For every space X, πχ(D∗
k(X)) = χ(D∗

k(X)) =
kcof (X).

Proof. To prove that kcof (X) ≤ πχ(D∗
k(X)), let f be the zero

function on X. Put Φ = f � X = f . Let {W (Φt, At, εt) : t ∈ T}
be a local π-base of Φ in D∗

k(X) with |T | ≤ πχ(D∗
k(X).

We claim that {At : t ∈ T} is a cofinal family in K(X). Let
A ∈ K(X). There must exist t ∈ T with

W (Φt, At, εt) ⊂ W (Φ, A, 1).

Then we have A ⊂ At. Suppose there is a ∈ A \ At. Let U be an open
set such that a ∈ U and U ∩ At = ∅.

Let ft : X → R be such that Φt = ft � C(ft).

Let g : X → R be de defined as follows:

g(z) = 1 for z ∈ U and g(z) = ft(z) otherwise.

The set C(g) is dense in X. Put Γ = g � C(g). Then Γ ∈ D∗(X). It
is easy to verify that Γ(s) = Φt(s) for every s /∈ U ; thus also for every
s ∈ At. Thus Γ ∈ W (Φt, At, εt), but Γ /∈ W (Φ, A, 1), a contradiction.
Thus

kcof (X) ≤ |T | ≤ πχ(D∗
k(X)) ≤ χ(D∗

k(X)).

Remark. If X is a Tychonoff space the character and the π-character
of Ck(X) coincide with the character and π-character of D∗

k(X), since
by [19] we have πχ(Ck(X)) = χ(Ck(X)) = kcof (X).

Corollary 3.4 [13]. The following are equivalent:

(1) D∗
k(X) is first countable;

(2) πχ(D∗
k(X)) is countable;

(3) X is hemi-compact.

A collection β of nonempty open subsets of a space X is called a
π-base for X provided that every nonempty open subset of X contains
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some member of β. Then the π-weight of X is defined to be

πw(X) = ℵ0 + min{|β| : β is a π-base for X}.

The following theorem shows that the π-weight and weight of D∗
k(X)

coincide; the π-weight of D∗
k(X) can be expressed in terms of its density

and k-cofinality of X and the weight of D∗
k(X) in terms of its cellularity

and k-cofinality of X.

Theorem 3.5. For every space X, πw(D∗
k(X)) = w(D∗

k(X). In
fact, πw(D∗

k(X)) = kcof (X) · d(D∗
k(X)) and w(D∗

k(X)) = kcof (X) ·
c(D∗

k(X)).

Proof. First we prove that πw(D∗
k(X)) ≥ kcof (X) · d(D∗

k(X)). The
inequality d(D∗

k(X)) ≤ πw(D∗
k(X)) is clear. By Theorem 3.3

kcof (X) = πχ(D∗
k(X)) ≤ πw(D∗

k(X));

thus, we have

kcof (X) · d(D∗
k(X)) ≤ πw(D∗

k(X)).

Now we prove that w(D∗
k(X)) ≤ kcof (X) · c(D∗

k(X)). This part of
the proof is similar to the proof of Theorem 5.1 in [17]. Let A be
a cofinal subfamily of K(X) with |A| = kcof (X). For each A ∈ A
and n ∈ N, there exists, by Zorn’s lemma, a maximal pairwise disjoint
family, WA,n, of basic open subsets of D∗

k(X) of the form W (Φ, A, ε)
where Φ ∈ D∗(X) and ε is a positive real number such that ε ≤ 1/n.
For each A ∈ A and n ∈ N, define

BA,n = {W (Φ, A, q) : q ∈ Q+ and q > ε for some W (Φ, A, ε) ∈ WA,n},

where Q+ is the set of positive rational numbers. Define

B =
⋃

{BA,n : A ∈ A and n ∈ N}.

Then |B| ≤ kcof (X) · c(D∗
k(X)).
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It remains to show that B is a base for D∗
k(X). Fix Ψ ∈ D∗

k(X) and
its open neighborhood W (Ψ, B, δ), where B ∈ K(X) and δ > 0. We
look for Φ ∈ D∗(X), A ∈ A and q ∈ Q such that

(∗) Ψ ∈ W (Φ, A, q) ⊆ W (Ψ, B, δ).

