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DIFFERENTIAL EQUATIONS HAVING
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ABSTRACT. We discuss the self-adjoint spectral theory
associated with a certain fourth-order non-Lagrangian sym-
metrizable ordinary differential equation l4[y] = λy that has
a sequence of orthogonal polynomial solutions. This example
was first discovered by Jung, Kwon, and Lee. In their pa-
per, they derive the remarkable formula for these polynomials
{Qn(x)}∞n=0 :

Qn(x) = n

∫ x

1

PLn−1(t)dt, n ∈ N,

where {PLn(x)}∞n=0 are the left Legendre type polynomials.
The left Legendre type polynomials and the spectral analysis
of the associated symmetric fourth-order differential equation
that they satisfy have been extensively studied previously by
Krall, Loveland, Everitt, and Littlejohn.

Despite the non-symmetrizability of the expression l4[·], we
show that there exists a self-adjoint operator S in a certain
Hilbert space H generated by l4[·] that has the “polynomial”
sequence of ordered pairs {〈Qn(x), Q′

n(−1)〉}∞n=0 as a com-
plete set of eigenfunctions in H. This operator S is related
to the derivative of the self-adjoint operator T which has the
left Legendre type polynomials {PLn(x)}∞n=0 as eigenfunc-
tions. We also develop a left-definite theory for l4[·]. This
unexpected example casts further difficulties in the efforts to
extend and generalize certain classification results in orthog-
onal polynomials and differential equations.
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1. Introduction. The theory of self-adjoint extensions of the min-
imal operator L0 generated from a real, ordinary differential expres-
sion l[·] is well known and extensively described in the classic texts of
Naimark [22] and Akhiezer and Glazman [1]. These extensions are
studied in a Hilbert space L2

w(I) of functions that are Lebesgue mea-
surable and square integrable with respect to some positive (almost
everywhere), locally integrable function w(x) on some interval I ⊂ R.
Moreover, and this is the key for the existence of self-adjoint exten-
sions of L0 in L2

w(I), the expression l[·] is symmetrizable (see [20]) in
the sense that w(x)l[·] is formally Lagrangian symmetric.

In this paper, we study a certain fourth-order differential expression
l4[·], discovered by Jung, Kwon and Lee (see [7]), that is not symmetriz-
able in the Lagrangian sense and, yet, there is a self-adjoint realization
of this expression in some Hilbert-Sobolev space H. Moreover, the
expression l4[·] is important from the viewpoint of the theory of or-
thogonal polynomials; indeed, a sequence {Qn(x)}∞n=0 of polynomial
eigenfunctions of l4[·] exists that generates the complete orthogonal set
{〈Qn(x), Q′

n(−1)〉}∞n=0 in H.

Besides being an unusual example from the theory of self-adjoint dif-
ferential operators, this is an unexpected example from the viewpoint
of orthogonal polynomials. Indeed, until this example was found, all
known differential equations having a sequence of orthogonal polyno-
mial solutions are symmetrizable in the sense of Lagrange. In fact,
Kwon and Yoon (see [18]) show that if a differential equation l[y] = λy
has a sequence of orthogonal polynomial solutions that are orthogonal
with respect to a bilinear form of the type

(1.1)
∫
R

f(x)ḡ(x) dµ,

where µ is a (possibly signed) Borel measure, then l[·] is Lagrangian
symmetrizable. Although, the orthogonality of the above sequence
{Qn(x)}∞n=0 is not with respect to a form of the type (1.1), it was
generally believed that the Lagrangian symmetrizability of l[·] would
follow from any orthogonalizing bilinear form; see [5] for a general
discussion of orthogonal polynomial solutions to differential equations.
Furthermore, as we show later in this paper, this example is not a
singular, isolated one; in fact, we produce more examples with this
phenomenon later in this paper.
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It is precisely structural theorems of the type proven by Kwon and
Yoon in [18] that are needed to understand and solve some important,
and open, classification theorems in the area of orthogonal polynomials
and differential equations. One of these is the so-called BKS(N,M)
problem (see [19]), named after Bochner and Krall for their early inves-
tigations into orthogonal polynomial solutions to differential equations
(see [2] and [13]):

Problem 1.1. The BKS(N,M) problem. Let N ∈ N and
M ∈ N0. Classify, up to both a real and a complex linear change of
variables, all ordinary differential expressions of order N of the form

(1.2)
LN [y](x) := aN (x)y(N)(x) + aN−1(x)y(N−1)(x) + · · ·

+ a0(x)y(x)

for which

(i) there exists a polynomial pn(x) of degree n (for each n ∈ N0)
satisfying

(1.3) LN [pn](x) = λnpn(x),

for some complex number λn, and

(ii) there exist M + 1 moment functionals σ0, σ1, . . . , σM , with
σM 
= 0, (equivalently, M +1 signed Borel measures µ0, µ1, . . . µM with∫
R
|p|2 dµM 
= 0 for some polynomial p 
= 0) such that the polynomials

{pn(x}∞n=0 are orthogonal with respect to the Sobolev bilinear form

(1.4)

(p, q)M :=
M∑

k=0

〈σk, p
(k)q(k)〉

(
equivalently, (p, q)M =

M∑
k=0

∫
R

p(k)q(k) dµk

)
;

that is to say, there exists constants Kn 
= 0, n ∈ N0 such that

(pn, pm)M = Knδn,m,

where δn,m is the Kronecker delta function. If {pn(x)}∞n=0 satisfies (1.3)
and is orthogonal with respect to a bilinear form of the type (1.4), we
write {pn} ∈ BKS(N,M).
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At the time of this writing, only theBKS(2, 0), BKS(2, 1), BKS(2, 2)
and BKS(4, 0) problems have been solved (see [19] for specific refer-
ences). Indeed, Bochner [2] and Krall [14] solved the BKS(2, 0) prob-
lem under a complex linear change of variable, Kwon and Littlejohn
[15] solved the BKS(2, 0) problem under a real linear change of vari-
able, Krall [13] solved the BKS(4, 0) problem (under a complex linear
change of variable), Kwon and Littlejohn [16] solved the BKS(2, 1)
problem, and Kwon, Littlejohn and Lee [17] determined the contents
of the BKS(2, 2) set. Furthermore, examples are known for many of
the other BKS classes. All the equations in these known classes are
symmetrizable and have a self-adjoint realization in some Hilbert or
Krein space.

The structure of the BKS(N, 0) class, thanks in part to results as
in [18], seems to be fairly well understood although no global solution
to this problem is currently known. In fact, the exact contents of
BKS(6, 0) are not explicitly known. Several conjectures about the
content of this class are made in [5]; in particular, Conjecture 5.3
in [5] states that the only orthogonal polynomials (up to a complex
linear change of variable) in the BKS(N, 0) class are the Hermite,
Laguerre, Laguerre type, Jacobi, Jacobi type, and Bessel polynomials
for certain restricted values of the polynomial parameters. Significant
progress has also been made on determining the minimal order N of
the corresponding differential equations; for example, see [8] and [10].

While it is possible to make reasonable conjectures for BKS(N, 0),
it is not possible, at the moment, to make educated conjectures about
BKS(N,M) for M ≥ 1 and N > 2. Many results for these classes
are surprising and seemingly roguish in nature. Indeed, the example
produced by Jung, Kwon, and Lee has dashed all hopes for a pattern
of symmetrizability that seemed to be emerging in this general classi-
fication problem.

The contents of this paper are as follows. In Section 2 we discuss
the main result in [7] that led these authors to the discovery of
the differential expression l4[·]. Also in this section, we will study
the properties of the polynomials {Qn(x)}∞n=0 and their relationship
with the left Legendre type polynomials {PLn(x)}∞n=0 (see [6] and
[21]). As we will see, the derivatives of the polynomials {Qn(x)}∞n=0

are the left Legendre type polynomials, which satisfy a fourth-order
formally symmetric equation. It is this reason that there is a self-
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adjoint realization of the nonsymmetrizable expression l4[·]. Section 3
will deal with the spectral analysis of the fourth-order left Legendre
type differential expression m4[y]; we only state the main results
of this analysis since this work was previously established in [6],
[12] and [21]. In Section 4 we introduce the appropriate Sobolev-
Hilbert space H where both the self-adjoint realization of l4[·] and
the orthogonality of the polynomials {Qn(x)}∞n=0 (to be precise, the
sequence of ordered pairs {〈Qn, Q

′
n(−1)〉}∞n=0) live. Section 5 will deal

with the self-adjoint operator S in H and its properties, generated
by l4[·]. Section 6 will be concerned with the left-definite theory
generated from the expression l4[·] and a new type of orthogonality
for {Qn(x)}∞n=0. Lastly, in Section 7, we discuss further examples of
nonsymmetrizable differential equations having orthogonal polynomial
solutions in theBKS(6, 1) andBKS(8, 1) classes as well as a conjecture
concerning the BKS(N, 1) class. Also, in this section, we give a
generalization of the main Jung, Kwon, Lee theorem (see Theorem
2.1 below). From this generalization, we produce a new example of a
nonsymmetrizable fourth-order differential equation having a sequence
of orthogonal polynomial solutions in the BKS(4, 2) class.

