
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 8, Number 4, Fall 1996

LOCALIZATION AND POST PROCESSING FOR
THE GALERKIN BOUNDARY ELEMENT METHOD

APPLIED TO THREE-DIMENSIONAL
SCREEN PROBLEMS

ERNST P. STEPHAN AND THANH TRAN

ABSTRACT. We study local error estimates for various
Galerkin schemes (Galerkin schemes with quasi-uniform or
graded meshes, and the augmented Galerkin method) applied
to weakly singular and hypersingular integral equations on
open surfaces in R3. The results are given for a large scale
of Sobolev norms, even in some norms that are not defined
globally. In the case of the weakly singular integral equation
where the highest orders of convergence achieved are in nega-
tive Sobolev norms, we establish from the Galerkin solutions
new solutions that converge in the L2-norm to the exact so-
lution in these orders.

1. Introduction. The solutions of elliptic boundary value problems
in R3\Γ, where Γ is an open surface in R3, have special singular
forms at the boundary γ of Γ, regardless of whether γ is a smooth
or polygonal curve. When those problems are reformulated, via the
direct method, into boundary integral equations, the solutions of the
latter inherit those singularities. These singularities affect the rate of
global convergence of numerical schemes, e.g., the Galerkin boundary
element methods. To recover the high order of convergence associated
with smooth and closed surfaces, either augmented boundary elements
or mesh grading is necessary. However, if the given data are sufficiently
smooth, the solutions to the integral equations are smooth locally, i.e.,
away from the singularities. Then there arises the following question. Is
the accuracy of the approximation better in regions of smooth behavior
of the exact solutions? Another problem is faced when we want to
observe the highest order of global convergence when it is achieved in a
negative norm. Is there any effective post-processing method to obtain
that highest order for the local convergence in the L2-norm, which can
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be easily observed? The purpose of this article is to give answers to
the above questions.

For strongly elliptic integral equations on a smooth and closed curve
in R2, local error estimates were proved by Saranen [14]. The proof
was then modified to achieve local estimates for equations on open arcs
[19]. We will adapt the techniques of [14] and [19] to prove estimates
for the case of open surfaces in R3.

In the boundary element literature, the K-operator method has been
used effectively as a post-processing method to increase the order of
local convergence in the L2-norm of the Galerkin and qualocation
methods applied to strongly elliptic equations on smooth curves, closed
or open [18, 20]. The original idea is due to Bramble and Schatz [2, 4]
and Thomée [17] in the finite element environment. We shall study the
effectiveness of that method for the Galerkin approximation to integral
equations on an open surface in R3.

We will particularly be concerned with the weakly-singular and hy-
persingular equations given by

V ψ(x) := − 1
4π

∫
Γ

ψ(y)
|x− y| ds(y) = g(x), x ∈ Γ,

(1)

Dξ(x) := − 1
4π

∂

∂nx

∫
Γ

∂

∂ny

ξ(y)
|x− y| ds(y) = f(x), x ∈ Γ.(2)

Here the surface Γ is assumed to be smooth, and its boundary γ
is a smooth or polygonal curve, except when otherwise identified.
Equation (1), respectively (2), is the integral reformulation (via the
direct method) for the Dirichlet, respectively Neumann, boundary value
problem in R3\Γ with vanishing condition at infinity (see, e.g., [5, 15]).

It was proved in [15] that, for 0 < σ < σ′ < 1/2, if g ∈ H3/2+σ(Γ)
and f ∈ H1/2+σ(Γ), then ψ and ξ have the form

ψ = β(s)ρ−1/2χ(ρ) + ψr on Γ,

ξ = α(s)ρ1/2χ(ρ) + ξr on Γ,
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where

β ∈ H1/2+σ(γ),

ψr ∈ H̃1/2+σ′
(Γ),

α ∈ H1/2+σ(γ),

ξr ∈ L2(I;H1/2+σ(γ)) ∩ H̃3/2+σ′
(I;L2(γ)),

I = (0, 1),

and where χ is a cutoff function with χ ≡ 1 for |ρ| < 1/2 and χ ≡ 0
for |ρ| > 1. Here s denotes the parameter of arclength of γ and ρ
corresponds to the Euclidean distance to γ. (For the definition of the
Sobolev spaces, see Section 2.)

The plan of the paper is as follows: in Section 2 we give some
known results on the Galerkin approximation methods to (1) and (2).
These include the standard Galerkin method with regular and graded
meshes and the augmented-Galerkin method. The results on local
error estimates for these Galerkin approximation schemes are proved
in Section 3. The K-operator method for equation (1) is studied in
Section 4. However, the same method can also be used for any Galerkin
approximation to equation (2), provided that an error estimate in a
negative Sobolev norm exists. Section 5 is devoted to some numerical
experiments.