We may and do assume that δ ∈ Q and A = B ∈ A because A is
cofinal in K(X) (otherwise we take A ∈ A with B ⊆ A). We have two
cases:

10. W (Ψ, A, δ) ∈ BA,n for some n ∈ N. Then we take Φ = Ψ and
q = δ, and the condition (∗) is satisfied.

20. Assume that, for every n ∈ N, W (Ψ, A, δ) /∈ BA,n, i.e., for
every n and every 0 < ε < δ, W (Ψ, A, ε) /∈ WA,n. In this case, by
maximality of WA,n, there exist Φ ∈ D∗(X), ε > 0 and n ∈ N such
that ε ≤ 1/n ≤ δ/2, and

W (Ψ, A, ε)
⋂

W (Φ, A, ε) 
= ∅.

Then Ψ ∈ W (Φ, A, 2ε) ⊆ W (Ψ, A, 2/n) ⊆ W (Ψ, A, δ), and the
condition (∗) is satisfied.

Recall that a k-network for X is a family B of subsets of X such that
if A ∈ K(X) and U is open in X with A ⊂ U , then there exists a finite
subfamily B′ ⊂ B with A ⊂ ∪B′ ⊂ U . The k-netweight of X is defined
by

knw (X) = ℵ0 + min{|B| : B is a k-network for X}.
It is clear that nw (X) ≤ knw (X) and knw (X) ≤ w(X). Thus in

locally compact spaces we have also that w(X) = knw (X) = nw (X).

As a result of Theorem 3.5, the weight of D∗
k(X) can be equated to

the netweight of D∗
k(X) whenever X is locally compact.

Theorem 3.6. For every regular space X, knw (X) ≤ nw (D∗
k(X)).

For locally compact X, w(D∗
k(X)) = nw (D∗

k(X)) = pknw (X).

Proof. Let N be a network for D∗
k(X). For each N ∈ N , define

N∗ =
{

x ∈ X : Ψ(x)
⋂

(0,∞) 
= ∅ for all Ψ ∈ N

}
,
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and let
N ∗ = {N∗ : N ∈ N}.

To show that N ∗ is a k-network for X, let U be an open subset of
X and let A ⊂ U be compact. Let V be an open set in X such that
A ⊂ V ⊂ V ⊂ U .

Define the function f : X → R as follows: f(x) = 1 if x ∈ V and
f(x) = 0 if x ∈ X \ V . The set C(f) is dense in X. Put Φ = f � C(f).
Then Φ ∈ D∗(X), so there is N ∈ N with

Φ ∈ N ⊂ W (Φ, A, 1).

Note that N∗ ⊂ U , because if x /∈ U , then Φ(x) = {0}, implying that
x /∈ N∗. Now we prove that A ⊂ N∗. Let x ∈ A. Then Φ(x) = {1}.
Since for every Ψ ∈ N we have Ψ ∈ W (Φ, A, 1), Ψ(x) ∩ (0,∞) 
= ∅.

To prove that w(D∗
k(X)) = nw (D∗

k(X)) by Theorem 3.5, it suffices to
show that kcof (X) ≤ nw (D∗

k(X)). By above we know that knw (X) ≤
nw (D∗

k(X)), thus w(X) ≤ nw(D∗
k(X)) because X is locally compact.

Also because X is locally compact, it has a base B of relatively compact
sets such that |B| = w(X). Then the family of all finite unions of
members of {B : B ∈ B} is cofinal in K(X) and has cardinality w(X).
Therefore kcof (X) ≤ w(X) ≤ nw(D∗

k(X)).

Remark. Of course for X Tychonoff the proof of knw (X) ≤
nw (D∗

k(X)) can be done easily in the following way: by [19] knw (X) =
nw (Ck(X)) and nw (Ck(X)) ≤ nw (D∗

k(X)) since the compact-open
topology on C(X) coincides with the topology induced from D∗

k(X) on
C(X).

The inequality in Theorem 3.6 can be strict. If X is a nondiscrete
locally compact second countable space then knw (X) = w(X) = ℵ0

and nw (D∗
k(X) = c, see Corollary 3.12 below.

From Theorem 2.5, for a Volterra space X pknw (X) gives an upper
bound for most of these cardinal functions on D∗

k(X). To get a lower
bound, consider the following concept. Let UK(X) be the collection
of all pairwise disjoint families U of nonempty open subsets of X such
that ∪U is compact.

