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THE OBRECHKOFF TRANSFORM
ON SPACES OF GENERALIZED FUNCTIONS

D.I. CRUZ-BAEZ AND J. RODRIGUEZ

ABSTRACT. In this paper we study the Obrechkoff trans-
formation on some generalized functional spaces by employing
the kernel method. Thus we extend the results of Baier and
Glaeske for the Laplace transformation and of Betancor and
Rodriguez-Mesa for the K transformation. Furthermore, from
the results on the Obrechkoff transformation, the analogous
ones for the Kratzel transformation follow as special cases.

1. Introduction. In this paper we aim to define and study the
so-called Obrechkoff integral transform on some spaces of generalized
functions. This transform seems to be one of the most general and
effective generalizations of the Laplace transform, related to differential
operators of Bessel-type, m € N, 8 :=m — (ag + a1 + -+~ a) > 0,
o= (g +ap1+ - -+am—m+k)/B, k=1,... m,

(11) BZLUOEZE 1%"'$m1£l’m_$ﬁjli[1<x%+ﬂ’yk>a

also called “hyper-Bessel differential operators.” As most simple cases
of (1.1), the second order differential operator of Bessel and the mth
order differentiation D™ = (d/dx)™ appear. Many authors have
introduced and studied Laplace-type integral transforms related to very
special cases of (1.1). It happened that the most general transform
of this kind had been introduced in 1958 by Obrechkoff [12], but
his results remained unknown for a period of time. Dimovski [4]
established that this transform can be successfully used for building
an operational calculus for the operators (1.1) (and their linear right
inverse operators, the “hyper-Bessel” integral operators L). In [4],
[5], some basic properties of the Obrechkoff transform are found for
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spaces of locally integrable functions with suitable growth at zero and
infinity. A deeper study, on the basis of the Meijer’s G-functions and
generalized fractional calculus, can be seen in Kiryakova [6]. Here
we define the Oberchkoff transform by means of the kernel method
on some spaces of generalized functions introduced by McBride [10].
Analyticity, boundedness and inversion theorems are established for
the generalized Obrechkoff transformation, thus generalizing the work
of the papers [1] and [2].

The Obrechkoff integral transformation can be defined by
(1.2)

0102 = p=20m 1 [T GEO(E0P | G+ 1= 1D O

0
where Gg?;g is a particular case of the Meijer G-function ([6, p. 313]).

It is well known that the Obrechkoff transformation is reduced to the
K transform for 8 =m = 2, v1 2 = £v/2, namely,

Off(t); 2} = 2722 V2 KL { f(1); 23,
where K, denotes the K transform ([13]).
Ifg=m,v,=k/m, k=1,...,m—1, and y,, = v — 1/m, we have
O{f(t); 2} = m- LYV OmHD=Lf (t);m - 23,

where

LOV{f(1); 2} = / T () (1) d

and AJ™ (2) is the kernel studied by Krétzel ([7-9]). Note that in [3]
this transform is studied by means of the adjoint operator on McBride’s
spaces.

McBride [10] defined the functional space F), ,, as follows: let u € C,
dk
F,, = {(p €C®R™): tkﬁ(f“gp(t}) € LP(R"),Vk e N}7

where 1 < p < 0 and

k

ar
Foop = {ga €EC®(RT): tkﬁ(t Fo(t) — 0

asa:—>0andx—>oo,Vk€N},
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where p = oo. [}, is a complete countable multi-normed space
(Fréchet space) equipped with the topology generated by the family
of semi-norms in Fj, , given by

k

()

T , keN; 1<p< oo, peC,

p

() =

where | - [|,, denotes the norm in the space LP(R™"). By F}, , we denote
the dual space of Fj, ;.

Throughout the paper i denotes an arbitrary complex number, 3 is
real and positive, 1 < p < co (unless the contrary is explicitly stated)
while p and ¢ are related by 1/p+1/q = 1.

2. The Obrechkoff transform. Next we establish a series of results
in order to define the O-transformation on these spaces, by using the
kernel method.

