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NUMERICAL SOLUTION OF PERIODIC
FREDHOLM INTEGRAL EQUATIONS OF
THE SECOND KIND BY MEANS
OF ATTENUATION FACTORS

JEAN-PAUL BERRUT AND MICHELE REIFENBERG

ABSTRACT. We present a general method for solving lin-
ear periodic Fredholm integral equations of the second kind.
The method is based on attenuation factors and makes use of
the fast Fourier transform (FFT). It can be applied to a large
class of approximation schemes such as spline interpolants or
smoothing processes. We add some convergence results as well
as an iterative method for the solution of the system of linear
equations arising from the discretization.

1. Introduction. Let I be the interval [0, 27] C R and I? the square
[0,27] x [0,27] C R2. Let Ly = Ly(I) denote the complex Hilbert space
of square integrable functions and Ly(I?) the corresponding bivariate
space. For a Hilbert-Schmidt kernel h, i.e., a function h(t,s) € Ly(I?),
consider the bounded, linear and compact operator (Int i) defined by

1 27
(Inth) : f € Ly —> (It h)f = / h(-8)f(s)ds € L.
0

T om

Such an operator is called a Hilbert-Schmidt integral operator (H-S
operator) and the equation

(1.1) z+ (Int h)z = f,

where the righthand side function f belongs to Lz, is a Fredholm
integral equation of the second kind in Lo for the unknown function
x € Ly. Setting H := (Int h), (1.1) can be written as

(1.2) z+ Hz = f.
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The most common methods for solving Fredholm integral equations of
the second kind are presented in [1] and [16]. If h and f are 2m-periodic
functions, such equations can be solved numerically by the classical
Fourier method [4]. For that purpose, let (¢;,sx) := (j2r/N, k27 /N),
jok = 0,...,N — 1, be the N? interpolation points equidistant in
both directions. The kernel h and the function f are interpolated by
trigonometric polynomials between those points. The coefficients of
those polynomials can be calculated by fast Fourier transforms. The
discrete Fourier coefficients é, (&), n = 0,..., N —1, of the approximate
solution & of x with exact coefficients ¢, (z) are determined by an N-
dimensional linear system.

In this article we will develop a method which accepts other interpola-
tion or approximation schemes than the trigonometric polynomials (for
example, spline interpolation operators) and still permits the use of fast
Fourier transforms. The method relies on the fact that, for every linear
and translation invariant approximation operator P applied to y € Lo,
the exact Fourier coefficients of Py can be written as products of the
N discrete Fourier coefficients of y by some numbers, called attenua-
tion factors, which depend only on the approximation operator. If the
operator approximating the HS-operator is a tensor product operator,
the approximate solution of (1.1) can be determined as in the classi-
cal method by solving a finite linear system. This method is therefore
very general since it merely requires the knowledge of the attenuation
factors corresponding to the chosen approximation operator.

A noteworthy advantage of the method is the fact that, since it
operates in the Fourier space, it accommodates very well approxima-
tion operators which are defined only there, like Cesaro and Lanczos
smoothing. These attenuate or even completely overcome the Gibbs
phenomenon. Another type of application is the solution of integral
equations containing operators which can only be evaluated in the
Fourier space, such as boundary integral equations involving the conju-
gation operator (see [3]). In the special case of spline interpolation, our
method is equivalent to the degenerate kernel method using B-spline
representations of the approximate functions, which Hammerlin and
Schumaker [11] have applied to nonperiodic equations.

In Section 2 we introduce the attenuation factors and give some
examples. The third section shows how to compute a numerical solution
of the integral equation (1.1) using those factors. Some convergence
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results are also given. Finally, an iterative solution method for the
linear system arising from the discretization is presented in Section 4.

2. Attenuation factors.

2.1. Attenuation factors in univariate Fourier analysis. In practice,
approximating 2m-periodic functions by finite Fourier series means
replacing the exact Fourier coefficients by discrete ones (where the
integrals are evaluated by the trapezoidal rule) and truncating the
infinite series.