2. The result of Jung, Kwon and Lee. Recall (see [3]) that a
moment functional τ : P → R is a real-valued linear function on the
set of one-variable polynomials P. By Boas’s theorem (see [3, p. 74])
τ has a representation as

〈τ, p〉 =
∫
R

p(x) dµ, p ∈ P,

where µ is some finite, (possibly) signed Borel measure. The moments
of τ are the numbers

τn := 〈τ, xn〉, n ∈ N0.

We say that τ is quasi-definite, respectively, positive-definite, if, for
each n ∈ N0,

det(τi+j)ni,j=0 
= 0 respectively, det(τi+j)ni,j=0 > 0.

A sequence of polynomials {pn(x)}∞n=0, where deg(pn) = n for each
n ∈ N0, is said to be an orthogonal polynomial sequence with respect
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to τ if there exist nonzero numbers Kn, n ∈ N0, such that 〈τ, pnpm〉 =
Knδn,m, n,m ∈ N0, where δn,m is the Kronecker delta function. It
is well known (see [3, Chapter I, Section 3]) that τ is quasi-definite if
and only if there exists an orthogonal polynomial sequence with respect
to τ .

For what follows in this section, the notation 〈τ, pq〉 denotes the action
of the moment functional τ on the polynomial p(x)q(x). Beginning in
Section 4, the notation 〈f, c〉 will denote an ordered pair in a certain
inner product space, with the first component being a function f and
the second component of this pair being a complex number c; the
contexts of these two identical notations should be clear and should
not cause any confusion.

In [7], the authors prove the following theorem:

Theorem 2.1. Consider the Sobolev bilinear form

(2.1) φ(p, q) = λp(c)q(c) + 〈τ, p′q′〉
where τ is a quasi-definite moment functional and λ, c are real con-
stants. Then φ(·, ·) is quasi-definite if and only if λ 
= 0. Moreover, let
{Pn(x)}∞n=0 be the monic orthogonal polynomial sequence with respect
to τ and, for fixed λ 
= 0, let {Qn(x)}∞n=0 denote the monic orthogonal
polynomial sequence associated with φ(·, ·). Then

Q0(x) = 1; Qn(x) = n

∫ x

c

Pn−1(t) dt, n ∈ N.

In particular, Qn(c) = 0 for each n ∈ N.

(i) Suppose further that {Pn(x)}∞n=0 ∈ BKS(N, 0); specifically,
suppose that y = Pn(x) satisfies the N th-order differential equation

mN [y](x) = µny(x), n ∈ N0,

where

(2.2) mN [y](x) = aN (x)y(N)(x)+aN−1(x)y(N−1)(x)+· · ·+a1(x)y′(x).

If

(2.3)
N−k∑
j=0

(−1)ja(j)
k+j(c) = 0, 1 ≤ k ≤ N,
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then {Qn(x)}∞n=0 ∈ BKS(N, 1) with y = Qn(x) satisfying the N th-
order differential equation

lN [y](x) = λny(x), n ∈ N0,

where

(2.4) lN [y](x) = bN (x)y(N)(x)+ bN−1(x)y(N−1)(x)+ · · ·+ b1(x)y′(x),

with the coefficients of lN [·] being given by

(2.5) bk(x) =
N−k∑
j=0

(−1)ja(j)
k+j(x), 1 ≤ k ≤ N,

and
λn = µn−1 + b′1(x), µ−1 = 0; n ∈ N0.

Moreover,

(2.6) bk(c) = 0, 1 ≤ k ≤ N,

and, formally, l′N [y] = mN [y′].

(ii) Conversely, suppose that {Qn(x)}∞n=0 ∈ BKS(N, 1) with y =
Qn(x) satisfying the N th-order differential equation

lN [y](x) = λny(x),

where lN [·] is given in (2.4). Then the coefficients of lN [·] satisfy (2.6).
Furthermore {Pn(x)}∞n=0 ∈ BKS(N, 0) with y = Pn(x) satisfying

mN [y](x) = µny(x), n ∈ N0,

where mN [·] is given in (2.2) with the coefficients satisfying

ak(x) =
{
bN (x) for k = N

b′k+1(x) + bk(x) for 1 ≤ k ≤ N − 1,

and
µn = λn+1 − b′1(x), n ∈ N0.
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Moreover, (2.3) is satisfied and, formally, l′N [y] = mN [y′].

Jung, Kwon and Lee applied this theorem to obtain a new orthogonal
polynomial sequence {Qn(x)}∞n=0 in the BKS(4, 1) class. Indeed, from
Theorem 2.1, the associated polynomial set {Pn(x)}∞n=0 belongs to the
BKS(4, 0) class and, hence, are necessarily one of the polynomial sets
in the BKS(4, 0) class. The only fourth-order equation from this class
that fits the conditions of Theorem 2.1 is

(2.7)

m4[y](x) := (x2 − 1)2y(4) + 8x(x2 − 1)y′′′

+ (x+ 1)((4A+ 14)x− 4A− 10)y′′

+ ((8A+ 4)x+ 4)y′ + ky

=
(
(1− x2)2y′′

)′′
− 2 [(1− x) ((2A+ 1)x+ 2A+ 3) y′]′ + ky,

where A 
= 0 and k are fixed constants. The expression m4[·] is called
the left Legendre type differential expression. For each n ∈ N0, the
equation

m4[y](x) = µny(x),

where

(2.8) µn = n(n+ 1)(n2 + n+ 4A) + k

has a polynomial solution PLn(x) of degree n. These polynomials are
called the left Legendre type polynomials; the nth degree monic left
Legendre type polynomial y = PLn(x) is explicitly given by

(2.9)

PLn(x) :=
n∑

j=0

(−1)j 2
n−j(n!)2(n+ j)!(n2 + n+ 2A− j)

(2n)!(j!)2(n− j)!(n2 + 2A)
(1− x)j ,

n ∈ N0.

In terms of the general Jacobi type polynomials studied by Koorn-
winder [11], we have

(2.10) PLn(x) = P (0,0,(1/A),0)
n (x), n ∈ N0.
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Furthermore, when A > 0, the left Legendre type polynomials form a
complete orthogonal set in the Hilbert space L2

µ[−1, 1) defined by

(2.11)

L2
µ[−1, 1) := {f : [−1, 1) → C | f is Lebesgue msble and (f, f)µ < ∞},

where the positive-definite inner product (·, ·)µ is defined by

(2.12)

(p, q)µ :=
∫

[−1,1)

p(x)q(x)dµ =
p(−1)q̄(−1)

A

+
∫ 1

−1

p(x)q(x) dx, f, g ∈ L2
µ[−1, 1).

In fact, they satisfy the following orthogonality relation:

(2.13)
(PLn, PLm)µ =

(n!)422n+1(n2 + 2n+ 2A+ 1)
(2n+ 1)!(2n)!(n2 + 2A)

δn,m,

n,m ∈ N0.

It follows from the conditions of the above theorem that:

(i) c = 1,

(ii) the monic polynomials {Qn(x)}∞n=0 are given by

(2.14) Q0(x) = 1; Qn(x) = n

∫ x

1

PLn−1(t) dt, n ∈ N,

and, from (2.5),

(iii) the fourth-order differential expression l4[·] is given explicitly by

(2.15)
l4[y](x) := (x2 − 1)2y(4) + 4x(x2 − 1)y′′′

+ 2(x− 1)[(1 + 2A)x+ 2A+ 3]y′′ + ky,

and satisfies

(2.16) l′4[y] = m4[y′].

Observe that l4[·] is not Lagrangian symmetrizable; indeed, this follows
since there is no first-order derivative term in the expression. On the
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other hand, from (2.7), m4[·] is formally Lagrangian symmetric. For
each n ∈ N0, y = Qn(x) satisfies

(2.17) l4[Qn](x) = λnQn(x),

where

(2.18) λn = n(n− 1)(n2 − n+ 4A) + k, n ∈ N0.

Furthermore, from (2.1) and (2.2), these polynomials are orthogonal
with respect to the Sobolev inner product

(2.19) (f, g)1 := f(1)ḡ(1) +
1
A
f ′(−1)g′(−1) +

∫ 1

−1

f ′(x)g′(x) dx.

In fact, (Q0, Q0)1 = 1 and

(2.20)

(Qn, Qm)1 =
(n!)2((n− 1)!)222n−1(n2 + 2A)

(2n− 1)!(2n− 2)!(n2 − 2n+ 2A+ 1)
δn,m, n,m ∈ N0.

3. Spectral analysis of m4[·]. In this section, we review the
work found in [6], [12] and [21] on the spectral analysis of the self-
adjoint operator generated by m4[·] having the left Legendre type
polynomials (2.9) as eigenfunctions. For a further reference, a complete
and comprehensive treatment of the spectral study of the Legendre type
polynomials, which satisfy the fourth-order differential equation

(x2 −1)2y(4)+8x(x2 −1)y(3)+(4A+12)(x2−1)y′′+8Axy′+ky = λy,

can be found in [4]; many of the arguments used in [4] carry over
with some modifications to the spectral study of the left Legendre type
differential equation (2.7).