Lemma 2.1. Let 8 > 1/p. For every z € C such that Rez > 0
the kernel \(z,t) = 2_5(7”l+1)+1G6'f;2((2t)6|(% +1-1/8)7) € Fopu
provided that

Rep <f min (3 +6—1+1/p).

Proof. We can see without difficulty that

dF [k/2] - N

2.1 th— = ig - PETD (1=
21) dtF ; ik ( i)
where ag; = 1 and a; 1, are suitable real numbers, i =1,..., [k/2].

edt - —B(ym+1)+1

t ﬁ(t F A(Z,t)) =z Ym

k dk —pym,0 m
TG () | (e +1 = 1/6)1")]

— = Blym+1)-1

k
: tkj?[(zt)*#cgjﬁ((zt) | (v +1=1/8)1")]-
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Using the property (A.14), page 315, [6], we obtain

k
tkj?(t_”k(z,t)) — = Blym+1)+1
k dk m,0 B m
AP ZRIGER(E° | (e + 1= 1/8 = n/B)T))

Moreover, by (2.1) it follows that the above expression is:
[k/2] d\
— N_ﬂ('Y'rrL+1)+1 . . tﬂ(k_z) tl_ﬁ_
z ; Qi L ( dt)
G (2P| (v + 1= 1/8 — 1/ B)T)].

Now, with the change of variables (2¢)® = u and making use of [6, p.
316]

(2.2)
dk [k/2]
tkﬁ(t_“)\(z,t)) — = Blym+1)+1 Z @ip

i=0

0
Gm,l Jel

G | (2)

(A1=1/8—p/B)T sk —i

By the asymptotic behavior of the Meijer’s G-functions, for r € N,

we have that
k dk

max

< 00,
0<k<r

p

when the conditions are verified.

Let 8 > 1/p and Rep < Smini<p<m (% + 8 — 1+ 1/p). For every
f e F;)# the generalized Obrechkoff transform Of of f is defined
through

Of(z) = (f(t),\(z,t)), Rez>0.

In the following we establish a smoothness property of the generalized
O-transformation.
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Proposition 2.1. Let 8 > 1/p and Rep < fminj<p<m (v +06—14+
L/p). If f € F} ., then (Of)(z) is a holomorphic function on Rez > 0.
Moreover, for each m € N

dm am
S ODE) = (F0, 5 M), Rez>0.

Proof. We see that
(Of)(z+h) = (OF)(2)

— 50, L), Res>o.

(23) %12%) h 0z

As f € F} ,, to demonstrate (2.3) it is sufficient to see that
. AMzA4h,t) = Nz,t) 0

(2.4) Lim Y =5, A= 0]

in the sense of convergence in Fj, ,.
Consider z, h € C such that Rez > 0, Re(z + h) > 0. We define

on(z,t) = Az + h’t})L — A=Y %[)\(z,t)}, t € (0,00).

Using the Cauchy integral formula we obtain

(2.5) on(z,t) = %L = 2)2((77777?z ) dn, te(0,00),

where the path « can be parametrized by 7(0) = z + rei?, 6 € [0,27]
and r, h are chosen such that 0 < |h| <r and Rez > r.
Let k € N. By (2.2) and (2.5), we have
pd
t %(t “on(z,1))
_ b [ tR(d/dtt) (A, 1)
S 2mi ), (n—2)2(n—2—h)
[k/2]

h _

gt Blm A+ } : at .

211 - ’
i=0

dn

0

Gl | ()7
(W +1=1/8—p/B) sk—i

/7 (n—2)2(n—2z—nh) -
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0
Denote G(z,t) = G;’f;,ll_H (2t)P

(+1-1/8—p/B) sk—i

then
[k/2] 2m
p IG(z D)l
th—(¢=r || < c|h|zrPOm D+ / L. de.
ez 0)| < clhle 2w D

Then, proceeding in a similar way to Lemma 2.1, if 3 > 1/p and
Re pu < Bminy<g<m(vx + 8 — 1+ 1/p), we have for each r € N,

— 0,
p

as |h|] — 0. With this we prove (2.4). Now the result follows by
induction.

dk
k=2 (4—n
joax |17 (t " on(z,1))

Next we establish a rule of operational calculus.