Consider a 2m-periodic function f with f|; € Lo(I) and the points
tr == k27/N, k = 0,...,N — 1. The discrete Fourier coefficients
én(f) :==(1/N) ZkN;Ol (t)e "t [12] are N-periodic and can be calcu-
lated by a fast Fourier transform in O(N log N) arithmetic operations.
If N is even, then

N/2

(2.1) fO= Y elf)e™

n=—N/2

is the trigonometric polynomial of degree < N/2 interpolating f be-
tween the tg; in (2.1) the / means that the first and the last terms of
the sum are to be multiplied by 1/2. It has been shown [15, p. 44] that
if the Fourier series of f converges toward f(t) at every tx, then

en(f) = calF) + 3 coran(f) for all m,
k0

where the ¢, (f) denote the exact Fourier coefficients of f. This means
that for every n the discrete coefficient ¢é,(f) contains the information
of an infinity of other coefficients than the exact coefficient ¢, (f). This
can lead to a phenomenon called aliasing of frequencies (see, e.g., [2]).

This problem can be avoided by approximating the function f, which
is often given only by its values fj at the points tx, by a simpler 27-
periodic function ¢ which shares with f some smoothness properties.
The coefficients ¢, (¢) are then taken as approximations of the exact
coefficients ¢,(f). It has been shown that, in some cases, when
¢ interpolates f between the points t; and is piecewise polynomial
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over the subintervals (¢,tr+1), as well as in some cases when ¢ is a
nonpolynomial interpolant or even no interpolant at all,

(2.2) en(P) = Tén(f) for all n,

where the factors 7, do not depend on f. They tend to zero for
n — +oo, as do the exact coeflicients ¢,(¢). This is not true for
the discrete coefficients é,(f), which are N-periodic. The factors 7,
are therefore called attenuation factors.

An instance of (2.2) was already discovered in 1898 for the broken
line interpolant by Oumoff [19], who states without proof that in this
case

[sin mn/N
Tn = | ——F—

—v ] =: SINC*(mn/N).

Gautschi [8] gives a detailed historical overview of attenuation factors.

Let us now give some definitions and the precise conditions on the
approximation process under which a formula of the form (2.2) holds.
Denote by I, the linear space of N-periodic bi-infinite real sequences

HNvT = {f: {fm}mez : fm S Rafm+N = fm Vm € Z}

and by II, the space of 2m-periodic real functions. An approximation
process will then be an operator P : f € llx, = ¢ = Pf € Il,.. If ¢
satisfies ¢(ty) = fx for all k, then P is called an interpolation operator.

In the following theorem Gautschi [8] gives an explicit formula for
the attenuation factors:

Theorem 2.1. Let P be a linear operator from Iy, to IL.. If P is
translation invariant, i.e., if it commutes with the shift operator on the
equidistant grid, then

cn(Pf) = 1nén(f) for all f €y, and all n € Z,
where T, = cn(PS) and § denotes the bi-infinite N -periodic sequence
with

(S)k—{N if k=0mod N,

0  otherwise.
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If P has the additional property

(2.3) P{...1,1,1,...,1...0) =1,
and if
(2.4) P preserves central symmetry,

then g =1, Tjy =0 for all j € Z* := Z\{0} and 7, = 7_, € R for all
n € Z.

For any reasonable operator P, Pé is integrable and thus the factors
T, — 0 as n — =£oo.

2.1.1. Ezamples of approzimation operators.

Ezxzample 1. Trigonometric interpolation. The attenuation factors of
the balanced (i.e., with no term in sin(N/2)t¢ in the real representation
[13]) trigonometric polynomial of degree N/2 for N even are given by
7o = 1for |n| < N/2, 7, =1/2 for |n| = N/2 and 7, = 0 for |n| > N/2.

