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GREEN’S FUNCTION AND MAXIMUM PRINCIPLE
FOR HIGHER ORDER ORDINARY DIFFERENTIAL

EQUATIONS WITH IMPULSES

ALBERTO CABADA, EDUARDO LIZ AND SUSANA LOIS

ABSTRACT. We find Green’s function representation of
the solutions of a boundary value problem for an impulsive
linear differential equation of nth order. Then we derive a
maximum principle valid to develop monotone iterative tech-
niques for some nonlinear differential equations with impulses.

1. Introduction. The theory of impulsive differential equations is
experiencing a rapid development in past years. The reason is that it is
richer than the corresponding theory of classical differential equations
and it is more adequate to represent some processes arising in various
disciplines, see monograph [10] and references therein.

In recent years many papers devoted to the study of boundary
value problems for nonlinear differential equations with impulses have
appeared. See, for instance, [4], [6], [7], [8], [9], [10], [11], [12].

One of the techniques employed in these papers is the method of
upper and lower solutions coupled with iterative methods. In general,
the applicability of this kind of technique depends strongly on the sign
of Green’s function representations for the solutions of certain linear
problems associated to the considered boundary value problem.

For differential equations with impulses, the study of these integral
representations needs further development in order to apply the mono-
tone iterative techniques in a systematic way. For first order problems,
some results can be found in recent papers due to Eloe and Henderson
[6] and Nieto [12].

In Section 2 of the present paper, we find an integral representation
for the solutions of the following nth order linear differential equation
with constant impulses and nonhomogeneous periodic boundary con-
ditions
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(1.1)

u(n)(t) +
n−1∑
i=0

aiu
(i)(t) = σ(t) for a.e. t ∈ I, t �= tk, k = 1, . . . , p

u(i)(t+k )− u(i)(t−k ) = µik, k = 1, . . . , p; i = 0, . . . , n− 1
u(i)(0)− u(i)(T ) = λi, i = 0, . . . , n− 1,




where I = [0, T ], σ ∈ L1(I), ai, λi ∈ R, i = 0, . . . , n − 1, a0 �= 0 and
µik ∈ R for each k = 1, . . . , p and i = 0, . . . , n− 1.
Here u(i) denotes the ith derivative of the function u, u(0) = u.

In Section 3 we briefly explain how the methods of Section 2 can
be used to derive an existence result, using monotone iterative tech-
niques, for a class of nonlinear boundary value problems for impulsive
differential equations, following the ideas of [4].

2. Green’s function and maximum principle. In this section
we shall deal with problem (1.1).

We shall prove that problem (1.1) is uniquely solvable if the following
boundary value problem without impulses has a unique solution

(2.1)

z(n)(t) +
n−1∑
i=0

aiz
(i)(t) = 0 for a.e. t ∈ I

z(i)(0)− z(i)(T ) = 0, i = 0, . . . , n− 2
z(n−1)(0)− z(n−1)(T ) = 1.




First we recall some results for the nth order periodic boundary value
problem, see [2, Lemma 2.1].

Lemma 2.1. Assume that the problem (2.1) has a unique solution.
Then the boundary value problem

(2.2)
v(n)(t) +

n−1∑
i=0

aiv
(i)(t) = σ(t) for a.e. t ∈ I

v(i)(0)− v(i)(T ) = λi, i = 0, . . . , n− 1



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has a unique solution v ∈ Wn,1(I) for each σ ∈ L1(I).

Moreover, v is given by the following expression:

(2.3) v(t) =
∫ T

0

G(t, s)σ(s) ds+
n−1∑
i=0

ri(t)λi,

where ri ∈ C∞(I), i = 0, 1, . . . , n− 1 and

(2.4) G(t, s) =
{

rn−1(t− s) 0 ≤ s ≤ t ≤ T

rn−1(T + t− s) 0 ≤ t < s ≤ T .

Function rn−1 is the unique solution of (2.1) and functions ri can be
obtained as:

ri(t) = r
(n−1−i)
n−1 (t) +

n−1∑
j=i+1

ajr
(j−i−1)
n−1 (t),

t ∈ I, i = 0, . . . , n− 2.

Remark 2.1. From Lemma 2.1 it follows that the uniqueness of
solution of problem (2.2) is independent of the values of λi ∈ R,
i = 0, . . . , n − 1. Furthermore, it is equivalent to the uniqueness of
solution of problem (2.1), which is easy to study since it reduces to
check if a certain linear algebraic system Ax = b, with A an n × n
matrix and b ∈ Rn, has a unique solution.

