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GENERAL HELICES IN THE THREE-DIMENSIONAL
LORENTZIAN SPACE FORMS

MANUEL BARROS, ANGEL FERRÁNDEZ,

PASCUAL LUCAS AND MIGUEL A. MEROÑO

ABSTRACT. We present some Lancret-type theorems
for general helices in the three-dimensional Lorentzian space
forms which show remarkable differences with regard to the
same question in Riemannian space forms. The key point
will be the problem of solving natural equations. We give a
geometric approach to that problem and show that general he-
lices in the three-dimensional Lorentz-Minkowskian space are
geodesics either of right general cylinders or of flat B-scrolls.
In this sense the anti De Sitter and De Sitter worlds behave
as the spherical and hyperbolic space forms, respectively.

1. Introduction. A general helix in the Euclidean space R3 is a
curve which forms a constant angle with a fixed direction in R3, that is,
its tangent indicatrix is a planar curve. The line perpendicular to that
plane is called the axis of the general helix. A classical result stated by
Lancret in 1802 and first proved by de Saint Venant in 1845 (see [11]
for details) says that a “curve is a general helix if and only if the ratio
of curvature to torsion is constant.”

Given a pair of functions, one would like to get an arclength
parametrized curve for which that couple works as the curvature and
torsion functions. This problem is classically known as the solving nat-
ural equations problem (see [11]). The natural equations for general
helices can be integrated in R3 and in the three-sphere S3, showing
that general helices are geodesics either of right general cylinders or of
Hopf cylinders, according to whether the curve lies in R3 or S3, respec-
tively (see [3] for further details). The hyperbolic space is poor in these
kinds of curves because the only general helices are the right circular
ones.
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This paper concerns general helices in the three-dimensional Lorentz-
ian space forms. A nonnull curve γ immersed in L3 is called a general
helix if its tangent indicatrix is contained in some plane Π ⊂ L3.
It is well known that Π can be either degenerate or nondegenerate,
according to whether the endowed metric is indefinite or Riemannian,
respectively. Therefore, we consider both cases separately and call
degenerate and nondegenerate general helices, respectively. Then we
give a Lancret theorem for general helices in L3 which formally agrees
with the classical one. Actually we prove that “general helices in L3

correspond with nonnull curves in L3 for which the ratio of curvature
to torsion is constant.”

Concerning the behavior of general helices in Euclidean and Lorentz-
ian geometries, we will point out a substantial difference. Whereas
general helices in R3 are geodesics in right general cylinders, we
show that general helices in L3 are geodesics in either right general
cylinders or flat B-scrolls, according to whether the general helix is
nondegenerate or degenerate (see Theorems 4 and 5), respectively. This
nice difference between Euclidean and Lorentzian geometries (from the
point of view of the behavior of general helices) confirms once more the
important role of B-scroll (see [1], [3] and [5]) in Lorentzian geometries.

To extend the concept of general helix to the three-dimensional
De Sitter S3

1 and anti De Sitter H3
1 spaces, we use the notion of

Killing vector field along a curve in a three-dimensional real space
form (see [9]). The Lancret theorems in S3

1 and H3
1 underline deep

differences between pseudospherical and pseudohyperbolic spaces. The
pseudohyperbolic case is nicely analogous to the Lorentz-Minkowskian
one, whereas in the pseudospherical case there are no general helices.
From this point of view, the roles played by nonflat Lorentzian space
forms H3

1 and S3
1 correspond with those played by nonflat Riemannian

space forms S3 and H3, respectively (see [2]).

Finally, our interest in studying general helices on these backgrounds
comes from the interplay between geometry and integrable Hamiltonian
systems (see [3], [7] and [8]).
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2. Setup. Let Rn+2
t be the (n + 2)-dimensional pseudo-Euclidean

space with index t endowed with the indefinite inner product given by

〈x, y〉 = −
t∑

i=1

xiyi +
n+2∑

j=t+1

xjyj ,

where (x1, . . . , xn+2) is the usual coordinate system. Let Sn+1
ν = {x ∈

Rn+2
ν : 〈x, x〉 = 1} and Hn+1

ν = {x ∈ Rn+2
ν+1 : 〈x, x〉 = −1} be the

unit pseudo-sphere and the unit pseudo-hyperbolic space, respectively.
They are pseudo-Riemannian hypersurfaces of index ν in Rn+2

ν and
Rn+2

ν+1 , respectively, with constant sectional curvature c = +1 and
c = −1, respectively. Throughout this paper M will denote S3

1,H
3
1

or L3 according to c = +1, c = −1 or c = 0, respectively, and E will
stand for the pseudo-Euclidean space where M is lying.

