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A QUARTIC SURFACE OF
INTEGER HEXAHEDRA

ROGER C. ALPERIN

ABSTRACT. We prove that there are infinitely many six-
sided polyhedra in R3, each with four congruent trapezoidal
faces and two congruent rectangular faces, so that the faces
have integer sides and diagonals, and also the solid has integer
length diagonals. The solutions are obtained from the integer
points on a particular quartic surface.

A long standing unsolved problem asks whether or not there can be a
parallelepiped in R? whose sides and diagonals have integer length. If
one weakens the requirement and just asks for a six-sided polyhedron
with quadrilateral faces, then one can find examples with integer length
sides and diagonals. Peterson and Jordan [1] described a method for
making these ‘perfect’ hexahedra. We review their method.

Take two congruent rectangles positioned as if they formed the
top and bottom parallel faces of a rectangular box. Rotate the top
rectangle by 90 degrees around the axis joining the centers of these
two rectangles. Now connect the sides of the two rectangles with four
congruent trapezoids. (The shape can be viewed as a piecewise linear
version of the placement of two cupped hands together, at 90 degrees
in clapping position.) If the sides of the rectangle have lengths a,b,
then the diagonal has length ¢, where a? + b? = ¢2. The parallel sides
of the trapezoids are then also a,b. If the slant side of the trapezoid is,
say, e and its diagonal is d, then it follows from Ptolemy’s theorem that
d? = e? + ab. Consider the trapezoid with base on the top rectangle
of side a and other base on the bottom rectangle opposite that edge of
side b having the slant sides of length d. Its diagonal is of length f, and
also it is the interior diagonal of the hexahedron; thus, f? = d? + ab.
We shall refer to such polyhedra, for which these six parameters are
integral, as perfect hexahedra.
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Proposition 1. The simultanecous positive integer solutions to
a?+ b2 =c2, d? = e +ab, f2 = d? + ab give the edge and diagonal
lengths of a perfect hexahedron with two opposite parallel congruent
rectangular faces and four congruent trapezoidal faces.

Peterson and Jordan asked if there are infinitely many such perfect
hexahedra. They also gave several examples, including the small
example a = 8, b =15, ¢ = 17, d = 13, e = 7, f = 17 and asked
if it is the smallest. We provide a measure of size of solutions and
answer both of these questions affirmatively.

We can rewrite this set of equations. Basically, d>—e? = f2—d? = ab,
so that we have three integer squares in arithmetic progression. This
is the same as e + f? = 2d? and ab = f? — d?. Now then we have two
norm equations a? + b? = 2, €? + f2 = 2d? over Z|i].

It is well known that the relatively prime or primitive solutions to
the Pythagorean equation, 22 + y? = 22, are given by z = m? — n?,
y = 2mn, z = m? + n? for (relatively prime) integers m and n. All
integer solutions are scalar (integer) multiples of the primitive solutions.
To obtain solutions to 22 + y? = 222, we can use those obtained from
the solutions to the Pythagorean equation. Namely, corresponding
to a solution we form the complex number, x + iy and observe that
|z +iy|? = 2% +y? and |(z+iy)(1+4)]? = 2(2% +y?); thus, a solution to
the Pythagorean equation yields, after multiplication by 1+, a solution
to the second equation. Conversely, a solution to z? + y? = 222, gives
the complex number x = iy so that |(z+iy)[(1—1)/2]|* = ((2®+y?)/2);
thus, the complex number (z + iy)[(1 —¢)/2] provides a solution to the
Pythagorean equation. This gives a bijection of the sets of solutions
of these two equations. (Using this together with sign changes or
interchanging of variables accounts for all solutions.)

For the perfect hexahedron then, we parameterize the integer solu-
tions to the equation a? + b?> = ¢? as a = (1% — s?), b = A(2rs).
For the solutions to e2 + f2 = 2d?, we parameterize with p,q,e +if =
1((p®—q*)+i2pq) (1+1i), so that e = pu(p*—¢°—2pq), f = u(p*—q°+2pq).
The condition for a perfect hexahedron is that ab = ((f2 — €?)/2).

Proposition 2. Using these parameterizations, a perfect hexahedron
is obtained from any integer solution to 2(p? — ¢®)pqu® = (r? — s*)rs\?
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with r # +s, p # +q, u, A\, r,8,p,q # 0 and conversely.