In order to define precisely the concept of solution for the nth order
impulsive problems considered in this paper, we introduce the following
sets of functions:

Cm
p = {u : I → R : u(l) is continuous for t �= tk, and there exist

u(l)(t+k ), u
(l)(t−k ), l = 0, . . . ,m, k = 1, . . . , p}

and

Wn
p = {u ∈ Cn−1

p : u|(tk,tk+1) ∈ Wn,1(tk, tk+1), k = 0, . . . , p}.
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We recall that Cm
p and Wn

p are Banach spaces with the norms

‖u‖Cm
p
=

p∑
k=0

‖u|[tk,tk+1]‖Cm[tk,tk+1]

and

‖u‖W n
p
=

p∑
k=0

‖u|(tk,tk+1)‖W n,1(tk,tk+1).

By using the results of Lemma 2.1, we shall find an integral repre-
sentation for the solutions of problem (1.1).

Lemma 2.2. Let a0, . . . , an−1 ∈ R be fixed. Then problem (2.1)
has a unique solution if and only if problem (1.1) has a unique solution
u ∈ Wn

p .

In such a case the solution of problem (1.1) is given by the expression

(2.5) u = v + w,

where v is defined by (2.3) and

(2.6) w(t) =
n−1∑
k=0

wk(t),

with

wk(t) =
p∑

j=1

∂kG

∂tk
(t, tj)µ(n−1−k)j , t �= tj , j = 1, . . . , p

being G the Green function given by (2.4).

Proof. Suppose that problem (2.1) has a unique solution v defined
by (2.3).

For all i ∈ {0, . . . , n− 1}, each function wk satisfies

w
(i)
k (t

+
m)−w

(i)
k (t

−
m) =

p∑
j=1

[
∂i+kG

∂ti+k
(t+m, tj)− ∂i+kG

∂ti+k
(t−m, tj)

]
µ(n−1−k)j

= [r(i+k)
n−1 (0)− r

(i+k)
n−1 (T )]µ(n−1−k)m

=
{ 0 i+ k �= n− 1

µim i+ k = n− 1,
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for each m = 1, . . . , p, and

w
(i)
k (0)− w

(i)
k (T )

=
p∑

j=1

[r(i+k)
n−1 (T − tj)− r

(i+k)
n−1 (T − tj)]µ(n−1−k)j = 0

in view of the definition of function G and the fact that rn−1 is the
solution of the problem (2.1).

Moreover, for all t ∈ I, t �= tj , j = 1, . . . , p, we have

w
(n)
k (t) =

p∑
j=1

[
∂k+nG

∂tk+n
(t, tj)µ(n−1−k)j

]

= −
n−1∑
i=0

ai

[ p∑
j=1

∂k+iG

∂tk+i
(t, tj)µ(n−1−k)j

]

= −
n−1∑
i=0

aiw
(i)
k (t).

Consequently, w satisfies

w(n)(t) +
n−1∑
i=0

aiw
(i)(t) = 0, t ∈ I, t �= tj , j = 1, . . . , p

w(i)(0)− w(i)(T ) = 0; i = 0, . . . , n− 1
w(i)(t+j )− w(i)(t−j ) = µij ; j = 1, . . . , p; i = 0, . . . , n− 1.

Finally, using that v is the solution of (2.2), we have that u given by
(2.5) is the solution of the problem (1.1).

Since the difference of two solutions of (1.1) is a solution of (2.2) for
σ ≡ 0 and λi = 0, i = 0, . . . , n − 1, and this problem has only the
trivial solution, the uniqueness of solution for problem (1.1) follows.

Since problem (2.1) is a particular case of problem (1.1), the reversed
implication is proved.

Now, to derive results from this expression of the Green function,
we define the set Fn = {u ∈ Wn

p , u ∈ Cn−2(I), u(i)(0) = u(i)(T ), i =
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0, . . . , n−2, u(n−1)(0)−u(n−1)(T ) ≥ 0, u(n−1)(t+k )−u(n−1)(t−k ) ≥ 0, k =
1, . . . , p}.
We say that the operator

(2.7) [Tn(u)](t) = u(n)(t) +
n−1∑
i=0

aiu
(i)(t)

is inverse positive, respectively inverse negative, on Fn if and only if
problem (1.1) has a unique solution for all σ ∈ L1(I), and λi, µij ∈ R,
i = 0, . . . , n − 1, j = 1, . . . , p and for all u ∈ Fn such that Tn(u) ≥ 0
on I we have that u ≥ 0 on I, respectively Tn(u) ≥ 0⇒ u ≤ 0.
Lemma 2.2 permits us to prove the following maximum principle for

the problem (1.1).

Lemma 2.3. Let a1, . . . , an−1 ∈ R be fixed. Then the operator Tn

is inverse positive on Fn if and only if a0 is a real number such that
(2.1) has a unique solution rn−1 ≥ 0 on I.