Let p be a point in M and v ∈ TpM a tangent vector. Then v is
said to be spacelike, timelike or null according to 〈v, v〉 > 0, 〈v, v〉 < 0
or 〈v, v〉 = 0 and v �= 0, respectively. Notice that the vector v = 0 is
spacelike. The category into which a given tangent vector falls is called
its casual character. These definitions can be generalized for curves as
follows. A curve γ in M is said to be spacelike if all of its velocity
vectors γ′ are spacelike, similarly for timelike and null.

For a better understanding of the next construction we will bring
back the notion of cross product in the tangent space TpM at any
point p in M , M being S3

1 or H3
1. There is a natural orientation in

TpM defined as follows: an ordered basis {X,Y, Z} in TpM is positively
oriented if det [pXY Z] > 0 where [pXY Z] is the matrix with p, X, Y ,
Z as row vectors. Now let ω be the volume element on M defined by
ω(X,Y, Z) = det [pXY Z]. Then, given X,Y ∈ TpM , the cross product
X × Y is the unique vector in TpM such that 〈X × Y, Z〉 = ω(X,Y, Z)
for any Z ∈ TpM . Obviously, Y ×X = −X × Y , and we also have

〈X × Y,X × Y 〉 = 〈X,Y 〉2 − 〈X,X〉〈Y, Y 〉.

A nonnull curve γ(s) in M is said to be a unit speed curve if
〈γ′(s), γ′(s)〉 = ε (ε being +1 or −1 according to γ is spacelike or
timelike, respectively). A unit speed curve γ(s) in M , s being the
arclength parameter, is called a Frenet curve if it admits a Frenet frame
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field {T = γ′, N,B} where B = T ×N , satisfying the Frenet equations

∇TT = ε2κN,

∇TN = −ε1κT − ε3τB,

∇TB = ε2τN,

where ε1, ε2 and ε3 denote the causal characters of T , N and B,
respectively (in particular, εi = ±1 and ε1ε2ε3 = −1), ∇ is the semi-
Riemannian connection on M and κ = κ(s) and τ = τ (s) are the
curvature and the torsion functions of γ, respectively.

The unit tangent vector field T = γ′ defines a mapping from γ to
Q = {q ∈ E : 〈q, q〉 = ±1} which is usually called the tangent indicatrix
of γ and, from now on, it will also be denoted by T .

Now let α(s) be a null curve in M with Cartan frame {A,B,C},
i.e., A,B,C are vector fields tangent to M along α(s) satisfying the
following conditions:

〈A,A〉 = 〈B,B〉 = 0, 〈A,B〉 = −1,
〈A,C〉 = 〈B,C〉 = 0, 〈C,C〉 = 1,

and

α̇ = A,

Ȧ = ρC, ρ = ρ(s) �= 0,

Ḃ = cα+ w0C, w0 being a constant,

Ċ = w0A+ ρB.

If we consider the immersion X : (s, t) → α(s) + tB(s), then X defines
a Lorentz surface, with constant Gaussian curvature c+w2

0 that Graves
[6] called a B-scroll. An easy computation shows that the unit normal
vector is given, up to the sign, by ξ(s, t) = w0tB(s) + C(s).

3. Killing fields. This section is taken from [9]. Let γ(t) be a
nonnull immersed curve in a three-dimensional Lorentzian space form
M with sectional curvature c, and let v(t) = |γ′(t)| be the speed of γ.
Let us consider a variation of γ, Γ = Γ(t, z) : I × (−ε, ε) → M with
Γ(t, 0) = γ(t). In particular, one can choose ε > 0 in such a way that
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all t-curves of the variation have the same causal character as that of γ.
Associated with Γ are two vector fields along Γ, V (t, z) = (∂Γ/∂z)(t, z)
and W (t, z) = (∂Γ/∂t)(t, z). In particular, V (t) = V (t, 0) is the
variational vector field along γ and W (t, z) is the tangent vector field
of the t-curves. We will use the notation V = V (t, z), v = v(t, z),
κ = κ(t, z), etc., with the obvious meanings. Also, if s denotes the
arclength parameter of the t-curves, we will write v(s, z), V (s, z),
κ(s, z), etc., for the corresponding reparametrizations.

