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ON EXPLICIT FORMULAS FOR
THE MODULAR EQUATION

SHAMITA DUTTA GUPTA AND XIAOTIE SHE

ABSTRACT. An algorithm is given to determine explicitly
the modular equation Φn(X, J) = 0 of degree n, n = p2.
Φ9(X, J) is used as an example.

1. Introduction. Let J(z) be the modular invariant of an elliptic
curve. The modular equation Φn(X, J) = 0 of degree n is the algebraic
relation between X = J(nz) and J(z). This equation is one of
the key concepts in algebraic number theory [2], [3], [6], [8] closely
related to class field theory, theory of elliptic curves, theory of complex
multiplication, etc. In recent years it has been generalized to other
settings, such as Drinfeld module [1].

The explicit form of modular equation Φn(X, J) for small primes
2, 3, 5, 7, 11 can be found in literature [4], [5]. Through private
communication, it is known to authors that for n = 4 and primes up
to 31, the explicit forms for the modular equations have been obtained
recently. For any prime p, Yui [10] gave an algorithm to determine
Φp(X, J) by using the q-expansion of the j-invariant. In the case of
the Drinfeld modular polynomial ΦT (X,Y ), Schweizer used another
approach [7].

In this work we extend Yui’s method to compute the Φn(X, J) for
n = p2. As the q-expansion of the j-invariant is insufficient in this
case, we introduce another expansion at the second cusp, other than
i∞. As an example, Φ9(X, J) is given. Traditionally, Φpe(X, J) is
reduced to Φp(X, J) using Theorem 2. The authors believe that the
algorithm offered here, when compared to Theorem 2, is simpler and
more applicable.

2. The modular equation. The modular function J(z) of the
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elliptic curve E : y2 = 4x3 − g2(z)x− g3(z) over C is defined by

J(z) = 123 g
3
2(z)

∆(z)
,

where ∆(z) = g3
2(z) − 27g2

3(z) �= 0 is the discriminant of E.

Let Γ = SL2(Z), Γn = {α =
(
a b

c d

)
| a, b, c, d ∈ Z, (a, b, c, d) =

1, detα = n}. Let Γ and Γn operate on the upper half plane H = {z =
x + iy ∈ C | y > 0} in the usual way.

We have

Γn =
ψ(n)⋃
i=1

Γαi,

where ψ(n) = n
∏
p|n(1 + (1/p)) and

{αi} =
{(

a b
0 d

)
| ad = n, (a, d, b) = 1, 0 ≤ b < d

}
.

For n > 1, consider the polynomial

Φn(X) =
ψ(n)∏
i=1

(X − J ◦ αi) =
ψ(n)∑
m=0

smXψ(n)−m,

with an indeterminate X, where J ◦ αi = J(αi(z)). It is known that
sm ∈ Z[J ]. For details, see [3], [6]. Thus Φn(X) is a polynomial in two
independent variables X and J over Z, i.e.,

Φn(X) = Φn(X, J) =
ψ(n)∏
i=1

(X − J ◦ αi) ∈ Z[J,X].

The polynomial Φn(X, J) is called the modular polynomial of degree n.
The equation Φn(X, J) = 0 is called the modular equation of degree n.
Here are some well known results:

Theorem 1. Let Φn(X, J) be the modular polynomial of order n.

(1) The polynomial Φn(X, J) is irreducible over C(J) and has degree
ψ(n) = n

∏
p|n(1 + (1/p)).
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(2) We have Φn(X, J) = Φn(J,X).

For the proof, see [6].

By Theorem 1 we can write

Φn(X, J) = Xψ(n) + Jψ(n) +
∑

0≤j≤i≤ψ(n)−1

Cij(XiJj + XjJ i),

where Cij ∈ Z, Fi,j = XiJj + XjJ i, j ≤ i. So to determine Φn(X, J)
explicitly is to determine Cij explicitly.

For n = p prime, the coefficient Cij may be obtained by studying the
q-expansion of j(z). For n composite, Φn(X, J) is reduced to the prime
cases by the following theorem.

Theorem 2 [3], [9]. Let n > 1 be an integer, and set ψ(n) =
n

∏
p|n(1 + (1/p)).