Until further notice, we will henceforth assume that A and k are fixed,
positive constants (in Section 7 we will, at one point, set A = −1).
From the orthogonality of {PLn(x)}∞n=0, the study of any self-adjoint

operator generated from m4[·], having these polynomials as eigenfunc-
tions, is necessarily in the Hilbert space L2

µ[−1, 1). Even though the
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classical Glazman-Naimark-Krein theory [22], developed for the classi-
cal Lebesgue-Hilbert space L2(−1, 1), cannot be directly applied to the
spectral study of m4[·] in L2

µ[−1, 1), this theory is essential in our ul-
timate construction of the self-adjoint operator T in L2

µ[−1, 1), having
the left Legendre type polynomials as eigenfunctions.

To begin, the maximal domain ∆ ⊂ L2(−1, 1) associated with m4[·]
is defined to be

(3.1)
∆ = {f : (−1, 1) −→ C | f (j) ∈ ACloc(−1, 1),

j = 0, 1, 2, 3; f,m4[f ] ∈ L2(−1, 1)}.
For any f, g ∈ ∆, we have Green’s formula

(3.2)
∫ +1

−1

[m4[f ](x)ḡ(x)− f(x)m4[g](x)] dx = [f, g](x) |1−1,

where [·, ·] is the sesquilinear concomitant defined by

(3.3)
[f, g](x)
:=

{
[(1− x2)2f ′′(x)]′ − 2(1− x)[(2A+ 1)x+ 2A+ 3]f ′(x)

}
ḡ(x)

− {
[(1− x2)2ḡ′′(x)]′ − 2(1− x)[(2A+ 1)x+ 2A+ 3]ḡ′(x)

}
f(x)

− (1− x2)2 {f ′′(x)ḡ′(x)− ḡ′′(x)f ′(x)} , x ∈ (−1, 1).
Furthermore, for any compact interval [α, β] ⊂ (−1, 1), we have Dirich-
let’s formula

(3.4)∫ β

α

m4[f ](x)ḡ(x) dx

=
[{
[(1− x2)2f ′′(x)]′ − 2(1− x)[(2A+ 1)x+ 2A+ 3]f ′(x)

}
·ḡ(x)− (1− x2)2f ′′(x)ḡ′(x)

]β

α

+
∫ β

α

{
(1− x2)2f ′′(x)ḡ′′(x) + 2(1− x)[(2A+ 1)x+ 2A+ 3]

· f ′(x)ḡ′(x) + kf(x)ḡ(x)
}
dx.

Note that, by definition of ∆, the limits limx→±1[f, g](x) := [f, g](±1)
exist and are finite for all f, g ∈ ∆. In [6] and [21], the following
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theorem is established concerning smoothness properties of functions
in ∆.

Theorem 3.1. Let f, g ∈ ∆. Then

(i) f ′′ ∈ L2(−1, 0] so that f, f ′ ∈ AC[−1, 0];
(ii) limx→−1[(1− x2)2f ′′(x)]′ = 0;

(iii) limx→−1(1− x2)2f ′′(x)ḡ′(x) = 0;

(iv) limx→−1[f, g](x) = −8 [f ′(−1)ḡ(−1)− ḡ′(−1)f(−1)].

In order to define the self-adjoint operator T in L2
µ[−1, 1), generated

from m4[·], having the Legendre type polynomials {PLn(x)}∞n=0 as
eigenfunctions, it is necessary to define the following two “Glazman
boundary” functions and to consider a certain subspace of ∆. Indeed,
construct h1, h2 ∈ C4[−1, 1] ⊂ ∆ such that

(3.5)

h1(x) =
{ 0 for x near −1
1 for x near 1,

h2(x) =
{
0 for x near −1
1− x for x near 1.

Define

(3.6) δ := {f ∈ ∆ | [f, hj ](1) = 0, j = 1, 2}.

An elementary calculation shows that {PLn(x)}∞n=0 ⊂ δ; consequently,
since the space of polynomials P is dense in L2

µ[−1, 1], we see that δ is
a dense subspace of L2

µ[−1, 1]. The following theorem (see [6] and [21])
shows that functions in δ enjoy rather surprising smoothness conditions
on the closed interval [−1, 1].

Theorem 3.2. Suppose f, g ∈ δ. Then

(i) f ′′ ∈ L2(−1, 1) so that f, f ′ ∈ AC[−1, 1];
(ii) limx→±1[(1− x2)2f ′′(x)]′ = 0;

(iii) limx→±1(1− x2)2f ′′(x)ḡ′(x) = 0;

(iv) limx→+1[f, g](x) = 0.
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From Theorems 3.1 and 3.2, it follows that Green’s formula, restricted
to functions f, g ∈ δ, reduces to

(3.7)
∫ +1

−1

[
m4[f ](x)ḡ(x)− f(x)m4[g](x)

]
dx

= 8 [f ′(−1)ḡ(−1)− f(−1)ḡ′(−1)].
Moreover, from Theorem 3.2 (i), (ii), (iii) and (iv), we deduce from
(3.4) that, for f, g ∈ δ,

(3.8)
∫ +1

−1

m4[f ](x)ḡ(x) dx

=
∫ +1

−1

{
(1− x2)2f ′′(x)ḡ′′(x) + 2(1− x)[(2A+ 1)x+ 2A+ 3]

· f ′(x)ḡ′(x) + kf(x)ḡ(x)
}
dx

+ 8f ′(−1)g(−1).
We are now in a position to define the operator T in L2

µ[−1, 1), gen-
erated from m4[·], having the Legendre type polynomials as eigenfunc-
tions.

Definition 3.1. Let T : D(T ) ⊂ L2
µ[−1, 1) → L2

µ[−1, 1) be the
operator defined by

(3.9)
T [f ](x) =

{− 8Af ′(−1) + kf(−1) if x = −1
m4[f ](x) for a.e. x ∈ (−1, 1)

f ∈ D(T ) := δ,

where δ is defined in (3.6).

An elementary calculation shows, for each n ∈ N0, that T [PLn](x) =
µnPLn(x) where µn is defined in (2.8). Notice, from the definition of
T and (3.8), we have

(T [PLn], PLm)µ
= k(PLn, PLm)µ

+
∫ 1

−1

{
(1− x2)2PL′′

n(x)PL
′′
m(x) + 2(1− x)((2A+ 1)x+ 2A+ 3)

· PL′
n(x)PL

′
m(x)

}
dx,
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and, in particular, that

(3.10)

k(PLn, PLm)µ +
∫ 1

−1

{
(1− x2)2PL′′

n(x)PL
′′
m(x)

+ 2(1− x)((2A+ 1)x+ 2A+ 3)PL′
n(x)PL

′
m(x)

}
dx

=
(n!)422n+1(n2 + 2n+ 2A+ 1)(n(n+ 1)(n2 + n+ 4A) + k)

(2n+ 1)!(2n)!(n2 + 2A)
δn,m,

n,m ∈ N0.

This is the left-definite orthogonality relationship which will be dis-
cussed in further detail in Section 6 below.

Using (3.7), it is routine to check that T is symmetric in L2
µ[−1, 1).

In fact, T is self-adjoint as claimed in the next theorem (see [21] and
[4]). This fact, together with several key results needed to establish this
theorem below, holds the key for the spectral analysis of the expression
l4[·] in the Hilbert space H defined below in Section 4.

Theorem 3.3. For A, k > 0, the operator T , defined in (3.9), is a
self-adjoint operator in L2

µ[−1, 1).
Moreover, the spectrum of T is simple, discrete, and given by σ(T ) =

{µn | n ∈ N0}, where µn is defined in (2.8). The corresponding
eigenfunctions are the left Legendre type polynomials {PLn(x)}∞n=0.

Remark 3.1. The proof, given in [21, pp. 121 128] (see also [4]), of
the self-adjointness of the operator T involves several steps, including a
key application of the classical Glazman-Krein-Naimark (GKN) theory
(see [22, pp. 74 76]). Indeed, a self-adjoint operator N in the classical
Lebesgue space L2(−1, 1) is constructed having GKN boundary condi-
tions. Since this operator N is important for later use in this paper, we
now describe this operator and some of its properties. Since x = ±1 are
both regular singular points of m4[y] = 0, we can apply the method of
Frobenius to show that m4[·] is in the limit-4 case at x = 1 and in the
limit-3 case at x = −1. Hence, from the GKN theory, two appropriate
separated boundary conditions at x = 1 and one appropriate separated
boundary condition at x = −1 are needed in order to obtain a self-
adjoint operator in L2(−1, 1) generated from m4[·]. In particular, the
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operator N : L2(−1, 1) → L2(−1, 1) defined by

N [f ](x) = m4[f ](x), a.e. x ∈ (−1, 1),
f ∈ D(N) := {f ∈ ∆ | [f, h1](1) = [f, h2](1) = [f, h3](−1) = 0}

is self-adjoint, where h3 ∈ C4[−1, 1] is constructed so that

h3(x) =
{
1 x near −1
0 x near +1.