A straightforward but long computation allows us to obtain formulas
for (∂v/∂z)(t, 0), (∂κ2/∂z)(t, 0) and (∂τ2/∂z)(t, 0) which we collect,
along with another standard identity in the following lemma.

Lemma 1. With the above notation, the following assertions hold:

(1) [V,W ] = 0;

(2) (∂v/∂z)(t, 0) = −ε1gv, with g = 〈∇TV, T 〉;
(3) (∂κ2/∂z)(t, 0) = 2ε2〈∇2

TV,∇TT 〉+4ε1gκ2+2ε2〈R(V, T )T,∇TT 〉;
(4) (∂τ2/∂z)(t, 0) = −2ε2〈(1/κ)∇3

TV − (κ′/κ2)∇2

TV + ε1(ε2κ +
(c/κ))∇TV − ε1(cκ′/κ2)V, τB〉,
where 〈 , 〉 denotes the Lorentzian metric of M and κ′ = (∂κ/∂t)(t, 0).

Without loss of generality we can assume γ to be arclength parame-
trized. A vector field V (s) along γ which infinitesimally preserves unit
speed parametrization (that means (∂v/∂z)(t, 0) = 0 for a V -variation
of γ) is said to be a Killing vector field along γ if this evolves in the
direction of V without changing shape, only position. In other words,
the curvature and torsion functions of γ remain unchanged as the curve
evolves. Hence Killing vector fields along γ are characterized by the
equations

(3.1)
∂v

∂z
(t, 0) =

∂κ2

∂z
(t, 0) =

∂τ2

∂z
(t, 0) = 0,

and this is well defined in the sense that it does not depend on the
V -variation of γ one chooses to compute the derivatives involved in
equation (3.1). In fact we use Lemma 1 and (3.1) to see that V is
a Killing vector field along γ if and only if it satisfies the following
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conditions:

(3.2)

a) 〈∇TV, T 〉 = 0,

b) 〈∇2

TV,N〉+ ε1c〈V,N〉 = 0,

c) 〈(1/κ)∇3

TV − (κ′/κ2)∇2

TV + ε1(ε2κ+ (c/κ))∇TV − ε1c(κ′/κ2)V,
τB〉 = 0.

In particular, the solutions of (3.2) constitute a six-dimensional linear
space.

Now when M is simply connected, since the restriction to γ of any
Killing field Ṽ of M is a Killing vector field along γ, one concludes from
a well-known dimension argument the following lemma.

Lemma 2. Let M be a complete, simply connected, Lorentzian space
form and γ a nonnull immersed curve in M . A vector field V on γ is
a Killing vector field along γ if and only if it extends to a Killing field
Ṽ on M .

4. General helices in the three-dimensional Lorentz-Minkow-
ski space. Following the classical terminology of the Euclidean geom-
etry (see, for instance, [10]) we will say that γ is a general helix in L3 if
its tangent indicatrix lies in a plane of L3. That means that there exists
a vector v �= 0 in L3 which is orthogonal to the acceleration vector field
of γ. The straight line generated by v is uniquely determined and will
be called the axis of γ. In particular, we will say that a general helix
is degenerate or nondegenerate according to whether its axis is null or
nonnull, respectively.

It is obvious that nonnull curves in L3 with zero torsion are examples
of nondegenerate general helices. In fact, such a curve lies in a
nondegenerate two-plane in L3, and a unit vector in L3 orthogonal
to this plane works as the axis of the general helix.

Now, given a general helix γ in L3 with axis v, we can define a
translation vector field Ṽ in L3 by Ṽ = v for any p ∈ L3. Let V
be Ṽ restricted to γ. Then V defines a Killing vector field along γ
with constant length, i.e., 〈V, V 〉 is constant and orthogonal to the
acceleration vector field of γ.
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Assume now that W is a Killing vector field along a nonnull curve
γ with constant length and orthogonal to its normal vector field N .
From (3.2a) we can write W = aT + bB, a and b being constants. Now
use (3.2b) to get ∇TW = λN where λ = ε2(aκ+ bτ ) is also constant.
Finally, equation (3.2c) yields λτ (τ/k)′ = 0. From here we consider
the following cases.