(i) If n = n1n2, (n1, n2) = 1, then

Φn(X, J) =
ψ(n2)∏
i=1

Φn1(X, ξi)

where X = ξi are the roots of Φn2(X, J) = 0.

(ii) If n = pe where p is prime and e > 1, then

Φn(X, J) =

{
(
∏ψ(p(e−1))
i=1 Φp(X, ξi))/[Φpe−2(X, J)]p e > 2,

(
∏p+1
i=1 Φp(X, ξi))/(X − J)p+1 e = 2,

where X = ξi are the roots of Φpe−1(X, J) = 0.

For the proof, see Weber [9].

Theorem 2 implies an algorithm for computing Φp2(X, J). However,
in this work we will find Φp2(X, J) using q-expansion at two cusps.

3. Cusps and expansions. In this section we will give some known
facts concerning the cusps of Γ0(pe) and the expansions of X = J(pez)
and J = J(z) at those cusps.
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Let Γ0(pe) = {α =
(
a b

c d

)
∈ Γ = SL (2,Z) | c ≡ 0 (mod pe)}. We

have

Lemma 1. A complete set of coset representations {αj} for Γ0(pe)
in Γ is

{I} ∪ {ST k | k = 0, 1, . . . , pe − 1}
∪ {ST kpS | k = 1, 2, . . . , pe−1 − 1},

where

I =
(

1 0
0 1

)
, S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Lemma 2. The cusps of Γ0(pe) are

{∞; 0}∪
{
− 1

kp
| k = 1, . . . , p−1 or k = k′p, k′ = 1, 2, . . . , pe−2−1

}
.

Let x be a cusp of Γ0(pe). Let α ∈ SL (2,Z), α(x) = ∞. Define Γx =
{γ ∈ Γ0(pe) | γ(x) = x}. Then αΓxα−1(∞) = ∞. Thus, αΓxα−1(∞)
is a subgroup of 〈

(
1 1

0 1

)
〉 = Γ∞. If αΓxα−1(∞) is generated by

(
1 n

1

)
,

n > 0, n is called the width of the cusp x. For any modular function
f of Γ0(pe), we define the Fourier expansion of f at a cusp x to be the
Fourier expansion of f(α−1(z)) at i∞ with respect to e(2πiz/n). We
have

Lemma 3. Width of cusp −(1/kp), k = prk′ is max{1, pe−2−2r}
where gcd (k′, p) = 1.

We omit the proofs of Lemmas 1, 2 and 3. All can be easily checked.

The following is the well-known q-expansion of J(z).

(1) J(z) = q−1 + 744 + 196884q + 21493760q2 + · · · =
∞∑

n=−1

anq
n,
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where q = e2πiz. It is easily checked that X = J(pez) is a modular
function of Γ0(pe). And we have

Lemma 4. The expansion of X = J(pez) at the cusp −(1/pr+1),
r ≤ [e/2] − 1 is

(2) ζpe−r−1e−2πiz/pe−2(r+1)
+ 744 + · · · = ζpe−r−1q−1

r + 744 + · · · ,

where qr = e2πiz/pe−2−2r

, ζpe−r−1 is the primitive root of 1.

Proof. Choosing α = ST−pr+1
S, we have

X ◦ α−1(z) = J

[(
pe 0
0 1

)( −1 0
pr+1 −1

)
(z)

]

= J

[(
pe−r−1 1
−1 0

)(−pr+1 1
0 −pe−r−1

)
(z)

]

= J

[(−pr+1 1
0 −pe−r−1

)
(z)

]

= J

(
pr+1z − 1
pe−r−1

)

= e−2πi(pr+1z−1/pe−(r+1)) + 744 + · · ·
= ζpe−r−1q−1

r + 744 + · · · .

Notice that, by Lemma 3, width at cusp −(1/pr+1) is pe−2(r+1).

4. The case n = p2. To simplify the situation, we will only
demonstrate our algorithm for the case n = p2. In this case, we will
only make use of the Fourier expansion at the two cusps i∞, −(1/p).