Proof. By using expressions (2.5) and (2.6) we have that if u ∈ Fn

there exist σ ≥ 0 on I, λn−1 ≥ 0 and µ(n−1)j ≥ 0, j = 1, . . . , p, such
that

u(t) =
∫ T

0

G(t, s)σ(s) ds+ rn−1(t)λn−1 +
p∑

j=1

G(t, tj)µ(n−1)j .

Since rn−1 ≥ 0 on I and σ ≥ 0 on I, it is obvious that u ≥ 0 on I.

Considering σ ≡ 0, λn−1 = 1 and µ(n−1)j = 0, j = 1, . . . , p, we prove
the necessary condition.

Analogously, one can prove the following anti-maximum principle.

Lemma 2.4. Let a1, . . . , an−1 ∈ R be fixed. Then the operator Tn

is inverse negative on Fn if and only if a0 is a real number such that
(2.1) has a unique solution rn−1 ≤ 0 on I.

Following the ideas of [5, Corollary 3.1] it is not difficult to prove the
following result.
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Lemma 2.5. Let a1, . . . , an−1 ∈ R be fixed. Then there exists
M ∈ (0,∞] such that the following properties are verified:

1. The operator Tn is inverse positive on Fn if and only if a0 ∈ (0,M)
or a0 ∈ (0,M ].

2. The operator Tn is inverse negative on Fn if and only if a0 ∈
(−M, 0) or a0 ∈ [−M, 0).

Clearly, in order to apply our previous maximum and anti-maximum
principles, one has to know the values of a0 > 0 for which rn−1 is a
nonnegative (nonpositive) function on I.

It is well known [13] that for first order equationsM =∞ is obtained
both for T1 inverse positive or inverse negative on F1. The same
property remains valid for T2 inverse negative on F2.

The study of the nth order case is now in progress, and some results
were obtained recently. In this direction see the papers by Omari
and Trombetta [13] and Cabada [2], in which the optimal estimations
are obtained for second and third order problems, respectively. It is
important to note that obtaining the expression of such estimations
is a difficult and tedious problem. For instance, when n = 3 and
a2 = a1 = 0, the best estimate of M > 0 for which T3 is inverse
positive or inverse negative on F3 is given by M = m3, where m is the
unique solution of the equation

arctan
(

sin
√
3mπ

cos
√
3mπ − emπ

)
+ π

=
√
3
3
log

(
e3mπ − emπ√

1 + e2mπ − 2emπ cos
√
3mπ

)

with arctan θ ∈ [−(π/2), (π/2)].
When n = 4 this question is solved in [1] and [5] when the coefficients

ai are zero for i = 1, 2, 3.

For n ∈ N and ai = 0, i = 1, . . . , n − 1, some estimations can be
found in [3]. The solution of this question for the general case remains
as a difficult open problem.

3. Monotone iterative method. In this section we consider the
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following boundary value problem for a nonlinear differential equation
with impulses:

(3.1)

u(n)(t) +
n−1∑
i=1

aiu
(i)(t) = f(t, u(t)) for a.e. t ∈ I, t �= tk, k = 1, . . . , p

u(i)(t+k ) = u(i)(t−k ) + µik, k = 1, . . . , p; i = 0, . . . , n− 2
u(n−1)(t+k ) = u(n−1)(t−k ) + Ik(u(t−k )), k = 1, . . . , p

u(i)(0)− u(i)(T )− λi, i = 0, . . . , n− 1,




where f : I × R → R, Ik : R → R for k = 1, . . . , p, ai ∈ R,
i = 1, . . . , n − 1, λi ∈ R, i = 0, . . . , n − 1 and µik ∈ R for each
k = 1, . . . , p and i = 0, . . . , n− 2.
By defining appropriate concepts of upper and lower solutions, we are

able to obtain an existence result for (3.1) using the maximum principle
achieved in Section 2.

For it, define

DL = {u ∈ Wn
p : u

(i)(t+k )−u(i)(t−k ) = µik, k=1, . . . , p, i=0, . . . , n−2
and u(i)(0)− u(i)(T ) = λi, i=0, . . . , n−2}.

Let us observe that u ∈ Wn
p is a solution of (3.1) if and only if

u ∈ DL and L(u) = N(u), where L : Wn
p → L1(0, T ) × Rp+1 and

N : C0
p → L1(0, T )× Rp+1 are two operators defined by

L(u) =
(
Tn(u), {u(n−1)(t+k )− u(n−1)(t−k )}p

k=1, u
(n−1)(0)− u(n−1)(T )

)
,

N(u) =
(
f(·, u) + a0u, {Ik(u(t−k ))}p

k=1, λn−1

)
,

where Tn is the operator defined in (2.7).

In L1(0, T )× Rp+1 we are considering the norm given by

‖(g, x1, . . . , xp+1)‖ = ‖g‖1 + ‖(x1, . . . , xp+1)‖∞.