Moreover, N is bounded below in L2(−1, 1) by kI, where I is the
identity operator. Since k > 0, we can therefore conclude that
0 ∈ ρ(N), the resolvent set of N . From the method of Frobenius,
the indicial equation about x = −1 is (ρ − 2)(ρ − 1)ρ(ρ + 1) = 0 and
four linearly independent solutions of m4[y] = 0, expanded about the
point x = −1, have the following optimal forms:

ψ1(x) = (x+ 1)2
∞∑

n=0

an(x+ 1)n, (a0 = 1),

ψ2(x) = (x+ 1)
∞∑

n=0

bn(x+ 1)n + (x+ 1)2 log(1 + x)
∞∑

n=0

cn(x+ 1)n,(
b0 =

1
60
, c0 =

A

180

)
,

ψ3(x) =
∞∑

n=0

dn(x+ 1)n + (1 + x)2 log(1 + x)
∞∑

n=0

en(x+ 1)n,(
d0 = − 1

1800
, e0 =

−16A+ 2k
43200

)
,

ψ4(x) =
∞∑

n=0

fn(x+ 1)n−1 + log(1 + x)
∞∑

n=0

gn(x+ 1)n,(
fn = − 1

7200
, g0 = − 3A

7200

)
.

It is easy to see that ψi ∈ ∆ for i = 1, 2, 3. Moreover, we can choose
constants α1, α2, α3 ∈ C such that

(3.11) ψ(x) := α1ψ1(x) + α2ψ2(x) + α3ψ3(x)
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satisfies
[ψ, h1](1) = [ψ, h2](1) = 0,

where [·, ·] is the bilinear form defined in (3.3); that is to say, ψ ∈ δ.
It follows then that ψ /∈ D(N). For, if ψ ∈ D(N), then ψ is an
eigenfunction ofN corresponding to the eigenvalue λ = 0, contradicting
the fact that 0 ∈ ρ(N). By scalar multiplication and Theorem 3.1 (iv),
we can therefore assume that ψ′(−1) = 1.

Remark 3.2. Another key result in establishing the self-adjointness
of the operator T is the fact that the related symmetric operator
T1 : L2

µ[−1, 1) → L2
µ[−1, 1) defined by

T1[f ](x) =

{−8Af ′(−1) if x = −1
m4[f ](x) a.e. x ∈ (−1, 1)

D(T1) = δ

is onto L2
µ[−1, 1) and therefore is self-adjoint (see [1, Section 41]). In

particular, if g ∈ L2(−1, 1), there exists h ∈ δ such that m4[h](x) =
g(x) for x ∈ (−1, 1). This fact will be important in subsequent
discussions below.

4. The space H. The maximal vector space of functions for which
the bilinear form (·, ·)1, given in (2.19), is well-defined is

Y := {f : [−1, 1] −→ C | f ′(−1) exists and is finite;
f ′ exists a.e. x ∈ (−1, 1]; f ′ ∈ L2(−1, 1)}.

However, (Y, (·, ·)1) is not a Hilbert space; in fact, (·, ·)1 is only a pseudo
inner product on Y × Y . In this section we find the completion of this
space. To begin, define

(4.1) H0 := {f : [−1, 1] −→ C | f ∈ AC[−1, 1]; f ′ ∈ L2(−1, 1)},

and endow it with the inner product

(f, g)H0 := f(1)ḡ(1) +
∫ 1

−1

f ′(x)ḡ′(x) dx f, g ∈ H0.
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Lemma 4.1. The space (H0, (·, ·)H0) is a Hilbert space.

Proof. Suppose {fn}∞n=1 ⊂ H0 is Cauchy. In particular, {fn(1)}∞n=1 ⊂
C is Cauchy and {f ′

n}∞n=1 is Cauchy in L2(−1, 1). Hence, there exists
α ∈ C and f ∈ L2(−1, 1) such that

|fn(1)− α| −→ 0, n → ∞,

and ∫ 1

−1

|f ′
n(x)− f(x)|2 dx −→ 0, n → ∞.

Define g : [−1, 1] → C by

g(x) = α−
∫ 1

x

f(x) dx.

Then g ∈ AC[−1, 1]; moreover, g(1) = α and, for almost every
x ∈ [−1, 1], g′(x) = f(x) ∈ L2(−1, 1). Hence, g ∈ H0. Finally

‖fn − g‖2
H0

= |fn(1)− g(1)|2 +
∫ 1

−1

|f ′
n(x)− g′(x)|2 dx

= |fn(1)− α|2 +
∫ 1

−1

|f ′
n(x)− f(x)|2 dx

−→ 0, n→ ∞.

Let H := H0 ×C and, for ordered pairs 〈f, α〉 and 〈g, β〉 in H, define
the inner product (·, ·)H on H as

(〈f, α〉, 〈g, β〉)H := (f, g)H0 +
αβ

A
.

Observe that

(4.2) (〈f, f ′(−1)〉, 〈g, g′(−1)〉) = (f, g)1, f, g ∈ Y.

We now show that (H, (·, ·)H) is a complete Hilbert space and that
completion of Y in the norm generated from (2.19) is (H, (·, ·)H).
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Theorem 4.1. The space (H, (·, ·)H) is complete.

Proof. Suppose {〈fn, αn〉}∞n=0 is Cauchy inH. It follows that {f ′
n}∞n=0

is Cauchy in L2(−1, 1), {αn}∞n=0 is Cauchy in C, and {fn(1)}∞n=0 is
Cauchy in C. Hence there exist g ∈ L2(−1, 1), α, β ∈ C, such that

‖ f ′
n − g ‖2−→ 0, |αn − α| −→ 0, |fn(1)− β| −→ 0, n → ∞.

Define h : [−1, 1] → C by

h(x) = β −
∫ 1

x

g(t) dt, x ∈ [−1, 1].

Then h ∈ AC[−1, 1] and h′ = g ∈ L2(−1, 1) so h ∈ H0; consequently,
〈h, α〉 ∈ H. Moreover, noting that h(1) = β, we see that

‖ 〈h, α〉 − 〈fn, αn〉 ‖2
H =

|α− αn|2
A

+ |h(1)− fn(1)|2+ ‖ h′ − f ′
n ‖2

2

−→ 0 as n→ ∞.

In order to see the relationship between Y and H, we define the
operator P : Y → H by

P (f) =
〈
f(1)−

∫ 1

x

f ′(t) dt, f ′(−1)
〉
.

Notice, from (4.2), that

(4.3) (f, g)1 = (P (f), P (g))H , f, g ∈ Y ;

furthermore, if f ∈ Y and f ∈ AC[−1, 1], then P (f) = 〈f, f ′(−1)〉.

Theorem 4.2. The mapping P is a linear isometry onto H.
Hence, Y can be represented as the Hilbert space (H, (·, ·)H) through the
mapping P . More specifically, Y/ ker(P ) is isometrically isomorphic to
H.



SELF-ADJOINT OPERATORS 917

Proof. Clearly, P is linear and (4.3) shows that P is a pseudo-
distance preserving map between Y and P (Y ). It remains to show
that P (Y ) = H. Since the kernel of P is

ker(P ) = {f ∈ Y | ‖ f ‖H= 0},

it will follow that Y/ ker(P ) is isometrically isomorphic to H and hence
that H can be identified as the completion of Y under the isometry
P . Let (f, c) ∈ H. Since f ∈ AC[−1, 1], f is uniformly continuous on
[−1, 1]. Consequently, for each n ∈ N, there exists mn ∈ N such that
if x, y ∈ [−1, 1] and |x− y| ≤ 1/(n(n+ 1)mn), then

|f(x)− f(y)| ≤ 1
n(n+ 1)

.

For each n ∈ N, let tn = −1 + (1/n). For each n ∈ N and each
i ∈ {0, 1, . . . ,mn}, let un,i = ((mn − i)/mn)tn + (i/mn)tn+1. Observe
that

0 = t1 = u1,0 > u1,1 > · · · > u1,m1 = t2 = u2,0

> · · · > u2,m2 = t3 = u3,0 > · · ·
with the limit of elements in this ordering being −1. Define a function
h : [−1, 1] → C by

h(x) =


0 if x = 0
f(x)−f(un,i) + c(1+un,i) if x ∈ [un,i, un,i−1)

for some n ∈ N and 0 ≤ i ≤ mn

f(x) if x ∈ [0, 1].

Note that h(−1) = 0, h′(x) = f ′(x) almost everywhere x ∈ [−1, 1]
and h(1) = f(1). In particular, since f ∈ AC[−1, 1], we have
h(1)−∫ x

−1
h′(t) dt = f(1)−∫ x

−1
f ′(t) dt = f . Also, for x ∈ [un,i, un,i−1),

h(x)− h(−1)
x+ 1

= c+ c
un,i − x

x+ 1
+
f(x)− f(un,i)

x+ 1
.