(i) τ ≡ 0. Then γ is a nondegenerate general helix. It is not difficult
to see that W = B, unless γ is a circle which will be considered next,
and so it extends to a translation vector field W̃ in L3.

(ii) k and τ both are constant. Then γ is a helix. Now the Killing
vector field W is not uniquely determined. In fact, for any couple of
constants a and b, the vector field W (s) = aT + bB is a Killing vector
field along γ. On the other hand, we can determine a Killing vector
field along γ, say V (s), being parallel along γ, and thus it extends to
a translation vector field Ṽ (s) such that Ṽ (s) = v ∈ L3. Indeed, just
choose a and b such that aκ+ bτ = 0. Therefore, γ is a nondegenerate
general helix unless ε2 = 1 (which means that N is spacelike or the
rectifying plane is Lorentzian anywhere) and τ = ±κ and then γ is
degenerate.

(iii) λ = 0. Then W is a uniquely determined Killing vector field
along γ. Furthermore, it is parallel along γ and extends to a translation
vector field W̃ such that W̃ = v ∈ L3. Therefore, γ is a general helix
whose axis is v, or W , γ being degenerate when W is null which yields
ε2 = 1 and τ = ±κ.

We will refer to curves in the first two classes as trivial general helices.

Summarizing, we have the following.

Theorem 3 (The Lancret theorem in L3). Let γ be a nonnull
immersed curve in L3 with curvature and torsion functions κ and τ ,
respectively. Then the following statements are equivalent :

(a) γ is a general helix in L3;

(b) there exists a constant length Killing vector field V along γ which
is orthogonal to the acceleration vector field of γ;

(c) there exists a constant r such that τ = rκ.

Moreover, a general helix γ is degenerate if and only if r = ±1 and
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its normal vector field is spacelike. The Killing vector field V in (b)
is not uniquely determined if γ is a helix (κ and τ both are constant);
however, in this case, V can be uniquely determined, up to constants,
once it is chosen parallel along γ; (said otherwise, its extended Killing
vector field in L3 is a translation vector field).

Theorem 4 (Solving natural equation for nondegenerate general
helices.) Let β be a nonnull immersed curve in L3. Then β is a
nondegenerate general helix if and only if it is a geodesic in a right
cylinder whose directrix and generatrix are both nonnull.

Proof. Let v be a unit vector in L3 and α a unit speed curve in a
plane orthogonal to v. The Frenet equations of α are

(4.1)
∇TT = δ2κ̄N,

∇TN = − δ1κ̄T ,

where {T ,N} is the Frenet frame along α, κ̄ its curvature function and
δ1, δ2 the causal characters of T and N , respectively. Notice that the
causal character of v is −δ1δ2.

Let us consider the right cylinder Cα,v in L3 generated by α and
v which is naturally parametrized as X(s, t) = α(s) + tv. It is well
known that the geodesics of Cα,v are the images under X of straight
lines in the (s, t)-plane. Choose such a geodesic γ(s) = α(s) + msv

where m is a certain constant. Then the translation field Ṽ in L3

determined by v induces a Killing vector field along γ with constant
length and orthogonal to the acceleration vector γ′′(s) = α′′(s). Since
v is nonnull, Theorem 3 implies that γ is a nondegenerate general helix.

Conversely, suppose β is a nondegenerate general helix. Then there
exists a certain constant r such that τ = rκ (of course κ and τ denote
the curvature and torsion functions of β). One can also choose a unit
vector, say v, lying on the axis of β. We take a (nondegenerate) plane
P in L3 which is orthogonal to v. Up to congruences in P , there exists
a unique curve in P , say α, with curvature function κ̄ = |β′|κ and
δ2 = ε2 (notice that the causal character δ1 of α is determined by δ2
and the causal character of v). Let Cα,v be the right cylinder generated
by α and v. Then it is parametrized by X(s, t) = α(s) + tv. Finally
we choose the geodesic of Cα,v defined by γ(s) = α(s) + msv where
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m = δ1ε3r. Then γ is a nonnull geodesic because δ2 = −1 provided
that m2 = 1. Finally it is easy to see that γ and β have the same
curvature and torsion functions as well as the same causal characters.
This concludes the proof.