Proof. As we have seen, the perfect hexahedron gives rise to the
equation ab = ((f2—e?)/2) which, by our parameterization is a multiple
of the equation 2(p? — ¢*)pqu? = (r? — s%)rsA?. Conversely, given any

nontrivial integer solution to this equation, we can form a = \(r? —s?),

b=2rs) c= A1 +5%), e = u(p® — ¢* — 2pq), f = pu(p* — ¢* + 2pq),
d = u(p? + ¢?), which give nonzero integer solutions to the perfect
hexahedron.

First we shall determine the smallest solution. We measure the size
of a solution by the number (ab/2) which is the same as |(r? — s%)rs\?|.

Lemma 1. The size of any solution of the hexahedra equations is
divisible by 60.

Proof. Consider the equation a? 4+ b? = ¢2. Modulo 3 the squares are
0 or 1 so it is impossible that a? and b2 are both 1 mod 3. Thus ab is
divisible by 3.

Consider this same equation mod5. Modulo 5 the squares are 0, 1 or
4. Therefore, the only solutions mod 5 are 0+0 = 0, 0+1 = 1, 0+4 = 4,
1+ 4 = 0; in either case, abc is divisible by 5. Suppose if possible that
ab is not divisible by 5. Using the parameterization described above,
then 5 divides ¢ = A(r? + s2), but not any of \,r,s,7 — s,7 + 5. Also
(ab/2) = 2pq(p? — ¢*)p? for a nontrivial hexahedron. So therefore 5
does not divide any of p,q,p + ¢,p — ¢, p. However, then the numbers
r,s,r + s,7 — s are all different mod 5 and nonzero; similarly, for
p,q¢,p + q,p — q. Thus, for a solution to the perfect hexahedron,
4812 = 2(p*—q?)pqu® = (r?—s?)rsA? = 24)\? mod 5; this is impossible.
Therefore, ab is divisible by 5.

Finally, the size is [2pq(p? — ¢*)u?| which is certainly even, but also
if p, ¢ are both odd, p? — ¢? is even; so the size is always divisible by 4.

Theorem 1. There is a unique perfect hexahedron of size 60; it has
a=8,b=15,¢=17,d =13, e =7, f = 17. The second smallest is
a hexahedron of size 120; it has a =24, b =10, ¢ =26, d =16, e =7,
f=23.
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Proof. Solving the equation pg(p? — ¢?)u? = 30 in positive integers,
we see immediately that 4 = +1 and p, g are divisors of 30; say p > ¢
and p+¢>p>q¢>p—q>0 (orpossibly p+g>p>p—q>q>0).
Hence p—q = 1. If ¢ > 3, then p > 5 is impossible. It then follows easily
that p = 3, ¢ = 2. Similarly, solving the equation rs(r? — s2)A\? = 60
in positive integers, we see that r, s, \? are divisors of 60. Hence \? is
either 1 or 4. When A\ = 2 it is easy to see that there are no solutions
in integers to rs(r? — s2) = 15. If A = 1, suppose r is larger than s.
Then either r+s>r>s>r—s>0orr+s>r>r—s>s>0;if
r > 5, then r+s > 6, then this is impossible. Thus, r < 4, and we have
the solution r = 4, s = 1. Up to order and sign, then, these parameters
describe the unique smallest positive solution of the theorem.

For the second smallest solution we solve pg(p? —¢?)u? = 60 as above
to find p = 4, ¢ = 1, u = 1. However, to solve rs(r? — s?)\? = 120,
we consider the two possible cases for A\. If A = 1 we arrange so that
r+s>r>s>r—s>0orr+s>r>r—s>s>0, and easily find
that » =5, s = 1 is the only solution. If A = 2, then as in the previous
case, we find r = 3, s = 2. These parameters give the solution stated.

Next we describe a method to produce an infinite number of different
perfect hexahedra. We consider the ‘primitive’ equation, where A =
p=1,

2(0° — ¢*)pg = (r* — s%)rs,
and look for a curve lying on the surface, see Figure 1, expressed in
terms of the parameters of «, ; for example, in the (p,r) directions
this would mean 2(a? — ¢%)ag = (8% — 52)s.