Proposition 2.2. Let 3 > 1/p and Rep < Sming<p<m (v +0—
1/p). For every f € I, ,, and m € N, we have

Be oy n(OF)(2) = (F(), (—1)mBm 2P0t 1em=1md \ (43,
Rez > 0,

Proof. Denote G*(z,t) = ng,g((zt)5|('yk +1-1/8—u/B8)7). By

Proposition 2.1 we obtain
d
—z—0b;—1
DI

a0 = (1011 (-
(Lembma-1)oren)

i=1



THE OBRECHKOFF TRANSFORM 147

Then by [6, Corollary B.5], we have

B. by n(OD)(2) = (F(1). (~1)" 0" (1) G (2.1))
= ((1). (1) ()P PO ANz, 1)
= (1), (1) g PO =B (2 gy

3. A new inversion formula. In this section we prove a new
inversion formula, a uniqueness result and a boundedness property.
First we recall some definitions that are useful in obtaining the inversion
formula.

Definition 3.1. We define the sets A, 5 and A} 5 of complex
numbers by

31) Apus={v:Re(By+m+B#1/p—pl, 1=0,1,2,...},
s ={viRe(By—p) #-1/p—Bl, 1=01,2,...}.

Definition 3.2. For Rep > 1/p — By + 1), v € Appup, k =
1,...,m, d; € R, the generalized fractional integrals (multiple Erdélyi-
Kober operators) are defined by

:),(0 — TYmOm m—1,0m— ,
ISRV OR oty = ot (=t 0m =t (170 (1))},

where Ig"s is the Erdélyi-Kober operator defined as in [10, p. 522].
Moreover, if §; > 0, then the integral representations hold

I(% Ok) / / I_Uk 6k ! Zk
0

. (p(t(o’l e U'In)l/ﬁ) do—l e do’m

1 (v + o)1
E/ Gﬁ:?n o ‘ o(ta/P) do
(7)1

(W + 0r)T"
o) e
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On the other hand, I gyfn) /%%) i5 a continuous linear mapping from Fj, ,
into itself.

These operators have been widely studied in the classical sense in [6].

By the conditions stated on the parameters, the two integral repre-
sentations above are equivalent. For a classical proof, see [6, Theorem
1.2.10, pp. 30-32].

Moreover, if v, + 0, € Appp, k = 1,...,m, we define the linear

left inverse operator of the generalized fractional integral 1 [(,77’;)’(5’“)

generalized fractional derivative (see [6])

(1520 ™ rta)

_ <Igm’57n>_1 {(Igm_h&m_l)_l o {(Ighél)_l f(z):| }
_ I;’"Mm’*‘;m {I;m,ﬁém,l,f&m,l {Igﬁrél,félf(x)}}

51),(— 0k
_ I{(}’jfr:r k), (—0k) (2)

as a

where Ig"+6’“’_6’“ is defined as in [11, p. 52].

Definition 3.3. Let f € F, . For Repu > 1/p — By + 1,
Y, € A;—uﬁ’ k = 1,...,m, we define analogously the Weyl type
(right-sided) generalized fractional integrals

KEO pt) = KUK - (K F (1)}

and, for all p € F), ,,,

(6 —141/8),(3%
<KngyI;l) ( k)f7g0> _ <f,1é’)’k +1/8),( k)w>'

Under the above conditions K gyn’ib) %) 5 a continuous linear mapping
from F , into itself.

/

q,— ;B
operator of the generalized fractional integral K évvr;) (Ok) ag

-1
((BSC0) 1oy = (RS0 1)

-1
= <f7 (I[(;Yk*l‘i’l/ﬁ)’(&k)) w>

Moreover, if v, + 0 € A we define the linear left inverse
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where Ig’kwk)’(*é’“) is defined as in Definition 3.2.