Ezample 2. Smoothing processes. By applying Cesaro, Lanczos or
raised cosine smoothing to the trigonometric polynomial, we get an
approximant with the following attenuation factors:

W, if [n] < N/2,
Tn = wy/2 if |n| = N/2,
0 if|n]> N/2.

The so-called window functions w,, are given by w,, := 1—|n|/(N/2+1)
for Cesdro smoothing, by w, := SINC (7n/N) for Lanczos smoothing,
and by w,, := (14 cos(n2m/N))/2 for raised cosine smoothing (see [6]).

Ezample 3. Spline interpolants. a) The spline interpolants of even
order 2r, i.e., of odd degree d = 2r — 1, r > 1, satisfy the hypotheses
of Theorem 2.1. Thus we have 7 = 1, 75 = 0 for j € Z* and

1

(25) T = —02T?1(Zk)

for k # 0 mod N.
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In this expression z = k/N = t;/(27) and the function o, is defined
by

(2.6) J=7e0
{ Tz cotwz for m =0,
| SINC ™ *+1)(2)g,,_1 (cos7z) otherwise,

where the g,,,—1 are polynomials of degree m — 1 defined recursively by
[9, p. 187]

1—¢?
(27) Q(](t) = ]., Ql(t) = tqz_l(t) + H_—lq;_l(t), l = ]., 2, P

b) The spline interpolants of odd order 2r + 1, i.e., of even degree
d = 2r, r > 0, with the knots & := ¢, + 7/N to achieve the central
symmetry of P. The associated attenuation factors are 7o = 1, 7j5 =0
for j € Z* and 1, = 1/(62-(2x)) for k # 0 mod N, where

+oo ) P m+1
Gm(z)= D (-1) <j n > = SINC™ ™+ (12) gin (cos 72)

j=—o00
and the ¢ are polynomials defined recursively by [9, p. 189]

1—¢2
l q;—l(t)a l: 1,2,... .

Qo) =1, @) =tq-1(t) +

The attenuation factors of further examples such as smoothing splines,
generalized spline interpolants, periodic spline interpolants of order 2r
with deficiency k (including Hermite interpolants (k = r)), analytic
splines, etc., can be found in the articles by Gautschi [8], Gutknecht
[9] and Locher [18].

2.1.2. Ewvaluation of the approximant. When applying the numerical
method (see Section 3) to the integral equation (1.1) we get the N

coefficients é,(£), n = 0,...,N — 1, of the approximate solution
&= 3% 1.é.(8)e™ by solving a linear N-dimensional system.
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From these coefficients we want to evaluate the approximate solution
#(t) of x at any point.

_Let f: R — R be a 2r-periodic function with f|; € Ly(I) and
f = {fx}trez € Un,. Taking into account the N-periodicity of the
coefficients é,(f), we can write the approximant of f as a finite sum:

+oo
Pf(t) = Z Tnen(f)e™
TJ:/'_—ZOO ) —+o00 )
_ Z én(f)eznt( Z Tn+mNelmNt>-
n=0 m=—00

The main difficulty in evaluating this expression is usually the series
between parentheses. If ¢ is one of the N points ¢, k = 0,... ,N —1,
then this series becomes E;OZO_OO Totmn = 1 and we get Pf(tg) =

SN Le.(f)eints. The N values Pf(t), k = 0,...,N — 1, can be

n=0
computed simultaneously by a single FFT. For most operators, the
evaluation at the intermediate points requires more calculations.

Ezamples 1 and 2. Trigonometric interpolation and Cesdro, Lanczos
or raised cosine smoothing. Since the series are finite, Pf(t) can be
evaluated directly.