Here is one way to do that. Suppose that (po, qo,70, So) is a rational
solution; then (g, qo, s, so) for any (g,s) € {(%£qo,0),(0,0),(0,=+so),
(£q0,%s0)} is also a solution. Given any two rational solutions in
this set of nine, express the line passing through them as an equation
in terms of z,y. The solutions for (x,y) meeting the surface gives new
solutions, (x,qo,y,S0). Of these nine known points, lines may pass
through three of these points and then meet the surface again at its
points at infinity. However, several lines meet these nine at only two
points; these give rise to new rational solutions. For example, there
are lines from the ‘first quadrant’: the line through (—go, 0), (g0, o) or
(0, —s0), (g0, 0) or (0,—s0), (g0,0) or (—qo, —50), (¢0,0). In the first
case the line is y = (s0/2)[(z/qo) + 1] which meets the surface when
# = (3a058/ (1648 — 58)), y = [s0(s4 + 8a8) /(168 — s8],
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FIGURE 1. Quartic surface.

Now we change qq, s to the parameters ¢, s and clear denominators
to obtain a parameterized curve on the surface. In a similar way, we
obtain the five other parameterized curves.

(1) (3¢s*, q(16q* — 5*), s(s* +8¢%), s(16¢* — 5*))

(2) (—3q:347 q(16q4 + 34), —s(—s4 + 8q4), 8(16q4 + 34))
(3) (—q(q* +25%), q(q* — 4s*), =3¢s", s(¢* — 4s™))
(4) (q(q* — 25%), q(q* + 4s%), —3¢s*, s(g* + 4s%))

(5) (—2q(s* — ¢"), q(2¢" + %), s(—s" + 4¢"), 5(2¢* + 5%))
(6) (2¢(s* +q*),q(2¢" — 5), s(s* + 4¢"), s(2¢" — 5)).

These six different rational quintic curves can be slightly modified
with sign changes; however, the sign changes yield essentially the same
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FIGURE 2. Parameterized curve of solutions in 3-space.

solutions for a, b, c,d, e, f. These may be the smallest degree rational
curves on the surface which also contain rational points. This could
account for the sparsity of solutions as observed in [1].

For the second parameterization above, we can view it in 3-space by
dehomogenizing with respect to the last variable and letting ¢t = (¢/s)
give [(=3t/(16t* + 1)),t, ((1 — 8t*)/(16t* + 1))], which is unbounded,
having asymptote x = 0, z = —(1/2), see Figure 2. Moreover, by
projection into the plane of the first z and third z variable, we obtain
the curve with equation 8z +82* 4423 —622 —52—1 = 0, see Figure 3.
The quartic surface, see Figure 1, has an easily discernible hole; the
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FIGURE 3. Projection of space curve into z — z plane.
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three-space curve follows a fold and over the central bridge, then along
an opposite fold in the surface.

We obtain integer solutions for a,b,c,d, e, f using the parametriza-
tions discussed above; for an integer ¢ = n, s = 1 and using this
particular curve discussed, we have the positive solutions

a = 48n*(4n* +1),b = 2(—=1 4 8n*)(1 + 16n*),c = 2 + 16n* 4 320n°

and
d =2n2(5 + 16n"* + 128n%),
e =2n2(=7— 32n* + 128n%),
f=2n*(—1+64n* + 128n%)

which give infinitely many distinct integral solutions on the curve since
(a/b), (e/f) yield infinitely many distinct rationals.

An easy calculation of the surface area for these examples shows
that it grows like a polynomial function in n'®. Also we can position
the hexahedron in space with the center of both the top and bottom
rectangles meeting the z-axis; a corner of the bottom rectangle is placed
at [—(a/2),(b/2),0] and the top rectangle is placed with corner at
[(/2), (a/2),h]. We find that the height h satisfies a? + b% + 2h? =
2d? = €? + f2. From this we see that h? = 2(2n* —1)(—1+8n%)(32n* —
1)(64n® + 8n* + 1); thus, the height is nonzero. Summarizing this we
have the following.

Theorem 2. There are infinitely many solutions to a® + b*> = 2,

d?> = e? +ab, f2 = d? + ab. Thus there are infinitely many nontrivial
dissimilar perfect hexahedra with two opposite parallel congruent rect-
angular faces, and four congruent trapezoidal faces.
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