2. The Galerkin approximations. Let Γ̃ be a smooth and closed
surface containing Γ. We recall from [11, 12] the function spaces to be
used in this paper:

Hs(Γ̃) =

⎧⎪⎪⎨
⎪⎪⎩

{u|Γ̃ : u ∈ H
s+1/2
loc (R3)} for s > 0,

L2(Γ) for s = 0,

(H−s(Γ̃))′, (dual space) for s < 0,

Hs(Γ) = {u|Γ : u ∈ Hs(Γ̃)} for s > 0,

H̃s(Γ) = {u ∈ Hs(Γ) : u∗ ∈ Hs(Γ̃)} for s > 0,

Hs(Γ) = (H̃−s(Γ))′ for s < 0,

H̃s(Γ) = (H−s(Γ))′ for s < 0,
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where

u∗ =
{
u on Γ,
0 on Γ̃\Γ.

We assume that the surface Γ is given by a regular parametric rep-
resentation x = X(v) with v ∈ U , where U is a compact region in R2

whose boundary is mapped onto γ and which also has a regular para-
metric representation. By choosing a sequence of regular triangulations
of U with maximal meshsize h, we can define a regular system Sr,k,
0 ≤ k < r, of finite elements in the sense of Babuška and Aziz [1]. These
elements can then be transplanted onto Γ by the above parametriza-
tion to form the system Sr,k

h (Γ). The parameters in Sr,k
h (Γ) have the

following meanings: h ∈ (0, h0] is the mesh size of the partition of Γ,
e.g., h is the longest side of a triangle in a uniform triangulation; r− 1
is the degree of piecewise polynomials constituting the corresponding
finite elements; and k describes the conformity Sr,k

h (Γ) ⊂ Hk(Γ). Anal-
ogously, we can define Sr,k

h (γ). Moreover, we define

◦
Sr,k

h (Γ) = {φ ∈ Sr,k
h (Γ) | φ = 0 on γ}.

In particular,
◦
S2,1

h (Γ) is the space of piecewise-linear, continuous func-
tions on Γ vanishing on γ and S1,0

h (Γ) is the space of piecewise-constant

functions on Γ. Note that S1,0
h (Γ) ⊂ H̃−1/2(Γ) and

◦
S2,1

h (Γ) ⊂ H̃1/2(Γ).

2.1. Standard Galerkin schemes with regular mesh. Here we assume
that Γ is a smooth open surface with a smooth or polygonal boundary
γ. The standard Galerkin schemes for the integral equations (1) and
(2) read as

Find ψh ∈ S1,0
h (Γ) such that for all ϕ ∈ S1,0

h (Γ)

(3) 〈V ψh, ϕ〉 = 〈g, ϕ〉,
and as

Find ξh ∈
◦
S2,1

h (Γ) such that for all φ ∈
◦
S2,1

h (Γ)

(4) 〈Dξh, φ〉 = 〈f, φ〉.

The following results were proved in [6, Theorem 4.1].
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Theorem A. There is a meshwidth h0 > 0 such that, for 0 < h ≤ h0,
the Galerkin equations (3) and (4) are uniquely solvable in S1,0

h (Γ) and
◦
S2,1

h (Γ), respectively. Moreover, there hold

‖ψh − ψ‖H̃−1/2(Γ) ≤ c inf{‖ϕ− ψ‖H̃−1/2(Γ) : ϕ ∈ S1,0
h (Γ)},

‖ξh − ξ‖H̃1/2(Γ) ≤ c inf{‖φ− ξ‖H̃1/2(Γ) : φ ∈
◦
S2,1

h (Γ)}.

Furthermore, for sufficiently smooth g and f , there hold, with ε > 0,

‖ψh − ψ‖H̃t(Γ) ≤ ch−ε−t‖ψ‖H̃−ε(Γ) for − 1 + ε ≤ t ≤ −ε,
‖ξh − ξ‖H̃s(Γ) ≤ ch1−s−ε‖ξ‖H̃1−ε(Γ) for ε ≤ s ≤ 1 − ε.