Now |f(x)− f(un,i)| ≤ 1/(n(n+1)) since |x− un,i| ≤ |un,i−1 − un,i| =
1/(n(n+ 1)mn). Thus∣∣∣∣f(x)− f(un,i)

x+ 1

∣∣∣∣ ≤ 1
n(n+ 1)

1
tn+1 + 1

=
1
n
→ 0 as x → −1+,
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and ∣∣∣∣un,i − x

x+ 1

∣∣∣∣ ≤ 1
n(n+ 1)mn

1
tn+1 + 1

≤ 1
n
→ 0 as x → −1+.

Thus h′(−1) exists and equals c. Hence, h ∈ Y and P (h) = 〈f, c〉 so
that P is onto H.

Recall that P denotes the set of all (complex-valued) polynomials in
the real variable x. We now set out to show that the set

(4.4) PH := P (P) = {〈p, p′(−1)〉 | p ∈ P}

is dense in H.

Theorem 4.3. The set {〈Qn, Q
′
n(−1)〉}∞n=0 is a complete orthogonal

set in (H, (·, ·)H); here Qn(x) is the polynomial defined in (2.14).
Consequently, PH is dense in (H, (·, ·)H).

Proof. First, for any n,m ∈ N0, we have from (2.20) that

(〈Qn, Q
′
n(−1)〉, 〈Qm, Q

′
m(−1)〉)H

= Qn(1)Qm(1) +
1
A
Q′

n(−1)Q′
m(−1) +

∫ 1

−1

Q′
n(t)Q

′
m(t) dt

= (Qn, Qm)1

=
(n!)2((n− 1)!)222n−1(n2 + 2A)

(2n− 1)!(2n− 2)!(n2 − 2n+ 2A+ 1)
δn,m

so {〈Qn, Q
′
n(−1)〉}∞n=0 is an orthogonal set in (H, (·, ·)H). Suppose

〈f, α〉 ∈ H satisfies

(〈f, α〉, 〈Qn, Q
′
n(−1)〉)H = 0, n ∈ N0.

That is to say,

(4.5) f(1)Qn(1) +
1
A
Q′

n(−1)α+
∫ 1

−1

f ′(x)Q′
n(x) dx = 0, n ∈ N0.
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In particular, for n = 0, we see that f(1) = 0. Furthermore, from
(2.14), we have Q′

n(x) = nPLn−1(x) so (4.5) can be rewritten as

(4.6)
1
A
PLn−1(−1)α+

∫ 1

−1

f ′(x)PLn−1(x) dx = 0, n ∈ N.

If we let n = 1, then (4.6) implies that

(4.7)
α

A
+

∫ 1

−1

f ′(x) dx = 0.

It follows, since f(1) = 0 and f is absolutely continuous on [−1, 1], that

f(−1) = α

A
.

Hence we can rewrite (4.6) as

(4.8) f(−1)PLn−1(−1) +
∫ 1

−1

f ′(x)PLn−1(x) dx = 0, n ∈ N.

Integrating by parts, we see that (4.8) simplifies to∫ 1

−1

f(x)PL′
n−1(x) dx = 0, n ∈ N.

Since {PL′
n(x)}∞n=0 is a basis for the space of polynomials we have, by

Weierstrass’ approximation theorem, that f(x) ≡ 0 on [−1, 1]. Hence,
since A > 0, we see from (4.7) that α = 0, i.e., 〈f, α〉 = 〈0, 0〉 showing
that {〈Qn, Q

′
n(−1)〉}∞n=0 is a complete orthogonal set in (H, (·, ·)H).

The density of PH now follows, completing the proof of the theorem.

5. The self-adjoint operator S. From the fundamental relation
(2.16), it is natural to define the following two sets:

∆′ := {f : (−1, 1) −→ C | f ′ ∈ ∆}(5.1)

and

δ′ := {f : (−1, 1) −→ C | f ′ ∈ δ},(5.2)
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where ∆ and δ are defined in, respectively, (3.1) and (3.6). Since

(5.3)
∆′ = {f : (−1, 1) −→ C | f (j) ∈ ACloc(−1, 1),

j = 0, 1, 2, 3, 4; f ′, l′4[f ] ∈ L2(−1, 1)},
we can view ∆′ as the maximal domain of l4[·] in L2(−1, 1) endowed
with inner product

(f, g)′ :=
∫ 1

−1

f ′(t)ḡ′(t) dt.

Observe that
P ⊂ δ′,

where P is the space of all polynomials. The space δ′, as we will shortly
see, will prove crucial in developing the spectral theory of l4[·] in the
Hilbert spaceH, defined in the previous section. The next result follows
immediately from Theorem 3.1 and Theorem 3.2.

Theorem 5.1. Suppose f, g ∈ δ′. Then

(i) f ′′′ ∈ L2(−1, 1) so that f, f ′, f ′′ ∈ AC[−1, 1];
(ii) limx→±1[(1− x2)2f ′′′(x)]′ = 0;

(iii) limx→±1(1− x2)2f ′′′(x)g′′(x) = 0;

(iv) limx→+1[f ′, g′](x) = 0;

(v) limx→−1[f ′, g′](x) = −8[f ′′(−1)g′(−1)− g′′(−1)f ′(−1)].

Notice, from the definition of ∆′ and Theorem 3.2, that if f ∈ ∆′,
then f ′(−1) exists and both f and l4[f ] belong to H0, where H0 is
defined in (4.1). Consequently, 〈f, f ′(−1)〉 ∈ H and 〈l4[f ], c〉 ∈ H for
all f ∈ ∆′ and all c ∈ C. Moreover, from Theorem 5.1 and the fact
that we can write

l4[f ](x) = ((x2 − 1)2f ′′′(x))′ + 2(x− 1)[(1 + 2A)x+ 2A+ 3]
· f ′′(x) + kf(x), f ∈ δ′; x ∈ (−1, 1),

we have

(5.4) lim
x→1

l4[f ](x) = kf(1), f ∈ δ′.



SELF-ADJOINT OPERATORS 921

Define

(5.5) D := {〈f, f ′(−1)〉 | f ∈ δ′}.

Since PH ⊂ D ⊂ H, we see, from Theorem 4.4, that D is a dense
subspace of H.

Definition 5.1. The operator S : D(S) ⊂ H → H is given by

(5.6)
S[〈f, f ′(−1)〉] = 〈l4[f ],− 8Af ′′(−1) + kf ′(−1)〉

〈f, f ′(−1)〉 ∈ D(S) := D.

In this section we show that S is self-adjoint with discrete spectrum

σ(S) = {λn | n ∈ N0},

where λn is defined in (2.18). We begin by showing:

Theorem 5.2. The operator S is symmetric and bounded below by
kI in H, where I is the identity operator in H. In particular, 0 ∈ ρ(S),
the resolvent set of S. Furthermore, for each n ∈ N0, 〈Qn, Q

′
n(−1)〉 is

an eigenfunction of S corresponding to the eigenvalue λn.

Proof. Let 〈f, f ′(−1)〉, 〈g, g′(−1)〉 ∈ D. Then, from (5.4) and
Theorem 5.1, we have(
S [〈f, f ′(−1)〉] , 〈g, g′(−1)〉)

H

= (〈l4[f ],−8Af ′′(−1) + kf ′(−1)〉, 〈g, g′(−1)〉)H
= l4[f ](1)ḡ(1) +

1
A
(− 8Af ′′(−1) + kf ′(−1))ḡ′(−1)

+
∫ 1

−1

l′4[f ](x)ḡ
′(x) dx

= kf(1)ḡ(1) +
1
A
(− 8Af ′′(−1) + kf ′(−1))ḡ′(−1)

+
∫ 1

−1

m4[f ′](x)ḡ′(x) dx
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= kf(1)ḡ(1) +
1
A
(− 8Af ′′(−1) + kf ′(−1))ḡ′(−1)

+
∫ 1

−1

f ′(x)m̄4[g′](x) dx

+ lim
x→1

[f ′, g′](x)− lim
x→−1

[f ′, g′](x)

= kf(1)ḡ(1) +
1
A
(− 8Af ′′(−1) + kf ′(−1))ḡ′(−1)

+
∫ 1

−1

f ′(x)m4[g′](x) dx

+ 8f ′′(−1)ḡ′(−1)− 8f ′(−1)ḡ′′(−1)
= kf(1)ḡ(1)− 8f ′(−1)ḡ′′(−1) + k

A
f ′(−1)ḡ′(−1)

+
∫ 1

−1

f ′(x)l′4[g](x) dx

= f(1)l4[g](1) +
1
A
(− 8Ag′′(−1) + kḡ′(−1))f ′(−1)

+
∫ 1

−1

f ′(x)3′4[g](x) dx

=
(〈f, f ′(−1)〉, S [〈g, g′(−1)〉] )

H
,

showing that S is symmetric. Moreover, from (3.8), we see that for all
〈f, f ′(−1)〉 ∈ D,(
S