Definition 3.4. Let Ay = v, — v +k/m >0, Rep > 1/p —m(y +
1)+ 1and v, € Appy—1,m, K =1,...,m — 1. We define the following
operator for every ¢ € F), ;:

LY (9 + M)
T‘P(t) =t"" / Gmfljmfl umm
0 m—1

(V&)1
=) (1 fu)d(u™)
DL CON)

where ¢(u) = v~ 1) (1 /u).

One can see that 7" is a continuous linear mapping from Fj, , into
Fy ptm(4ym)+1- (Notice that if p(u) € Fp ., then p(1/u) € F, ).

By means of this operator, we define for all f € F}
“Sonine-Dimovski”-type operator T (see [6])

(T7f (1), (1)) = ([ (1), Tp(t)),

where ¢ € Fj, ,_p(14+,,)—1- Namely,

the following

S

T f(t) = e e O g ) (1),

m,m—1
where g(u) =u- f(1/u).

By definition, 7™ is a continuous linear mapping from Fz/n . into
le),ufm(lJrvm)fl' Moreover, if v, +k/m € Ay y—1m, fork=1,... ;m—
1, the operator T admits an inverse one.

Now we record a theorem given in [1, p. 318].

Theorem 3.1. Let f € F)
Then

o Repp < 1/p, Rez >0 and ¢,r € (0,00).

. 1 c+ir . .
£ = lim s [ L )e a

being L{f(t); 2z} = (f(t),e*'), the Laplace transform of f, and the
convergence has to be taken in the sense of D'(I).
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To establish an inversion formula for the generalized O-transformation,
we need to prove in advance the following lemma.

Lemma 3.1. Let 8 =m > 1/p, \pg = Ym — v + k/m > 0 and
f € F} . If the following conditions

(i) e € Appu—1,m when k=1,... ,m—1,

(i) I/p—m(y +1)+1 < Rep < mmini<p<m(ye + m — 14+ 1/p),
fork=1,... m;

are satisfied, then

e

L{T*f(t);z} = c1- O{f(t);(¢/m)}, Rez>0,

where
(277)(1—771)/2

Ch1 =
1 ml/2—m

Proof. First, we calculate
T{e ™} (1/1) = - LI fum O mem =y 1)

N ()"
: u—m(1+vm)e—zu*1d(um)_

1

Making the change ©w = x~" we obtain

0o - -1
S = e LA P
¢ ’ ™ ()1

_ tl—m o GO,m—l ( ™ (1 — ’}/k)T_l ) xm(1+'ym)e—zx dz.

GRS Wiee

Now we denote the last integral by J and substitute there
xm

—zr __ 1,0 0,m—1 1-— m—1
€ = C;O,l(zaj | O)a GmTl,m—l (t—m ‘ (1 (_ 'Yk’ﬁc);k)gn1>

=0forx <t !



THE OBRECHKOFF TRANSFORM 151

whence it takes the form

(o]
J = gi-m / @GS (| 0)
-

Proceeding as in [6, p. 184], we achieve

(27r)(1—m)/2
mi/2—m
G (z/m)™ ™ | (g + 1= 1/m)").

J = L—m(rm+1)+1

Therefore, we have

ey = B
m —m

G (2/m)™ ™ (y + 1 = 1/m)).

(3.3)

By definition we know that
L{T* f(t); 2} = (T" f(t),e™")
_ <f(t), t71 . I(’Yk)v(/\k){ufm(1+vm)efzu_1}(1/t)>
_ <f(1/t) L. I(’)’k) (’Yk){u—m(l-i-'ym)e—zu 1}(75)),

then by (3.3) it follows that

L{T*f(t); 2} = (F(1/1), e1 -z~ "0 FDH
-G ((2/m)™ ™ | (v + 1= 1/m)T"))
<f(t)7 c1 - Z_m('ym""l)"'l

aia((Z) v 1w 1= ymr))

< £, M(z/m, 1))
- OLF () (2/m)}.