At i∞, X(z) has a q-expansion as follows:

(3)
X(z) = J(p2z) = e−2πip2z + 744 + 196884e2πip2z + · · ·

= q−p
2

+ 744 + 196884qp
2

+ · · · ,

where q = e2πiz. At −(1/p), the expansion of X(z) is given by
Lemma 4. The expansion of J(z) at −(1/p) is the same as the expansion
of J(z) at i∞.
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Putting (1), (2) and (3) together, we have the table:

cusp i∞ −1/p
width 1 1
order of pole of X p2 1
leading coefficient of X 1 ζp

order of pole of J 1 1
leading coefficient of J 1 1
order of pole of Fi,j ip2 + j i + j

leading coefficient of Fi,j(i > j) 1 ζjp + ζip
leading coefficient of Fi,i 2 2ζip.

The following two lemmas are key to the algorithm. We will give a
detailed proof of Lemma 5. Lemma 6 may be proven similarly.

Lemma 5. Let N be an integer, N ≥ 2p2 + p− 2. If {Cij | i + j ≥
N +1 or i = p2 +p−1 and j ≥ p2−1} is known, then {Cij | i+j = N}
can be determined by comparing the expansions at cusp −1/p.

Proof. As Φp2(X, J) = 0, coefficients of q-expansion of Φp2(X, J) at
cusp −1/p equal 0. Considering the term q−N , we have

(4)

0 =
∑

i+j=N

Cij(ζip + ζjp)

+ coefficient of the term q−N in(
Xψ(n) + Jψ(n) +

∑
i+j≥N+1

CijFi,j

)
.

The second term on the righthand side of (4) is known. Write
{(i, j) | i ≥ j, i + j = N} as

{
(p2 + p− 1 − k,N − (p2 + p− 1) + k) | k = 0, 1, · · · ,

[(p2 + p− 1) − (N/2)]
}
.
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For k = 0, Cp2+p−1,N−(p2+p−1) is known. For unknown Cij , let

A =
{
p2 + p− 1 − k | k = 1, 2, · · · ,

[
(p2 + p− 1) − N

2

]}

=
{
i | p2 + p− 2 ≥ i ≥ −

[
− N

2

]}

be the set of the index i,

B =
{
N − (p2 + p− 1) + k | k = 1, 2, · · · ,

[
(p2 + p− 1) − N

2

]}

=
{
j | N +

[
− N

2

]
≥ j ≥ N − (p2 + p− 1) + 1

}

be the set of the index j.

We have min(A) ≥ max(B) and

max(A) − min(B) = (p2 + p− 1 − 1) − (N − (p2 + p− 1) + 1) ≤ p− 2,

as N ≥ 2p2 + p− 2.

Further, we have A ∩ B = Φ when N is odd, and A ∩ B = {N/2}
when N is even. Thus {ζmp | m ∈ A ∪ B} is a linearly independent set
over Q; it can be extended to a basis of Q(ζp) over Q.

After writing the right side of (4) in terms of this basis, Cij may be
solved by comparing scalars, in Q, of {ζip | i ∈ A}. Note that, when
N is even, and i = j = (N/2), Cij(ζip + ζjp) = 2Ciiζip. The scalars of
{ζjp | j ∈ B, j �= (N/2)} may be used to verify the calculation.

Lemma 6. Let N be an integer 2p2 + p − 2 ≥ N ≥ 2p2 − 1. If
{Cij | i + j ≥ N + 1 or i + j = N and j ≤ p2 − 1} is known, then
{Cij | i + j = N} can all be determined by comparing the expansion at
cusp −1/p.

Proof. We will still use equation (4) and write {(i, j) | i ≥ j, i+j = N}
as{

(p2 + p− 1 − k,N − (p2 + p− 1) + k) | k = 0, 1, · · · ,
[(p2 + p− 1) − (N/2)]

}
.
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For those k ≤ (2p2 + p − 2) − N , j = N − (p2 + p − 1) + k ≤ p2 − 1,
and Cp2+p−1−k,N−(p2+p−1)+k is known. For unknown Cij , let

A =
{
p2 + p− 1 − k | (2p2 + p− 2) −N + 1 ≤ k ≤

[
p2 + p− 1 − N

2

]}

=
{
i | N − p2 ≥ i ≥ −

[
− N

2

]}

be the set of the index i,

B =
{
N− (p2+p−1) +k | (2p2+p−2)−N + 1 ≤ k ≤

[
p2+p−1− N

2

]}

=
{
j | N +

[
− N

2

]
≥ j ≥ p2

}

be the set of index j.