Theorem 5 (Solving natural equation for degenerate general helices.)
Let β be a nonnull immersed curve in L3. Then β is a degenerate
general helix if and only if it is a geodesic in a flat B-scroll in L3.

Proof. Let α(s) be a null curve in L3 with Cartan frame {A,B,C} and
Sα,B the flat B-scroll (i.e., w0 = 0) parametrized byX(s, t) = α(s)+tB.
We choose a nonnull geodesic of Sα,B , say γ(u) = α(s(u))+t(u)B(s(u)).
Then the translation field B̃ in L3 determined by B induces a Killing
vector field along γ, also denoted by B, with constant length and such
that 〈γ′(u), B〉 = −s′(u) is constant because the geodesic γ is the image
underX of a straight line. Therefore, from Theorem 3, γ is a degenerate
general helix in L3.

To prove the converse, let β be a degenerate general helix that we
parametrize with constant speed, say 〈β′, β′〉 = p constant. From
the theorem of Lancret we know that the curvature τ and torsion κ
functions of β agree (we can change orientation if necessary) and the
acceleration vector field of β is spacelike, i.e., ε2 = 1. We define the
following vector fields

A =
|β′|
2

(T +B),

B = − ε1
|β′| (T −B),

C = N,

where {T,N,B} is the Frenet frame along β, |β′| =
√
ε1p and ε1

denotes, as usual, the causal character of β.

Let α be a curve in L3 with tangent vector field A, then α is a null
curve in L3. Furthermore, {A,B,C} is a Cartan frame along α with
w0 = 0 and ρ = κ|β′| (see Section 2). Let Sα,B be the corresponding flat
B-scroll which is parametrized by X(s, t) = α(s) + tB. Finally choose
the geodesic in Sα,B given by γ(s) = α(s) +msB where m = −p/2. It
is not difficult to see that γ and β have the same curvature and torsion
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functions and also the same causal character, showing that they are
congruent in L3.

5. General helices in nonflat three-dimensional Lorentzian
space forms. In order to generalize the notion of general helix to
three-dimensional Lorentzian spaces M of nonzero constant curvature,
we profit by Theorem 3. A curve γ in M is said to be a general helix if
there exists a Killing vector field V along γ with constant length and
orthogonal to the acceleration vector field of γ. We will say that V is
an axis of the general helix γ. Obvious examples of general helices in
M are the following. Curves with torsion vanishing anywhere, where
the unit binormal works as an axis. Helices are also general helices,
where any vector field chosen in the rectifying plane having constant
coordinates relative to T and B runs as an axis.

We can follow the notation and terminology introduced in L3 to say
that zero torsion curves are nondegenerate general helices because the
axis B is obviously nonnull. As for curves with both constant curvature
and torsion, we know that for any pair of constants a and b the vector
field along γ given by V (s) = aT + bB is always a Killing vector field.
Of course, when ε2 = −1, i.e., the rectifying plane is positive definite
at any point, all Killing vector fields V (s) are nonnull and we will say
that the general helix is nondegenerate. However, if ε2 = 1, i.e., the
rectifying plane is Lorentzian, we have Killing vector fields along γ
being either spacelike or timelike or null. It does not allow us to decide
if such a general helix is degenerate or not. However, we can determine
a unique Killing vector field along the helix by forcing it to be parallel
along γ. The helix is said to be degenerate or nondegenerate according
to whether V is null or nonnull, respectively.

Let γ(s) be a general helix in M with curvature κ > 0. Let V (s) be
an axis and assume, without loss of generality, that 〈V, V 〉 = ε where
ε = −1, 0, 1. From equation (3.2a) we deduce that

(5.1) V (s) = fT (s) + hB(s) and ε = ε1f
2 + ε3h

2,

for certain constants f and h. By using the Frenet equations of γ, we
get

(5.2) ∇TV = ε2(fκ+ hτ )N,
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and

(5.3) ∇2

TV = − ε1ε2κ(fκ+ hτ )T + ε2(fκ′ + hτ ′)N
− ε2ε3τ (fκ+ hτ )B.