[〈f, f ′(−1)〉], 〈f, f ′(−1)〉)
H

= k |f(1)|2 + 1
A
(− 8Af ′′(−1) + kf ′(−1))f̄ ′(−1)

+
∫ 1

−1

m4[f ′](x)f
′
(x) dx

= k |f(1)|2 + 1
A
(− 8Af ′′(−1) + kf ′(−1))f̄ ′(−1) + 8f ′′(−1)f̄ ′(−1)

+
∫ +1

−1

{
(1− x2)2f ′′′(x)f̄ ′′′(x)

+ 2(1− x)[(2A+ 1)x+ 2A+ 3]f ′′(x)f̄ ′′(x)
}
dx

+ k

∫ 1

−1

f ′(x)f̄ ′(x) dx
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= k
(〈f, f ′(−1)〉, 〈f, f ′(−1)〉)

H

+
∫ +1

−1

{
(1− x2)2f ′′′(x)f̄ ′′′(x)

+ 2(1− x)[(2A+ 1)x+ 2A+ 3]f ′′(x)f̄ ′′(x)
}
dx

≥ k
(〈f, f ′(−1)〉, 〈f, f ′(−1)〉)

H
,

since the functions (1 − x2)2 and 2(1 − x)[(2A + 1)x + 2A + 3] are
nonnegative on [−1, 1]. This shows that S is bounded below by kI
in H. On account of (2.17), in order to show that the ordered pair
〈Qn, Q

′
n(−1)〉 is an eigenfunction of S for each n ∈ N0, it suffices to

show that
− 8AQ′′

n(−1) + kQ′
n(−1) = λnQn(−1).

Since y = PLn−1(x) satisfies m4[PLn−1](x) = (n(n−1)(n2−n+4A)+
k)PLn−1(x), we see that in particular

(5.7)
(n(n− 1)(n2 − n+ 4A) + k)PLn−1(−1)

= m4[PLn−1](−1)
= − 8APL′

n−1(−1) + kPLn−1(−1).
Substitution of Q′

n(−1)/n = PLn−1(−1) and Q′′
n(−1)/n = PL′

n−1(−1)
into (5.7) yields the result and completes the proof.

In order to show that S is self-adjoint in H, we first need to establish
the self-adjointness of the related operator S1 : H → H defined by

S1(〈f, f ′(−1)〉) = 〈l4[f ],− 8Af ′′(−1)〉
D(S1) = D.

Theorem 5.3. The operator S1 is self-adjoint.

Proof. The proof that S1 is symmetric is identical to the proof in
Theorem 5.2. To show that S1 is self-adjoint, we show that S1 is ontoH.
It will follow from [1, Section 41] that S1 is self-adjoint. Let 〈g, c〉 ∈ H;
notice that g ∈ AC[−1, 1] and g′ ∈ L2(−1, 1). From Remark 3.2, there
exists h ∈ δ such that

m4[h](x) = g′(x), a.e. x ∈ (−1, 1).
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Moreover let ψ(x) be the function defined in (3.11); then ψ ∈ δ,
ψ′(−1) 
= 0, and ψ is a solution of m4[y] = 0 on (−1, 1). Define
F : [−1, 1] → C by

(5.8)
F (x) =

∫ x

−1

h(t) dt−
∫ 1

−1

h(t) dt

+
g(1)
k

+
(8Ah′(−1) + c)

8Aψ′(−1)
∫ 1

x

ψ(t) dt,

so that

(5.9) F (1) =
g(1)
k

.

Since

F ′(x) = h(x)− (8Ah′(−1) + c)
8Aψ′(−1) ψ(x) ∈ δ,

we have that F ∈ δ′. We show that

S1(〈F, F ′(−1)〉) = 〈g, c〉.
Now

g′(x) = m4[h](x) = m4

[
F ′ +

(8Ah′(−1) + c)
8Aψ′(−1) ψ

]
(x)

= m4[F ′](x) = l′4[F ](x),

and hence
g(x) = l4[F ](x) +A, x ∈ [−1, 1],

for some constant A ∈ C. In particular, from (5.4) and (5.9), we see
that

g(1) = l4[F ](1) + A

= kF (1) +A

= g(1) +A,

so A = 0. That is to say,

(5.10) l4[F ](x) = g(x) on [−1, 1].
From Theorem 5.1, we have that F ′′ ∈ AC[−1, 1] and, from (5.8), we
have

F ′′(x) = h′(x)− (8Ah′(−1) + c)
8Aψ′(−1) ψ′(x)
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so that

(5.11) − 8AF ′′(−1) = − 8Ah′(−1) + (8Ah′(−1) + c)
ψ′(−1) ψ′(−1) = c.

From (5.10) and (5.11), we see that S1(〈F, F ′(−1)〉) = 〈g, c〉 showing
that S1 is onto.

We now define S2 : H → H by S2(〈f, c〉) = 〈0, kc〉 for all 〈f, c〉 ∈ H.
It is easy to see that S2 is symmetric (and bounded) in H and hence
self-adjoint.

Theorem 5.4. The operator S, defined in (5.6), is self-adjoint and
has, as a complete orthogonal set of eigenfunctions, the polynomial set
{〈Qn, Q

′
n(−1)〉}∞n=0. The spectrum is discrete and given by

σ(S) = {λn | n ∈ N0},
where λn is defined in (2.18).

Proof. The orthogonality and completeness of {〈Qn, Q
′
n(−1)〉}∞n=0 is

established in Theorem 4.4 while Theorem 5.2 contains a proof that the
ordered pairs 〈Qn, Q

′
n(−1)〉, n ∈ N0, are eigenfunctions. Notice that

S = S1+S2. Since both S1 and S2 are self-adjoint, they are both closed
operators. In fact, since S2 is also bounded, S is a closed symmetric
operator in H. Moreover, since S1 is self-adjoint, its deficiency indices
are both zero. Hence (from [22, Section 14.7]), since S1 is a closed
symmetric operator in H and S2 is a bounded, symmetric operator in
H, the operators S1 and S = S1 +S2 have the same deficiency indices.
That is to say, the deficiency indices of the closed symmetric operator S
are both zero. Consequently (from [22, Section 14.4]), S is self-adjoint.
Since λn → ∞ as n → ∞, it follows that the spectrum of S is discrete
and consists only of the eigenvalues {λn | n ∈ N0}.

6. Left-definite analysis of l4[·]. In order to develop the left-
definite theory of the expression l4[·], we first establish the following
lemma.

Lemma 6.1. ∆′ ⊂ ∆ and δ′ ⊂ δ.
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Proof. From (5.3), it is clear that δ′ ⊂ ∆′ ⊂ ∆. Let f ∈ δ′. Then,
from Theorem 3.1, limx→1[f, h1](x) exists and equals

lim
x→1

[f, h1](x) := lim
x→1

((1− x2)2f ′′(x))′,

where [·, ·] is defined in (3.3) and h1(x) is defined in (3.5). Suppose
that limx→1[f, h1](x) = c 
= 0. Without loss of generality, suppose that
c > 0. Then there exists x0 > 0 such that

((1− x2)2f ′′(x))′ >
c

2
:= C, x0 ≤ x < 1.

Integrating this inequality on [x0, x] yields

(1− x2)2f ′′(x) ≥ Cx+D

for some constant D. Dividing, we see that

f ′′(x) ≥ Cx+D

(1− x2)2
, x0 ≤ x < 1.

However, this contradicts the fact that f ′′ ∈ AC[−1, 1]. Hence

lim
x→1

[f, h1](x) = 0.

Using this fact, it follows immediately that

lim
x→1

[f, h2](x) = 0,

and we therefore have f ∈ δ.

Recall, from Theorem 5.2, that for 〈f, f ′(−1)〉, 〈g, g′(−1)〉 ∈ D,
(6.1)

(S
[〈f, f ′(−1)〉], 〈g, g′(−1)〉)H
= k(〈f, f ′(−1)〉, 〈g, g′(−1)〉)H
+

∫ +1

−1

{
(1− x2)2f ′′′(x)g′′′(x) + 2(1− x)[(2A+ 1)x+ 2A+ 3]

f ′′(x)ḡ′′(x)
}
dx.
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It is this identity that prompts the following definition.

Definition 6.1. The set H̃ is defined as:

H̃ := {f : [−1, 1] → C | f ∈ AC[−1, 1]; f ′ ∈ ACloc[−1, 1) ∩ L2(−1, 1);
f ′′ ∈ ACloc(−1, 1); (1− x)1/2f ′′, (1− x2)f ′′′ ∈ L2(−1, 1)},

and the set HLD is defined as

HLD = {〈f, f ′(−1)〉 | f ∈ H̃}.

For 〈f, f ′(−1)〉, 〈g, g′(−1)〉 ∈ HLD, define the inner product (·, ·)HLD

by

(〈f, f ′(−1)〉, 〈g, g′(−1)〉)HLD

:= k(〈f, f ′(−1)〉, 〈g, g′(−1)〉)H
+

∫ +1

−1

{
(1− x2)2f ′′′(x)ḡ′′′(x)

+ 2(1− x)[(2A+ 1)x+ 2A+ 3]f ′′(x)g′′(x)
}
dx.