We have min(A) ≥ max(B) and

max(A) − min(B) = (N − p2) − p2 ≤ p− 2,

as N ≤ 2p2 + p− 2.

The rest of the proof is similar to that of Lemma 5.

Note that N < 2p2 − 1 implies j ≤ p2 − 1.

Theorem 3. The modular equation Φp2(X, J) = 0 can be determined
explicitly by studying q-expansion at cusps i∞ and −1/p of Γ0(p2).

Proof. We will outline the steps to proceed and the cusps involved in
each step.

(i) {Cij}, where i = p2 + p− 1, j ≥ p− 1.

We consider the q-expansion at i∞ because ordi∞Fij are among the
largest and differ from each other.

(ii) {Cij}, where i + j ≥ 2p2 + p− 2.

As ordi∞Fp2+p−1,p−2 = ordi∞Fp2+p−2,p2+p−2, the q-expansion at i∞
is not useful. We consider the q-expansion at −1/p using Lemma 5.

(iii) {Cij}, where i = p2 + p− 1, p− 2 ≥ j ≥ 0.
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Now {Cp2+p−2,j+p2} is known. We can proceed using the cusp i∞.

(iv) Now repeat the following steps for k = 1, 2, . . . , p− 1:

(a) {Cij}, where i = p2 + p − 1 − k, j ≤ p − 1 − k. We use the
q-expansion at i∞.

(b) {Cij}, where i + j = 2p2 + p− 2 − k. We use the q-expansion at
−1/p and Lemma 6.

(c) {Cij}, where i = p2 + p − 1 − k, 0 ≤ j ≤ p − 2 − k. We use the
q-expansion at i∞. This step is not there when k = p− 1.

(v) Now, for {Cij} with 0 ≤ j ≤ i ≤ p2 − 1, we use the q-expansion
at i∞ as ordi∞Fij all differ from each other.

5. An example. As mentioned in the introduction, Φ4(X, J) has
already been obtained by the algorithm of Theorem 2. We will compute
Φ9(X, J) which is of degree ψ(9) = 12 using Mathematica.

1. Using cusp i∞, we have

C11 11 = 0,

C11 10 = 0,

C11 9 = −1,

C11 8 = 6696,

C11 7 = −18155340,

C11 6 = 25558882848,

C11 5 = −19911358807902,

C11 4 = 8462621974879728,

C11 3 = −1807128632206069128,

C11 2 = 160958016085240175040.

2. Using cusp −1/3, we have

C10 10 = −1/2,

C10 9 = 15624.

3. Using cusp i∞ again, we have

C11 1 = −3894864835363363281932,

C11 0 = 5567288717204029440000,
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C10 8 = 28587961990122552,

C10 7 = 102969059545961636573088,

C10 6 = 11645320898401795868144158404,

C10 5 = 186204831778242651626938540276560,

C10 4 = 680444811295518681180723971143182528,

C10 3 = 655424730501203626951599797646911785920,

C10 2 = 155705417634012907024266501589913689446466,

C10 1 = 6381231899147017430314467070087302021120000.

4. Using cusp −1/3, we have

C9 9 = 14293980977975892.

5. From now on, we only need to use i∞.

C10 0 = 10331567886902497628770879898357071872000000,

C9 8 = 205874310760628521421376,

C9 7 = −169096306433121398819742262191810,

C9 6 = 1097815847178520649575574301039075207792,

C9 5 = −452102708759835815999184660653014461675230688,

C9 4 = 29938980095729674278837381908388909886666835116800,

C9 3 = − 527782836316123418691170962447078429119508813357952220,

C9 2 = 3273266810212629480595452963053694318464393523934986240000,

C9 1 = −7900333936192849023918427261965278932265209355223171072000000,
C9 0 = 6390980147531295015493344616502870354075036858198261760000000000.

We omit the rest. A detailed version is available upon request.

Finally, let us point out that, for n = pe, e ≥ 3, we need to use
q-expansions of X and J at the cusps {i∞,−(1/p), . . . ,−(1/p[e/2])},
and the algorithm becomes much more complex.

Acknowledgment. The authors thank the referee for the valuable
comments.
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