Ezample 3. Spline interpolants. a) The spline interpolants of even
order 27, r > 1. Observing that

2r
n
o= ()

[9, p. 188] for n # 0 mod N, we have

+oo
Pf(t)=éo(f) D Tmne™N

m=—0o0

N-1 ) +oo n 2r )
+ Zén(f)Tneznt< Z <m> eszt)7

n=1 m=—00
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where, because of (2.3), the first series equals 1. Denoting the series in
parentheses in the above expression by

+oo 2r
— n imNt
(5n,r(t) T Z <m> €

m=—0o0
+o0 1 2r
_2r imNt
=z, e ,
m -+ zp
m=—oo

where z, = n/N, we see that in order to compute Pf(t) we just need

to analyze series of the form 7% _ (1/(m + z))ke™Nt. For t €

(0,27 /N), those series converge uniformly in z, and we observe that, for

k = 1in the interval (0, 27/N), the series 7% __ Nt /(m4-z) repre-

sents the partial fraction decomposition of the function re?*(*=N t)/ sinmz

[7, p. 391]. Consequently, for ¢ € (0,27 /N),

(2.8)

too k k—1 gk—1 iz(m—Nt

Z < 1 > eimNt:(_l) d _ (We'( )> VE > 1.
m+z (k—1)! dzF-1 sinmz

m=—0o0

Using (2.8) we are able to calculate 0, ,(t) for all » > 0 and for
all ¢ € (0,2n/N). For an arbitrary point y = p27/N + ¢, where
t € (0,2r/N) and p € {0,...,N — 1}, we have d,,.(y) = d,,(t) and
therefore

(29) PEW) =20+ 3 en(F)radns(B)e™.

If ¢ is one of the midpoints between the t, = k27 /N, i.e., t =t + 7 /N
for some k € {0,... , N —1}, then d, ,(t) can be calculated without the
use of (2.8). Observing that

too 2r
St +7/N)= <mL+n> MmN (tetm/N)
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and

S 1y <j 2 Z>m — SINC™ "™ (12) 1 (cO3 72)

j=—00

with §; defined in the previous section, we obtain
Onr(t +7/N) = SINC™ 2" (72y,)Gar_1(cos m2y,)

and hence (2.9) reads

CI2r 1(cosmzy,) ein(tr+m/N)
2.10) Pf(t N) = E n(f) ———— k .
( ) f( K m/N) =do(f)+ ¢ qgr 9 cos7rzn)

b) The spline interpolants of odd order 2r + 1, » > 0. Similar
calculations yield

PF(t) = éof f)+1:§1 en(F)rmei™ ( m:Z:(—l)m (m+ﬂ> 2r+1eimm> |

At midpoints the series in the above expression, which we will again
denote by 0y, (t), can be written in closed form as

Onr(ty +m/N) = SINC~ D (12, )ga,_1(cos w2,,), 7 >0,

and 9,0 = 7z, cotwz,. Thus, for r > 0, we again have (2.10) with
G2r—1 and ga-_o, replaced by ¢o._1 and ¢, respectively.

2.2. Attenuation factors in multivariate Fourier analysis. Let h(t, s)
be a 2m-periodic real function in the two variables ¢ and s such that
hlrz € Lo(I?). Denote by hy; := h(tg,s;) the values of h at the NZ
points (t,s;) := (k27/N,2n/N), k,l = 0,... ,N — 1, and consider
the bi-infinite series A = {hpm}r e o> Where hy ., is defined as
above for n,m = 0,... ,N —1 and N- periodically extended in both
directions. We approximate h by Ph by means of an approximation
operator P : H( ) — H£ ), where

HS\?T {f {fn m}n m__oo;fn,mERa fn—i—N,m:fn,m—i-N:fnmavnam}
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and ng) is the space of 2m-periodic functions in both variables.
The two-dimensional Fourier series of Ph is given by Ph(t,s) =

oo cum(Ph)e™e ™. Gutknecht [10] has shown that, from
the ylinearlty and bivariate translation invariance of P, there follows, as
in the univariate case, that

(2.11) cnm(Ph) = Tnménm(h), n,meZ,

where the two-dimensional attenuation factors 7, ,, are again indepen-
dent of h.