Now from equations (3.2b), (5.1) and (5.3), we deduce that fκ′+hτ ′ =
0, from which we get

(5.4) τ = bκ+ a,

for certain constants a and b. On the other hand, from (5.3), jointly
with the Frenet equations of γ, we obtain

(5.5) ∇3

TV = − ε1ε2λκ
′T − λ(ε1κ2 + ε3τ

2)N − ε2ε3λτ
′B,

where λ stands for the constant fκ+ hτ . Now equation (3.2c), jointly
with equations (5.1) (5.5), yields

τ (λτ ′κ− λκ′τ − chκ′) = 0,

and then

(5.6) hκ′τ (a2 + c) = 0.

In particular, the above equation shows that in the De Sitter space
S3

1, c = +1, the only general helices are the trivial ones (see Section 4).
So we have proved the following result.

Theorem 6 (The Lancret theorem in the De Sitter space.) A nonnull
immersed curve γ in S3

1 is a general helix if and only if either

(1) τ ≡ 0 and γ is a curve in a totally geodesic surface of S3
1; or

(2) γ is a helix in S3
1, (i.e., curvature κ and torsion τ are both

constant).

Furthermore, general helices of the first type have only one axis (the
binormal) which is parallel and so they are nondegenerate. General
helices of the second type have a plane (the rectifying plane) of axes.
However, only one of them is parallel. This axis is null and so the



384 BARROS, FERRÁNDEZ, LUCAS AND MEROÑO

general helix is degenerate if and only if ε2 = +1 (the normal vector is
spacelike) and τ = ±κ; otherwise, the helix is nondegenerate.

In the anti De Sitter space, besides the two classes of trivial general
helices, we have another one. This new class can be characterized from
equations (5.5) and (5.6) where c = −1 as the curves in H3

1 whose
curvature and torsion are related by

τ = bκ± 1,

for a certain constant b. These general helices admit only the axis
V = fT + hB such that

f

h
= − b =

1− τ

κ
,

whose causal character is

ε = h2

(
ε1

(τ − 1)2

κ2
+ ε3

)
.

In particular, a general helix of this type is degenerate if and only if
ε2 = 1 and b = ±1.

Summarizing, we have shown the following.

Theorem 7 (The Lancret theorem in the anti De Sitter space). A
nonnull immersed curve γ in H3

1 is a general helix if and only if one
of the following statements holds:

(1) τ ≡ 0 and γ is a curve in a totally geodesic surface of H3
1. The

curve admits only one axis which agrees with its binormal being nonnull
and parallel along the curve. The general helix is nondegenerate;

(2) γ is a helix in H3
1. It admits a plane (the rectifying plane) of

axes but only one is parallel along γ. This parallel axis is null and so
γ is degenerate if and only if ε2 = +1 and τ = ±κ. Otherwise γ is
nondegenerate;

(3) there exists a certain constant b such that the curvature κ and the
torsion τ functions of γ are related by τ = bκ ± 1. The curve admits
a unique axis which cannot be parallel along γ. It is null and so γ is
degenerate if and only if b = ±1 and its unit normal vector is spacelike
(ε2 = +1).
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Remark 1. Theorems 6 and 7 should be compared with Theorems 1
and 3 in [2], respectively.

Now we are going to solve the natural equations for general helices
in M .

In [4] we have just constructed a new class of submanifolds in H3
1(−1)

defined by means of two semi-Riemannian submersions πs : H3
1(−1) →

H2
s(−4), s = 0, 1. By pulling back via πs a nonnull curve γ in H2

s(−4)
we get the total horizontal lift of γ, which is an immersed flat surface
Mγ in H3

1(−1), that will be called the semi-Riemannian Hopf cylinder
associated to γ. Notice that if s = 0, Mγ is a Lorentzian surface,
whereas if s = 1,Mγ is Riemannian or Lorentzian, according to whether
γ is spacelike or timelike, respectively.

Let γ : I → H2
s(−4) be a unit speed curve with Frenet frame {T ,N}

and curvature function κ̄. Let γ̄ be a horizontal lift of γ to H3
1(−1)

with Frenet frame {T,N,B}, curvature κ = κ̄ ◦ πs and torsion τ = 1.
Recall that B is nothing but the unit tangent vector field to the fibers
along γ̄. Then the Hopf cylinder Mγ can be orthogonally parametrized
by

X(t, z) =
{
cos(z)γ̄(t) + sin(z)B(t) when s = 0,
cosh(z)γ̄(t) + sinh(z)B(t) when s = 1.