Next we introduce the concepts of lower and upper solutions for (3.1).
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Definition 3.1. We shall say that α is a lower solution of (3.1) if
α ∈ DL and L(α) ≤ N(α).

Analogously, an upper solution of (3.1) is a function β ∈ DL satisfying
L(β) ≥ N(β).

Here we are considering in L1(0, T )×Rp+1 the partial order defined
by

(g, x1, . . . , xp+1) ≤ (h, y1, . . . , yp+1) if g(t) ≤ h(t) for a.e. t ∈ I

and xi ≤ yi for all i = 1, . . . , p+ 1.

With previous notations, we have the following direct consequence of
Lemma 2.3.

Proposition 3.1. Let a1, . . . , an−1 ∈ R be fixed. Suppose a0 > 0
such that Tn is inverse positive on Fn, and let v1, v2 ∈ DL such that
Lv1 ≤ Lv2. Then v1 ≤ v2.

This proposition reads that L is inverse positive on DL. Now,
following standard arguments, see the proof of [4, Theorem 3.1], it
is not difficult to prove the following result for problem (3.1).

Theorem 3.1. Let α and β be respectively a lower and an upper
solution of (3.1) with α ≤ β. Assume that the following conditions are
satisfied:

(H1) f is a Carathéodory function.

(H2) f(t, u) − f(t, v) ≥ −a0(u − v) for almost every t ∈ I and
α(t) ≤ v ≤ u ≤ β(t) with a0 > 0 such that Tn is inverse positive
on Fn.

(H3) Ik are continuous and nondecreasing functions for each k =
1, . . . , p.

Then there exist two monotone sequences {αs} and {βs} such that
α0 = α ≤ αs ≤ βs ≤ β0 = β for every s ∈ N which converge uniformly
to the minimal and the maximal solutions of (3.1) on [α, β], respectively,
being [α, β] = {u ∈ C0

p : α ≤ u ≤ β}.
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As in [1], one can prove the following result.

Theorem 3.2. The assertion proved in Theorem 3.1 is optimal
in the sense that, for all f a Carathéodory function that does not
satisfy condition (H2), we can find α, β, λi, i = 0, . . . , n − 1 and µij,
i = 0, . . . , n−1, j = 1, . . . , p, for which no solution exists lying between
α and β.

Remark 3.1. Note that if β ≤ α we obtain that the monotone iterative
method is valid for the problem (3.1) when the function f satisfies the
following condition:

f(t, u)− f(t, v) ≤ −a0(u− v) for a.e. t ∈ I,

β(t) ≤ v ≤ u ≤ α(t),

with a0 < 0 such that Tn is inverse negative on Fn.

This property is optimal in the sense cited in Theorem 3.2.

Remark 3.2. For µik = 0, Ik ≡ 0, k = 1, . . . , p, i = 0, . . . , n − 2,
problem (3.1) is a boundary value problem for classical nth order
differential equations without impulses. Thus Theorem 3.1 generalizes
the monotone iterative technique for this kind of boundary value
problem [2, Theorem 2.1].

Remark 3.3. We also note that the nonlinear problem considered in
the present section differs from the one studied in [4], where the case
u(i)(t+k ) = Ik(u(tk)), k = 1, . . . , p, i = 0, . . . , n− 1, was investigated.

Finally, we present an example in order to illustrate our main results.

Example 3.1. Let us consider the following boundary value problem
for a nonlinear second order differential equation with one impulse:

(3.2)

u′′(t)− 2u′(t) = sin(u(t)) + h(t), t ∈ I, t �= π

u(π+) = u(π−)− π/2
u′(π+) = u′(π−)
u(0)− u(2π) = π/2, u′(0)− u′(2π) = 0



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where I = [0, 2π] and

h(t) =
{
sin(t) t ∈ [0, π],
0 t ∈ (π, 2π].

It is easy to prove that α and β defined by

α(t) =
{

π/2 t ∈ [0, π],
0 t ∈ (π, 2π]

and

β(t) =
{
3π/2 t ∈ [0, π],
π t ∈ (π, 2π],

are, respectively, a lower and an upper solution of Problem (3.2) and
α ≤ β on I.

Moreover, T2(u) = u′′ − 2u′ + u is inverse positive on F2, see [13].
Then, taking a0 = 1 and using the mean value theorem, it is easily seen
that f(t, u)− f(t, v) ≥ −a0(u− v) for all t ∈ I and v ≤ u.

Thus Theorem 3.1 applies and we can approximate the extremal
solutions of (3.2) on [α, β] by using the monotone iterative technique.

From Remark 3.3 it is obvious that the results of [4] are not valid for
Problem (3.2).
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