Moreover, he has proven the following important fact: for tensor
product operators the attenuation factors have product form, i.e., if
P = P, ® P,, where P; and P, are translation invariant linear operators
Iy, — IL,, then 7, ,, = TT(Ll)Tf(n) for n,m € Z, where Tr(bl) and 7'(2) are
the one-dimensional attenuation factors corresponding to P; and Ps,

respectively.

3. Numerical solution of integral equations by means of
attenuation factors. Consider the integral equation z + Hx = f
introduced in Section 1. We first approximate f and k by f := Pf and
h o= Ph respectively, where P and P are linear translation invariant
operators, and we solve the approximate equation

(3.1) i+ Hi=f

for 2 = .7 ¢, (&)e™ € Ly(I), where H := (Inth). We consider

n=—oo

the solutions of (3.1) for various N as approximations of the exact
solution z of the initial equation z + Hz = f. After expanding f, &
and h into their Fourier series, (3.1) becomes

400 +o00 +oo
S ea(@)e™ + H( 3 (x)> =Y elf)em.
Orthogonality of the trigonometric functions yields

+oo

+oo +oo oo
Z cn(#)e™ + Z < Z cn,m(ﬁ)cm(£)>eint: Z en(f)et™.

n=—oo n=—oo m=—0o0
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Making use of (2.2) and (2.11) and equating the coefficients of e™™* on
both sides, we get the infinite system

—+o00
(3.2) cn(2) + Z Tn,mén,m(h)cm(i) =Tnln(f), n€Z.
m=-—o00
As we have seen, T,,, = 7,7, if P is a tensor product operator

P = P® P. Thus,

cn(Z) =Tn <én(f) - Jf Tmémm(h)cm(i})), n € Z,

m=—00

where the expression between brackets is N-periodic in n. If we denote
it by é,(Z), then the Fourier coefficients of the approximate solution Z
are given by ¢, (&) = 7,¢,(£). In view of the N-periodicity in m of the
coefficients é, , (h) and &, (Z) (3.2) can now be written as

(3.3)

N-—1 +o0
Taln(2) + 7o > bam(R)ém(@) Y (Tmani)? = Tmén(f), neZ.
m=0 |=—00

Let n be such that 7,, # 0. Then for all k € Z with 7,4,y # 0 division
by 7., respectively 7,y shows that the nth and the (n 4+ kN)th
equations of (3.2) and (3.3) are the same. Under the uniqueness
hypothesis (see Theorem 3.1) there are at least N indices n with
Tn, # 0. Therefore, the infinite systems (3.2) and (3.3) contain precisely
N distinct equations.

3.1. Exzamples.

Ezample 1. Trigonometric interpolation. (3.3) reduces to the finite
(N + 1)-dimensional system

N/2
1

(3-4) én(i) + Z éan(h)éTn(i) = é’ﬂ(f)v

m=—N/2

n=—N/2,...,N/2, where the // means that the terms corresponding
to m = £N/2 are to be multiplied by 1/4 [4].
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Ezample 2. Smoothing processes. In this case we get the system

N/2
"

(3.5) n(2) + Z wrznén,m(h)ém(j) = &n(f),

m=—N/2

n=—N/2,...,N/2, with the coefficients w,, defined in 2.1.1.

Ezample 3. Spline interpolants. Setting

+oo
(3.6) Pm = Z (Tmani)?  and Prm = Cnm(h)pm
l=—00
we find the coefficients éy(%), ... ,én_1(Z) by solving the system
N-1
(3.7) (@) + D prmim (&) =én(f), n=0,...,N—1.
m=0

a) The spline interpolants of even order 2r, r > 1. We have already
mentioned that the corresponding attenuation factors satisfy

k 2r
Th4+jN = <m> T, for kK Z 0 mod N

and that therefore for m # 0, using (2.5), (2.6) and (2.7),

+o0 +oo m 4r
2 _ 2
2 w7 3 ()