Notice that a unit normal vector field to Mγ into H3
1(−1) is obtained

from the complete horizontal lift of N and it is, of course, N along each
horizontal lift of γ. As a consequence, we have that Mγ is a flat surface
with mean curvature function α given by α = (1/2)κ.

Theorem 8 (Solving natural equation for nondegenerate general
helices in H3

1(−1).) Let β be a nonnull immersed curve in H3
1. Then β

is a nondegenerate general helix if and only if it is a geodesic in a Hopf
cylinder Mγ .

Proof. Let β(s) be an arclength parametrized geodesic in Mγ . Then
there exist two constants a and b such that

T (s) = β′(s) = aXt + bXz,

with ε1a
2 + ε3b

2 = δ1, δ1 being the causal character of β. A direct
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computation shows that the curvature ρ and the torsion τ of β satisfy

ρ = ε2a
2κ+ 2ab,

τ2 = ε2ρ
2 − ε1δ1κρ+ 1.

It is not difficult to see that τ = rρ ± 1, r = b/a, showing that β is a
general helix. Moreover, if the normal vector N is spacelike, then r �= 1
and then β is nondegenerate.

To prove the converse, let β be a nondegenerate general helix in
H3

1(−1) with curvature ρ and torsion τ . Then there exists a constant
r (with r �= ±1 if the normal vector to β is spacelike) such that
τ = rρ ± 1. We choose ε1 = ±1 and s in {0, 1} in order for
δ1(ε1 − (−1)sr2) to be positive, δ1 being the causal character of β.
Let γ be the unique curve, up to motions, in H2

1(−4) with curvature
κ̄ = δ1((−1)s − ε1r

2)ρ− 2ε1(−1)sr and causal character defined by ε1.
Let α be the geodesic in the Hopf cylinderMγ given by α(s) = X(as, bs)
with

a2 =
δ1

ε1 − (−1)sr2
and b2 = r2a2.

It is easy to see that β and α have the same curvature and torsion, and
also the same causal character, showing that they are congruent.

Theorem 9 (Solving natural equation for degenerate general helices
in H3

1(−1).) Let β be a nonnull immersed curve in H3
1. Then β is a

degenerate general helix if and only if it is a geodesic in a flat B-scroll
over a null curve.

Proof. Let β(u) be a geodesic of some flat B-scroll Sα,B in H3
1(−1),

i.e., w0 = ±1, parametrized by β(u) = α(s(u)) + t(u)B(s(u)). Then
the normal vector to β in H3

1(−1) is given by N(u) = β(u)−α(s(u))+
C(s(u)). From here we obtain that ∇TN = T + s′(u)ρB. By using the
Frenet equations for β we deduce that the vector (1 + ε1κ)T + ε3τB
is null, where κ and τ stand for the curvature and torsion of β,
respectively. Therefore, N is spacelike and τ = ±ε1κ± 1, which proves
that β is a degenerate general helix.

Conversely, let β be a curve in H3
1(−1) with curvature κ and torsion

τ satisfying that τ = κ+ε1 and the normal vector of β is spacelike (the
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other cases are similar). Let α be the null curve in H3
1(−1) given by

α(s) = β(s)− 1
2
s(T (s)−B(s)),

and consider the vector fields

A(s) = − ε1
2
sβ(s) +

1
2
(T (s) +B(s)) +

ε1
2
sN(s),

B(s) = − ε1(T (s)−B(s)),

C(s) = − 1
2
s(T (s)−B(s)) +N(s).

It is not difficult to see that {A,B,C} is a Cartan frame along α with
w0 = 1 and ρ = τ . Let Sα,B be the B-scroll in H3

1(−1) parametrized
by X(s, t) = α(s) + tB(s). Then it is clear that β(s) = X(s,−(ε1/2)s)
and so β is a geodesic of that B-scroll.

Remark 2. It is worth noting that in the “if” part in Theorems 8 and
9 we have only used the existence of an axis, not necessarily parallel.
Now if γ is a general helix in H3

1(−1) with Lorentzian rectifying plane
anywhere, then it may have both null and nonnull axes. Therefore, γ
is a geodesic in a Hopf cylinder as well as in a flat B-scroll over a null
curve.
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