Thus, we obtain a new inversion theorem.
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Theorem 3.2. Let 8 = m > 1/p, Ap = Vm — % + k/m > 0,
c,r € (0,00) and f € F, . If the following conditions

(i) Yo € App—1,ms Ym +k/m e Ay 1 fork=1,... ,m—1;

(ii) 1/p — m(’yk +1)+1< Rep < mmini<g<m(ye +m —1+1/p),
when k =1,. m;

are verified, then

ct+ir
F@)y =171 lim o KD/ W{/ (., 2) dz}(l/t),

s <2m>

where ¢(u, z) = O{f(u); (z/m)yu™(Hrm)ez/v and the convergence has
to be taken in the sense of D'(I).

Proof. Making use of Theorem 3.1 and of Lemma 3.1, we obtain

* : 1 et . tz
B IO Jim g [ OU G fme d

T—00
—r

* m 1-1/m),(A .
where T* = t (H'V*")K,(J’j: MR £ (1/u)](1/8). Since v +
k/m € Ap7u_17m, we know that the operator T* admits an inverse.

Therefore, from (3.4), we can conclude

tm(l_,'_,ym)K’(Tjﬁ:{ll 1/m), )\k)[uf(l/u)](l/t)
c+ir

— lim / OLf(1): (/m)}e' dz,

r—ee (271—1) c—ir

RS Oy (1 /)] (1)

) 1 . ct+ir ;
= hm %t (1+’Yvn)/ ) O{f(t)7(z/m)}et dza

7—00

K OO uf (1/u)) ()

m,m—1
c+ir

~ i bt o) Vet ds
~ i / OLF(1); (2/m)}e*/" dz,

— .
T—00 —ir
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, _ 1 c+ir
)0 = KGO0 i S [ oo,

—ir

where ¢(u, z) = O{f(u); (z/m)}um™(+¥m)ez/v and then

1 B c+ir
f(t) = 1. ,,1520 WKQ%—E(?—H)/T)H_D,( )\k){/ - o(.,2) dz}(l/t).

Remark 3.1. Notice that, as a particular case when 8 = m, v, = k/m,
k=1,...,m—1, and v, = v—1/m, we obtain a new inversion formula
for the Kréatzel transformation ([3], [7]—-[9]).

Now we establish a uniqueness result.

Proposition 3.1. Let 8 =m > 1/p, A\, = Ym — Y + k/m > 0 and
fe Fz; Suppose that the following conditions are satisfied:

(i) e € App—1,ms Ym +k/m € Ap 1 whenk=1,... ,m—1;

(i) 1/p—m(y +1)+1 < Rep < mminy<g<m(yx +m —1+1/p),
fork=1,... m.

Then if O{f(t); 2z} = 0 implies f = 0.

T

Proof. By Theorem 3.2, if f € F, , and O{f(t);z} = 0, then
(f,9) = 0 for all ¢ € D(I). Therefore, f = 0 since D(I) is dense
in F,, [10, Chapter 2].

Finally we demonstrate a boundedness property.

Proposition 3.2. Let 3 > 1/p and Rep < fmini<p<m (v +08—1+
L/p). If f € F}, ,, then a positive constant c evists such that

|O{f(t); 2}] < ¢zt AlmFD=I=B00n =) =2} Re 2 > 0.

Proof. Let f € F, ,. By invoking [13, Theorem 1.8], ¢ > 0 and r € N
exist such that

k
—p = B(Ym+1)+1
= (t =By )

|O{f(t)§ Z}| <c- Oréll?%{r

-G ()7 + 1= 1/B8)1))

p
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Then, proceeding as in Lemma 2.1, we obtain

[k/2]
|O{f(t)’ Z}| g C- zﬂ_ﬁ(7m+1)+1 Z ai,k}

=0

- Imax
0<k<r

m,1 0
Gl”"*l((Zt)B‘(7k+1—1/ﬁ—u/ﬁ)§” ;k—i>

<ec. Zmax{pfﬁ(7m+1)*1*5ﬁ(%*’Ym)*z}'

p
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