= 72 SINC ™ *(2,,)qar—_2(cos T2y,
_ Qar—2(cosmzy,)
T 2 (e )’

g5, o(COST2Z),)

where z,, = m/N. For m = 0, Y, _(nn)? = 70 = 1 by (2.3) and
thus pp o = én (). In the case of piecewise linear spline interpolation,
r =1, (3.7) becomes

enl@) + 60(@)eno(W) + 3 2(c08 M2 ) (B)em (@) = En(f),

m=1
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n =0,...,N — 1, while, for the cubic spline interpolant, r = 2, we
obtain the system

Cn(f) + Co + én,m(h) ém(i) = 6n(f)

N-1
[ COSTZm)

“— laz(cosmzm)

forn=0,...,N — 1, where, in view of (2.7),

4 114 , 61 17, 11
t° R AR

w6t) =35t F 35t tat t st T o

b) The spline interpolation of odd order 2r + 1, r > 0. The corre-
sponding attenuation factors have the property

) k 2r+1
Tr+jn = (—1)? <m> 7 for all £ # 0 mod N.

Hence (3.7) becomes

én(@) + nyo(h)éo(E) + Z [%én,m(m Em () = én(f)

forn =0,...,N — 1. Applying this to the piecewise constant spline
interpolation, r = 0, we find the system

(@) + 3 Cnm(h)em(@) = én(f) forn=0,...,N 1,

which is quite similar to the one of trigonometric interpolation.

If P is a tensor product operator, the cost of computing the numbers
Pr,m of (3.7) comes mainly from the computation of the coefficients
én,m (), calculated simultaneously by a bivariate FFT in O(N?1log N)
operations, and from that of the series ;" (71 n1)?. In the cases of
trigonometric and spline interpolation, for example, this series can be
written in closed form. The global cost for the terms p,, », is therefore
O(N?log N) operations.

Since the IV x N-matrices corresponding to the systems of this section
are not sparse, their solution by Gaussian elimination requires O(N3)
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operations. Thus for large NV the systems have to be solved by iterative
methods. Such a method is described in Section 4.

3.2. Convergence of the approzximate solution. In order to study the
convergence of the approximate solution Z of the equation & + H = f
toward the exact solution = of x + Hx = f we can use the following
convergence theorem of Schleiff for functional equations of the second
kind in Ly [20, p. 480].

Theorem 3.1. Suppose that the equation (I+ H)x = f has a unique
solution for all righthand side functions (i.e., (I + H)™! exists) and
suppose that

(3.8) |H—-H||—0 and ||f—fllz, —0 i N — .

Then for some Ny € N the approzimate equation i+Hz = f s uniquely
solvable for N > Ny, and the solution & converges in Lo to the exact
solution x. Moreover, we have the following error bound:

(3.9) lle — &l < (1 +H)H 20 H ~ H| |+ H) T IA+11F = Il

H being compact, the questions of existence and uniqueness of the
solution of the exact equation z + Hx = f are answered by the
Riesz-Fredholm theory. ||H — H| — 0 is, for example, satisfied if
|h — hl|z, — 0. Let us apply the theorem to the examples seen earlier:

Ezample 1. Trigonometric interpolation. The hypotheses (3.8) of
Theorem 3.1 are satisfied if f and h are Riemann-integrable. If f
and h are 2m-periodic analytical functions, the convergence of h and
f toward h and f is exponential [14, pp. 20 and 46] and therefore we
have exponential convergence of & toward z [4]. If f and h belong
to the periodic Sobolev space H}'(I) with m > 1/2, respectively,
H*(I?) with m > 1 (see [6] for the definition of those spaces and

for the following convergence results), then ||f — f||z, = O(N~™) and
|h = hlLy(rzy = O(N™™). Thus, if f € H*(I) and h € H}*(I?), there
follows that ||z — Z||p, = O(N—™) for m > 1.
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Ezample 2. Spline interpolants. We know that ||f — f||z, = O(N~™)
for f € H*(I), m < d+ 1, where d > 0 is the degree of the spline. For
tensor product splines one has ||k — iz||L2(Iz) = O(N™™ + N—™2) if
h belongs to the tensor-Sobolev space H™(I?) with m = (my,mz)
and m; < d; + 1, where d; > 0 is the degree of the spline in
the ith variable [21, pp. 230 and 491]. Cubic spline interpolation
(r1 = ro = 4) insures fourth-order convergence. For f € H,(I) and

h € Hz(,4’4)(12), |l — &||z, = O(N~*). The best convergence for
piecewise linear, respectively constant spline interpolation, is O(N ~?2),
respectively O(N1).