We call the inner product space (HLD, (·, ·)HLD
) the left-definite space

associated with the expression l4[·].

Notice that H̃ ⊂ H0 and

(6.3) D ⊂ HLD ⊂ H,

where H = H0 × C is the Hilbert space defined in Section 4 and D is
the domain of S defined in (5.5). Moreover, from (6.1), we have

(6.4) (〈f, f ′(−1)〉, 〈g, g′(−1)〉)HLD
= (S(〈f, f ′(−1)〉), 〈g, g′(−1)〉)H

for all 〈f, f ′(−1)〉, 〈g, g′(−1)〉 ∈ D. In particular, from Theorems 4.4
and 5.2, we have the left-definite orthogonality relations

(〈Q0, Q
′
0(−1)〉, 〈Q0, Q

′
0(−1)〉)HLD

= k,
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and, for n,m ∈ N0, (n,m) 
= (0, 0),

(〈Qn, Q
′
n(−1)〉, 〈Qm, Q

′
m(−1)〉)HLD

=
(n(n− 1)(n2 − n+ 4A+ k))(n!)2((n− 1)!)222n−1(n2 + 2A)

(2n− 1)!(2n− 2)!(n2 − 2n+ 2A+ 1)
δn,m.

The following theorem can be established in the same fashion as in [5]
and [21]; we leave the details to the reader.

Theorem 6.1. (HLD, (·, ·)HLD
) is a Hilbert space.

It is not difficult to extend the identity in (6.4). Indeed, it can be
shown that

(S(〈f, f ′(−1)〉), 〈g, g′(−1)〉)H = (〈f, f ′(−1)〉, 〈g, g′(−1)〉)HLD

for 〈f, f ′(−1)〉 ∈ D, 〈g, g′(−1)〉 ∈ HLD,(6.6)

and

(〈f, f ′(−1)〉, S(〈g, g′(−1)〉))H = (〈f, f ′(−1)〉, 〈g, g′(−1)〉)HLD

for 〈f, f ′(−1)〉 ∈ HLD, 〈g, g′(−1)〉 ∈ D.(6.7)

We now define the operator R : HLD → HLD by

R(〈f, f ′(−1)〉) = R0(S)(〈f, f ′(−1)〉)
〈f, f ′(−1)〉 ∈ D(R) := HLD,

where R0(S) is the resolvent operator of S corresponding to the regular
point λ = 0 (see Theorem 5.2) that maps H onto D. From (6.3), notice
that R is well-defined on HLD and maps into HLD.

Theorem 6.2. The operator R is self-adjoint and 1 1. Conse-
quently, R−1 is a self-adjoint operator.

Proof. Since the domain of R is all of HLD, it suffices to show
that R is symmetric. Let 〈f, f ′(−1)〉, 〈g, g′(−1)〉 ∈ HLD. Since
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R0(S)(〈f, f ′(−1)〉) ∈ D, we see from (6.6) that

(R(〈f, f ′(−1)〉), 〈g, g′(−1)〉)HLD

= (R0(S)(〈f, f ′(−1)〉), 〈g, g′(−1)〉)HLD

= (S(R0(S)(〈f, f ′(−1)〉), 〈g, g′(−1)〉)H
= (〈f, f ′(−1)〉, 〈g, g′(−1)〉)H .

Similarly, using (6.7), it follows that

(〈f, f ′(−1)〉, R(〈g, g′(−1)〉)HLD
= (〈f, f ′(−1)〉, 〈g, g′(−1)〉)H ,

showing that R is symmetric. It is not difficult to see that R is 1 1 and
hence R−1 is self-adjoint.

The operator R−1 is called the left-definite operator associated with
the differential expression l4[·].

Theorem 6.3. For each n ∈ N0, 〈Qn, Q
′
n(−1)〉 is an eigenfunction

of R−1 associated with the eigenvalue λn, defined in (2.18). Hence R−1

is an unbounded operator. Moreover, the sequence {〈Qn, Q
′
n(−1)〉}∞n=0

forms a complete orthogonal set in HLD.

Proof. Since S(〈Qn, Q
′
n(−1)〉) = λn〈Qn, Q

′
n(−1)〉, it follows that

〈Qn, Q
′
n(−1)〉 = R(S(〈Qn, Q

′
n(−1)〉)) = λnR(〈Qn, Q

′
n(−1)〉).

Applying R−1 to both sides yields

R−1(〈Qn, Q
′
n(−1)〉) = λn〈Qn, Q

′
n(−1)〉.

The orthogonality of {〈Qn, Q
′
n(−1)〉}∞n=0 was established above in (6.5).

To show that this polynomial set is complete in HLD, suppose there
exists 〈f, f ′(−1)〉 ∈ HLD such that

(〈Qn, Q
′
n(−1)〉, 〈f, f ′(−1)〉)HLD

= 0, n ∈ N0.

From (6.6), we see that, for each n ∈ N0,

0 = (〈Qn, Q
′
n(−1)〉, 〈f, f ′(−1)〉)HLD

= (S(〈Qn, Q
′
n(−1)〉), 〈f, f ′(−1)〉)H

= λn(〈Qn, Q
′
n(−1)〉, 〈f, f ′(−1)〉)H .
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Since λn > 0 we find that

(〈Qn, Q
′
n(−1)〉, 〈f, f ′(−1)〉)H = 0, n ∈ N0.

However, from Theorem 4.4, {〈Qn, Q
′
n(−1)〉}∞n=0 is complete in H;

hence 〈f, f ′(−1)〉 = 〈0, 0〉 in H and, hence, in HLD as well.

7. Further results. As far as these authors know, the differential
equation (2.15) is the first example of a nonsymmetrizable differen-
tial equation having orthogonal polynomial eigenfunctions and a self-
adjoint realization in some Hilbert space. In this section, we offer two
more examples of this phenomenon; this will lead us to a conjecture
below concerning the BKS(N, 1) class. Lastly, in this section, we gen-
eralize Theorem 2.1 to connect the BKS(N, 0) and BKS(N, 2) classes
and illustrate this result with another new example.

As this paper shows, the left Legendre type polynomials
{P (0,0,(1/A),0)

n (x)}∞n=0 (see (2.10)) and the differential equation that
they satisfy produced the fourth-order differential expression l4[·] that is
the focus of this paper. We now show that the monic Jacobi type poly-
nomials {P (0,1,(1/A),0)

n (x)}∞n=0 and {P (0,2,(1/A),0)
n (x)}∞n=0, which satisfy,

respectively, sixth-order and eighth-order differential equations, will
produce two more examples of nonsymmetrizable equations with self-
adjoint realizations having orthogonal polynomial eigenfunctions.

The monic Jacobi type polynomials {P (0,1,(1/A),0)
n (x)}∞n=0 (see [11])

are in the BKS(6, 0) class. They satisfy the symmetrizable (with
symmetry factor f(x) = 1 + x) sixth-order differential equation

(7.1)

(x2 − 1)3y(6) + 3(1− x2)2(7x− 1)y(5) + 3(x2 − 1)(46x2 − 8x− 14)y(4)

+ 3(x+ 1)(110x2 − 116x+ 14)y(3)

+ 6(x+ 1)((4A+ 42)x− 4A− 30)y′′

+ ((72A+ 36)x− 24A+ 36)y′ + ky

= γny,

where γn = n(n + 2)(n4 + 4n3 + 5n2 + 2n + 24A) + k and A, k > 0.
These polynomials are orthogonal with respect to the inner product

(f, g)6 =
1
A
f(−1)ḡ(−1) +

∫ 1

−1

f(x)ḡ(x)(1 + x) dx.
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Equation (7.1) fits the hypotheses of Theorem 2.1 with c = 1. It follows
that the polynomials {Qn,6(x)}∞n=0 defined by Q0,6(x)(x) = 1 and

Qn,6(x)(x) = n

∫ x

1

P
(0,1,(1/A),0)
n−1 (x) dx, n ∈ N,

satisfy the sixth-order nonsymmetrizable differential equation

(x2 − 1)3y(6) + 3(1− x2)2(5x− 1)y(5) + 3(x2 − 1)(21x2 − 4x− 9)y(4)

+ 6(x− 1)(13x2 + 16x− 5)y(3)

+ 6(x− 1)((4A+ 3)x+ 4A+ 9)y′′

+ 24A(x− 1)y′ + ky

= τny,

where τn = n2(n4 − 2n2 +24A+1)+ k. Furthermore, the polynomials
{Qn,6(x)(x)}∞n=0 are orthogonal with respect to the inner product

φ6(p, q) = p(1)q̄(1) +
1
A
p′(−1)q̄′(−1) +

∫ 1

−1

p′(x)q′(x)(1 + x) dx.