Theorem 3.7. For each U in UK(X), 2|U| ≤ c(D∗
k(X)).
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Proof. Let U ∈ UK(X), and let m = |U|. Let 2U denote the set of
functions from U to {0, 1}. For each φ ∈ 2U , define fφ : X → R by

fφ(x) =
{

φ(U) if x ∈ U for some U ∈ U ,
0 otherwise.

For each φ ∈ 2U , the set C(fφ) is dense in X. So each Φφ, defined
as fφ � C(fφ), is a member of D∗(X). Now for each φ ∈ 2U , define
Bφ = W (Φφ,∪U , 1/4). Then {Bφ : φ ∈ 2U} is a pairwise disjoint family
of nonempty open subsets of D∗

k(X). Therefore 2|U| ≤ c(D∗
k(X)).

Corollary 3.8. If X is compact, then 2<c(X) ≤ c(D∗
k(X)).

The next corollary gives some special cases of spaces satisfying The-
orem 3.7. In this corollary, c = 2ℵ0 is the cardinality of the continuum.

A topological space X is almost locally compact ([1, 21]) pro-
vided that every nonempty open subset contains a compact set with
a nonempty interior. Of course every locally compact space is almost
locally compact. The Michael line is an example of an almost locally
compact space, which is not locally compact. Another example is given
by the subspace {(x, y) ∈ R2 : y > 0} ∪ {(0, 0)} of the real plane [13].

Corollary 3.9. For a space X, c ≤ c(D∗
k(X)) if either of the

following conditions hold:

(1) X is almost locally compact and has a non-isolated point with a
countable base, or

(2) X has a non-isolated point with a compact neighborhood.

Corollary 3.10. If kcof (X) ≤ 2|U| for some U in UK(X), then

c(D∗
k(X)) = d(D∗

k(X)) = nw (D∗
k(X)) = w(D∗

k(X)).

Corollary 3.11. If kcof (X) ≤ c and either of the conditions in
Corollary 3.9 hold, then

c(D∗
k(X)) = d(D∗

k(X)) = nw (D∗
k(X)) = w(D∗

k(X)).
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Corollary 3.12. If X is a nondiscrete locally compact second
countable space, then

c(D∗
k(X)) = d(D∗

k(X)) = nw (D∗
k(X)) = w(D∗

k(X)) = c.

Corollary 3.13. For every two nondiscrete locally compact second
countable spaces X and Y , D∗

k(X) and D∗
k(Y ) are homeomorphic.

Proof. If X and Y are two nondiscrete locally compact second
countable spaces, then by Corollary 3.12 d(D∗

k(X)) = d(D∗
k(Y )) = c.

By Theorem 2.4, both D∗
k(X) and D∗

k(Y ) are completely metrizable
locally convex linear topological spaces. By the result of Torunczyk
[23] we are done.

Corollaries 3.12 and 3.13 improve Corollary 5.4 and Theorem 5.4 in
[17] and answer questions posed in [17].

Note that, for a locally compact space X,

w(X) ≤ w(D∗
k(X)) ≤ 2w(X).

Corollary 3.12 shows that if X is a nondiscrete locally compact second
countable space, then

w(X) < w(D∗
k(X)).

Example 4.3 in the next section gives a compact space X for which

w(D∗
k(X)) < 2w(X).

4. Examples. The examples in this section illustrate the various
possibilities for these cardinal function properties of D∗

k(X).

Example 4.1. If X is a countably infinite discrete space and Y is
the one-point-compactification of X, then

d(D∗
k(X)) = ℵ0 < c = d(D∗

k(Y )).
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Proof. The last equality follows from Corollary 3.12. Because X is
discrete, D∗

k(X) is homeomorphic to the countably infinite product of
copies of R; so its density is ℵ0.

Example 4.2. If X is the space of countable ordinals, ω1, with the
topology induced on ω1 by the linear order [9, p. 56], then D∗

k(X) is a
nonmetrizable locally convex linear topological space such that

c(D∗
k(X)) = d(D∗

k(X)) = nw (D∗
k(X)) = w(D∗

k(X)) = c.

Proof. First observe that kcof (X) = ℵ1 because the subfamily
of all intervals [0, α] for α < ω1 is cofinal in K(X) and has the
minimum cardinality of such cofinal subfamilies of K(X). Therefore
by Theorem 2.1, D∗

k(X) is not metrizable, and by Corollary 3.11,

c(D∗
k(X)) = d(D∗

k(X)) = nw (D∗
k(X)) = w(D∗

k(X)).