The above estimates imply that, for f € H}", trigonometric inter-
polation and spline interpolation of degree m give the same order of
convergence. However, on one hand the trigonometric polynomial fits
automatically to the order of differentiability, while one has to know
this order to choose the order of the spline accordingly. On the other
hand, the spline interpolant oscillates less between the interpolation
points.

4. An iterative method. The fixed point iteration for the equation
T+ H& = f is given by

(4.1) 2040 = f o fal),

This iterative method converges toward # if |H|| < 1, which is true
in many instances, in particular for the boundary integral equations in
[8]. The determination of the matrix H requires a (single) bivariate
FFT, which needs 3/4(N?log, N) flops, and at each iteration step the
matrix-vector product of H by & has to be computed.

We now present a method which does not require the computation of
H and makes only use of one-dimensional FFTs [2]. Let us define

(42) ﬂ,(f) = én,m(h)ém(j(j))pma
m=0

where p,,, is defined in (3.6). Notice that, in the case of trigonometric
interpolation, the system (3.4) can be written in the form of (3.7) with



16 J.-P. BERRUT AND M. REIFENBERG

pm = Llform =0,...,N/2—1and m = N/2+1,...,N — 1 and
pn/2 = 1/2. Equality (4.2) can be transformed into

) N-1 1 N-1
39 = [m thwk”wlm] i (29
m=0 k,1=0
1 N—1 -N-1 1 N-—1
=N [Z N i gw ™™ e, (29 p ]w_k"
k=0 -m=0 =0
1 N—-1-N-1
— 3 2 | 3 enlh o8|t
k=0 -m=0

where w := €2™/N and the é,(h¥), m = 0,...,N — 1, are the
coeflicients of the trigonometric polynomial interpolating the function
h(¥)(s) := h(ty,s) between the points s;. Hence, for any fixed k, the
coefficients ¢, (h*), m = 0,... ,N — 1, can be computed by a single
FFT. Since we need all coefficients ¢é,(h(®), for k = 0,... ,N — 1,
the complete calculation requires N one-dimensional FFTs, i.e., about
(1/2)(N?log, N) operations, and because those values are the same at
each iteration, this work is done only once. Each iteration then requires
another FFT to calculate gﬁf'), n=20,...,N—1. If M is the number
of iterations, the whole method demands about (1/2)(N + M)N log, N
operations for the FFTs. If M is smaller than N/2, the method is faster
than that making use of a bivariate FFT.

This method with only one-dimensional FFTs is convenient for im-
plementation on a parallel SIMD machine. Suppose that there are
p processors; the N FFTs which compute the coeflicients én(h(k)),
k =0,...,N — 1, are calculated in parallel in a time which corre-
sponds to @ := [N/p] FFTs, i.e., to (1/2)QN log, N operations, where
[N/p] denotes the smallest integer larger than N/p. Each processor
retains the results of his FFTs, multiplies the coefficients of each of
them by the constants p,, and, at each step, computes the scalar prod-
ucts with () = (é9(29)),... ,én_1(&9))T in QN operations. After
each iteration, the results of the ) scalar products are sent to the host
which computes the @7(3), forn =0,...,N — 1, by another FFT. The
total computational time is about (1/2)(M + Q)N logy N+ (M +1)QN
operations, which is O(Nlog N) if p = N.