Similarly, the monic Jacobi type polynomials {P (0,2,(1/A),0)
n (x)}∞n=0

satisfy the symmetrizable (with symmetry factor f(x) = (1 + x)2)
eighth-order differential equation

(x2 − 1)4y(8) + 4(x2 − 1)3(10x− 2)y(7) + 96(x2 − 1)2(6x2 − 2x− 1)y(6)

+ 96(x2 − 1)(39x3 − 15x2 − 21x+ 5)y(5)

+ 24(x+ 1)(471x3 − 627x2 + 93x+ 71)y(4)

+ 288(x+ 1)(51x2 − 58x+ 11)y′′′

+ 96(x+ 1)((4A+ 69)x− 4A− 51)y′′

+ 192((8A+ 3)x− 4A+ 3)y′ + ky

= ωny

where ωn = n(n+3)(n6 +9n5 +31n4 +51n3 +40n2 +12n+384A)+ k
and A, k > 0. These polynomials are orthogonal with respect to the
inner product

(f, g)8 =
1
A
f(−1)g(−1) +

∫ 1

−1

f(x)ḡ(x)(1 + x)2 dx.
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Equation (7.3) also fits the conditions of Theorem 2.1 with c = 1, and
hence the monic polynomials {Qn,8(x)(x)}∞n=0, given by Q0,8(x) = 1
and

Qn,8(x) = n

∫ x

1

P
(0,2,(1/A),0)
n−1 (x) dx n ∈ N,

satisfy the eighth-order nonsymmetrizable differential equation

(x2 − 1)4y(8) + 4(x2 − 1)3(8x− 2)y(7) + 16(x2 − 1)2(22x2 − 9x− 2)y(6)

+ 4(x2 − 1)(408x3 − 180x2 − 264x+ 84)y(5)

+ 24(x− 1)(131x3 + 95x2 − 103x− 27)y(4)

+ 192(x− 1)(11x2 + 14x− 7)y′′′

+ 96(x− 1)((4A+ 3)x+ 4A+ 9)y′′ + 768A(x− 1)y′ + ky

= νny,

where υn = n(n+1)(n6+3n5−n4−7n3+4n+384A)+k. Furthermore,
these polynomials are orthogonal with respect to the inner product

φ8(p, q) = p(1)q̄(1) +
1
A
p′(−1)q′(−1) +

∫ 1

−1

p′(x)q′(x)(1 + x)2 dx.

These two examples lead us to the following conjecture.

Conjecture 7.1. For each N ∈ N0, let {P (0,N,(1/A),0)
n (x)}∞n=0 be the

monic Jacobi type polynomial sequence which is orthogonal with respect
to the inner product

(p, q)N =
1
A
p(−1)q̄(−1) +

∫ 1

−1

p(x)q̄(x)(1 + x)N dx.

Define the monic polynomials {Qn,N (x)}∞n=0 by

Q0,N (x) = 1

Qn,N (x) = n

∫ x

1

P
(0,N,(1/A),0)
n−1 (t) dt, n ∈ N.

Then there exists a nonsymmetrizable differential expression l2N+4[·]
of order 2N + 4 having the polynomials {Qn,N (x)}∞n=0 as eigenfunc-
tions. Furthermore, there exists a self-adjoint operator, generated from
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l2N+4[·], in a Hilbert space generated from the inner product

φ2N+4(p, q) = p(1)q̄(1) +
1
A
p′(−1)q̄′(−1) +

∫ 1

−1

p′(x)q̄′(x)(1 + x)N dx.

In particular, for each N ∈ N0, {Qn,N (x)}∞n=0 ∈ BKS(2N + 4, 1).

We remark here that Koekoek and Koekoek [9] have recently ex-
plicitly computed the coefficients of the differential equation for the
general Jacobi type polynomials {P (α,β,M,N)

n (x)}∞n=0 for all parame-
ters α, β > −1 and M,N ≥ 0; these polynomials, studied in depth by
Koornwinder [11], are orthogonal with respect to the inner product

(p, q)α,β,M,N =Mp(−1)q̄(−1) +Np(1)q̄(1)

+
∫ 1

−1

p(x)q̄(x)(1− x)α(1 + x)β dx.

In particular, they show that the Jacobi type polynomials
{P (0,N,(1/A),0)

n (x)}∞n=0 ∈ BKS(2N + 4, 0) for each N ∈ N0.

We now consider an extension of Theorem 2.1; the proof is similar to
that given in [7].

Theorem 7.1. Consider the Sobolev bilinear form

ϕ(p, q) = λp(c)q̄(c) + µp′(c)q̄′(c) + 〈τ, p′′q̄′′〉,

where τ is a quasi-definite moment functional and λ, µ are real numbers.
Then ϕ(·, ·) is quasi-definite if and only if both λ and µ are nonzero. Let
{P̃n(x)}∞n=0 denote the monic orthogonal polynomials with respect to τ
and, for fixed nonzero real numbers λ and µ, let {Q̃n(x)}∞n=0 denote
the monic orthogonal polynomials with respect to ϕ(·, ·). Then

Q̃0(x) = 1; Q̃1(x) = x− c

Q̃n(x) = n(n− 1)
∫ x

c

∫ t

c

P̃n−2(z) dz dt, n ≥ 2.

In particular, Q̃1(c) = 0 and, for n ≥ 2, Q̃n(c) = Q̃′
n(c) = 0.
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(i) Suppose further that {P̃n(x)}∞n=0 ∈ BKS(N, 0); specifically,
suppose that y = P̃n(x) satisfies the N th-order differential equation

m̃N [y](x) = µny(x), n ∈ N0,

where

(7.4) m̃N [y](x) = aN (x)y(N)(x)+aN−1(x)y(N−1)(x)+· · ·+a1(x)y′(x).

If

N−k∑
j=0

(−1)j(j + 1)a(j)
k+j(c) = 0, 1 ≤ k ≤ N,(7.5)

and
N−k∑
j=0

(−1)j(j + 1)a(j+1)
k+j (c) = 0, 2 ≤ k ≤ N,(7.6)

then {Q̃n(x)}∞n=0 ∈ BKS(N, 2) with y = Q̃n(x) satisfying the N th-
order differential equation

l̃N [y](x) = λny(x), n ∈ N0,

where

(7.7) l̃N [y](x) = bN (x)y(N)(x)+ bN−1(x)y(N−1)(x)+ · · ·+ b1(x)y′(x),

with the coefficients of l̃N [·] being given by

bk(x) =
N−k∑
j=0

(−1)j(j + 1)a(j)
k+j(x), 1 ≤ k ≤ N,

and

λn =

{
nb′1(x) for n = 0, 1

µn−2 + 2b′1(x) + b′′2(x) for n ≥ 2.

Moreover,

bk(c) = 0, 1 ≤ k ≤ N,(7.8)
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and

b′k(c) = 0, 2 ≤ k ≤ N,(7.9)

and, formally, l̃′′N [y] = m̃N [y′′].

(ii) Conversely, suppose that {Q̃n(x)}∞n=0 ∈ BKS(N, 2) with y =
Q̃n(x) satisfying the N th-order differential equation

l̃N [y](x) = λny(x), n ∈ N0),

where l̃N [·] is given in (7.7). Then the coefficients of l̃N [·] satisfy (7.8)
and (7.9). Furthermore, {P̃n(x)}∞n=0 ∈ BKS(N, 0) with y = P̃n(x)
satisfying

m̃N [y](x) = µny(x), n ∈ N0,

where m̃N [·] is given in (7.4) with the coefficients satisfying

ak(x) =


bN (x) for k = N

bN−1(x) + 2b′N (x) for k = N − 1
b′′k+2(x) + 2b′k+1(x) + bk(x) for 1 ≤ k ≤ N − 2,

and
µn = λn+2 − 2b′1(x)− b′′2(x).

Moreover, (7.5) and (7.6) are satisfied and, formally, l̃′′N [y] = m̃N [y′′].

We apply this result to find a new example in the BKS(4, 2) class;
indeed, we construct this new equation by again using the left Legendre
type expression m4[·], defined in (2.7). Necessarily, we find that c = 1
and the resulting equation is

(7.10) l̃[y](x) = (x2 − 1)2y(4) − 2(x− 1)2y′′ + 4(x− 1)y′ + ky = λy.

It is clear, since l̃[·] is missing a third-order derivative, that this
equation is not Lagrangian symmetrizable. Moreover, the polynomials
{Q̃n(x)}∞n=0 defined by

Q̃0(x) = 1; Q̃1(x) = x− 1

Q̃n(x) = n(n− 1)
∫ x

1

∫ t

1

PLn−2(z) dz dt



936 EVERITT, KWON, LEE, LITTLEJOHN AND WILLIAMS

are solutions of
l̃[y](x) = λny(x),

where λn = n2(n − 3)2 + k, n ∈ N0, and they are orthogonal with
respect to the quasi-definite (but not positive-definite) bilinear form

ϕ(p, q) = λp(1)q̄(1) + µp′(1)q̄′(1)− p′′(1)q̄′′(1)

+
∫ 1

−1

p′′(x)q̄′′(x) dx, λ, µ 
= 0.
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