Since X satisfies condition (1) in Corollary 3.9, it follows that c ≤
c(D∗

k(X)).

By Theorem 3.6, it remains to show that pknw (X) ≤ c. Let P be the
family of all open sets in X that are contained in the interval [0, α) for
some α < ω1. Then P has cardinality c. To show that P is a peripheral
k-network of X, let U be a regular open subset of X and let A be a
compact subset of U . Now A is contained in [0, α) for some α < ω1.
Then P = [0, α) ∩ U is a member of P that is contained in U . Let
{xλ : λ ∈ Λ} be a net in U which clusters at a ∈ A. Then a ∈ [0, α), so
[0, α) is a neighborhood of a. Thus for every λ ∈ Λ there is an η ≥ λ
with xη ∈ [0, α). Thus the net {xλ : λ ∈ Λ} is cofinally in [0, α), i.e.,
the net {xλ : λ ∈ Λ} must be cofinally in P .

Example 4.3. If D(m) is the discrete space of infinite cardinality
m and X is the Čech-Stone compactification, βD(m), of D(m), then

d(D∗
k(X)) = 2m < 22m

= |τ (X)|.

Proof. If U consists of the singleton subsets of D(m), then U ∈
UK(X). So by Theorem 3.7, 2m ≤ c(D∗

k(X)) = d(D∗
k(X)). For
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the reverse inequality, observe that there is a natural injection from
D∗(βD(m)) into C(D(m)) defined by mapping each element of
D∗(βD(m)) to its restriction to D(m), which is a singleton-valued func-
tion on D(m). Therefore,

d(D∗
k(X)) ≤ |D∗(βD(m))| ≤ |C(D(m))| ≤ cm = (2ℵ0)m ≤ 2m.

Example 4.4. As a special case of Example 4.3, if X = βN , then
d(D∗

k(X)) = c. On the other hand, if Y = βN \N , then d(D∗
k(Y )) = 2c

so that Y is a compact subspace of compact space X with the property
that d(D∗

k(X)) < d(D∗
k(Y )).

Proof. The cellularity and weight of Y are both equal to c, see [24,
Theorem 3.22, p. 77]. So by Theorem 3.7 and Theorem 2.5,

2c ≤ c(D∗
k(Y )) = d(D∗

k(Y )) ≤ pknw (Y ) ≤ 2c.

Example 4.5. If X is a nondiscrete locally compact second count-
able space and Y is the disjoint topological sum of 22c

copies of X,
then D∗

k(Y ) is a locally convex linear topological space such that

c = c(D∗
k(Y )) < d(D∗

k(Y )) < w(D∗
k(Y )) = 22c

.

Proof. Let m = 22c

. As indicated in [12], the space D∗
k(Y ) is

homeomorphic to the product of m copies of D∗
k(X). Now pknw (X) =

c, so that pknw (Y ) = m · c = m. Then by Theorem 3.6, w(D∗
k(Y )) =

m = 22c

. By Corollary 3.12, the cellularity of D∗
k(X) is c, so that the

product of m copies of D∗
k(X) has cellularity no greater than c, see [9].

Thus, c(D∗
k(Y )) = c. Again by Corollary 3.12, the density of D∗

k(X) is
c, so that the product of m copies of D∗

k(X) has density no greater than
2c, see [9, Theorem 2.3.15, p. 81]. Therefore, d(D∗

k(Y )) ≤ 2c < 22c

.

It remains to show that c < d(D∗
k(Y )). The proof of Theorem 4.2.1

in [19] shows that for general spaces W and Z such that Z contains a
nontrivial path, ww(W ) ≤ d(Cp(W, Z)), where p denotes the topology
of pointwise convergence and ww(W ) is the weak weight of W , defined
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to be the minimum of the cardinalities of the weights of all continuous
one-to-one Hausdorff images of W . Since D∗

k(X) is a locally convex
linear topological space, it contains a nontrivial path. The product
of m copies of D∗

k(X) is homeomorphic to Cp(D(m), D∗
k(X)), so that

ww(D(m)) ≤ d(D∗
k(Y )). To show that c < ww(D(m)), let Z be a

Hausdorff space with w(Z) = ww(D(m)). Then c < w(Z) because
otherwise m = |Z| ≤ 2w(Z) ≤ 2c, which is a contradiction.
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