ATTENUATION FACTORS 17

5. Remarks on computational experience. All examples
discussed above have been implemented and tested with several kernels
and righthand side functions. The linear systems arising from the
discretization were solved by Gaussian elimination as well as by the
iterative method of Section 4. In all examples the number of iterations
was independent of the number of interpolation points.

For spline interpolants of order 0, 1 and 2, we have also implemented
the classical equivalent method, in which the spline interpolants are
not written as infinite Fourier series, but as finite linear combinations
of the IV B-splines spanning the space of periodic splines. Up to the
unavoidable imprecision of finite arithmetic, both methods gave exactly
the same results, as we expected.

Finally we give some numerical results for the equation with the
following kernel and righthand side function:

h(t,s) :=sin(t) cos(s),

e 1 —sin(t)/m ifw/2 <t < 3m/2,
1) = —sin(t)/r  f0<t<w/2 3m/2<t<2m

The exact solution is given by the square wave

) 1 ifn/2<t<3nm/2,
T =
0 if0<t<m/2,3r/2<t<2m.

f having discontinuities in ¢ = /2 and ¢t = 37/2, trigonometric
interpolation exhibits the Gibbs phenomenon. To reduce the latter,
we use smoothing approximants as &. For Cesdro, Lanczos and raised
cosine smoothing and increasing values of N, we display in Table 1
the error at the points ¢; := n/2 — 7/1024 and ¢, := 7 — 7/1024,
which are close to, respectively far away from, the discontinuities.
Computing the experimental ls-errors we see that, as in the points
t; and tg, the Lanczos and the raised cosine smoothing processes
yield globally better results than the Cesdro smoothing. One reason
is the heavy smearing in the Cesaro approximation near the points
of discontinuity of the righthand side function f. Near these points
the most accurate approximate solution of the integral equation is
produced by the Lanczos smoothing approximant, while the raised
cosine smoothing gives the best approximation to the solution in regions
excluding the discontinuities.
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TABLE 1. Absolute errors for Ceséro, Lanczos and raised cosine smoothing.

11 [2)
N Ceséaro Lanczos Raised cos. Ceséaro Lanczos Raised cos.
64 | 0.4677 0.4795 0.4843 9.687-1073 | 1.372.1075 | 5.645.10"8
128 | 0.4534 0.4501 0.4781 4.923-1073 | 1.553-10~% | 1.371-107?
256 | 0.4417 0.4207 0.4446 2.482-1073 | 1.580-10~7 | 3.431.1010
512 | 0.3921 0.3438 0.3903 1.246-1073 | 1.311-1078 | 8.578 - 1011
1024 | 0.2958 0.2052 0.2877 6.249-10~4 | 1.997-1079 | 4.312-10"12
2048 | 0.1479 | 2.535- 102 0.1249 3.124-10~4 | 2.761-1010 | 4,441 .10 14

By examination of the derivative of the approximate solution with
trigonometric interpolation, we observe an important oscillatory behav-
ior, especially near the points of discontinuity. This shows the influence
of the Gibbs phenomenon on trigonometric interpolation of the func-
tion f. These oscillations of the approximate solution are completely
damped when Cesaro smoothing is used as approximation of A and f,
but, as seen in Table 1, the approximation of the solution is then not
very good. If the Lanczos or the raised cosine smoothing processes are
used as approximations, the resulting solution still displays some visible
oscillations near the discontinuities, oscillations which are, however, less
pronounced than with unsmoothed trigonometric interpolants. But we
have seen that the Lanczos and the raised cosine smoothing yield better
approximations than the Cesaro smoothing. Moreover, we can see that
the oscillations of the approximate solution as raised cosine smoothing
are less pronounced than those corresponding to the Lanczos smooth-
ing, while on the other hand Lanczos yields a better approximation near
the points of discontinuity. These observations show that the choice of
the appropriate smoothing process should depend on the application:
sometimes a precise representation of the solution is to be preferred at
the cost of retaining some oscillations, while in other applications one
will be ready to sacrifice some precision for a smoother solution.
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