2.2. Standard Galerkin schemes with graded mesh. For simplicity, we
assume now that Γ is the square [−1, 1]× [−1, 1]. We introduce a mesh,
that is uniform on Γ∗ = [−3/4, 3/4] × [−3/4, 3/4] and graded on the
rest, by the lines x1 and x2 defined as follows:

x1 =

⎧⎪⎨
⎪⎩

−1 + 4�−1(ih)� if 0 ≤ i ≤ N/8 − 1,

−1 + ih if N/8 ≤ i ≤ 7N/8 − 1,

1 − 4�−1(2 − ih)� if 7N/8 ≤ i ≤ N ,

x2 =

⎧⎪⎨
⎪⎩

−1 + 4�−1(jh)� if 0 ≤ j ≤ N/8 − 1,

−1 + jh if N/8 ≤ j ≤ 7N/8 − 1,

1 − 4�−1(2 − jh)� if 7N/8 ≤ j ≤ N ,

where N = 8n, n = 1, 2, . . . , h = 2/N and � ≥ 1. Note that when
� = 1 the mesh is uniform. Local uniformity of the mesh is essential
for the application of the K-operator since it is required that a spline
still be a spline locally after being translated by a mesh step (see the
proof of Theorem 4.1). Besides, this requirement allows us to use, in
the proof of local error estimates in Section 3, the inverse property on
Γ∗.

On this mesh, we define H0,�
h to be the space of piecewise-constant

functions and H1,�
h to be the space of piecewise-linear continuous

functions vanishing on γ. The Galerkin schemes now read as:
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Find ψh ∈ H0,�
h such that for all ϕ ∈ H0,�

h

(5) 〈V ψh, ϕ〉 = 〈g, ϕ〉,

and as

Find ξh ∈ H1,�
h such that for all φ ∈ H1,�

h

(6) 〈Dξh, φ〉 = 〈f, φ〉.

The following results hold (see [10, Theorem 1.5] and [9, Theorem 2.2]):

Theorem B. There exists a meshwidth h0 > 0 such that, for
0 < h ≤ h0, the Galerkin equations (5) and (6) are uniquely solvable
in H0,�

h and H1,�
h , respectively. Moreover, for any ε > 0 there exists a

constant c = c(�) independent of h such that

‖ψh − ψ‖H̃−1/2(Γ) ≤
{
ch�/2−ε if 1 ≤ � ≤ 3,

ch3/2 if � > 3,

‖ξh − ξ‖H̃1/2(Γ) ≤
{
ch�/2−ε if 1 ≤ � < 3,

ch3/2−ε if � ≥ 3.

Moreover, in the deepest negative norms, we have

‖ψh − ψ‖H̃−1/2−�/2(Γ) ≤ ch�−ε if 1 ≤ � ≤ 3,
‖ψh − ψ‖H̃−2(Γ) ≤ ch3 if � > 3,

‖ξh − ξ‖H̃1/2−�/2(Γ) ≤ ch�−ε if 1 ≤ � < 3.

2.3. The augmented-Galerkin method. For this method, Γ is assumed
to be a smooth open surface with a smooth boundary γ. We define, for
s < 0,

Zs(Γ) = H̃s(Γ).

For 0 ≤ s < 1, we define

(7) Zs(Γ) = {ψ = βρ−1/2χ(ρ) + ψr : β ∈ Hs(γ) and ψr ∈ H̃s(Γ)},
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equipped with

‖ψ‖Zs(Γ) = ‖β‖Hs(γ) + ‖ψr‖H̃s(Γ),

where ρ corresponds to the Euclidean distance to γ, and χ is a C∞

cut-off function with χ ≡ 1 for |ρ| < 1/2 and χ ≡ 0 for |ρ| > 1.

Similarly, we define, for t < 1,

Y t(Γ) = H̃t(Γ).

For 1 ≤ t < 2, we define

(8) Y t(Γ) = {ξ = αρ1/2χ(ρ) + ξr : α ∈ Ht(γ) and ξr ∈ H̃t(Γ)},

equipped with

‖ξ‖Y t(Γ) = ‖α‖Ht(γ) + ‖ξr‖H̃t(Γ).

The augmented finite element spaces are defined as

(9)
Zh(Γ) = {ϕ = βρ−1/2χ(ρ) + ϕr : β ∈ S2,1

h (γ) and ϕr ∈
◦
S2,1

h (Γ)},
Yh(Γ) = {φ = αρ1/2χ(ρ) + φr : α ∈ S3,2

h (γ) and φr ∈
◦
S3,2

h (Γ)}.

We note that Zh(Γ) ⊂ Z1−ε(Γ) ⊂ H̃−1/2(Γ) and Yh(Γ) ⊂ Y 2−ε(Γ) ⊂
H̃1/2(Γ) for any ε > 0. The augmented-Galerkin schemes for (1) and
(2) now read as

Find ψh ∈ Zh(Γ) such that for all ϕ ∈ Zh(Γ)

(10) 〈V ψh, ϕ〉 = 〈g, ϕ〉,

and as

Find ξh ∈ Yh(Γ) such that for all φ ∈ Yh(Γ)

(11) 〈Dξh, φ〉 = 〈f, φ〉.

The following theorem is a consequence of [15, Theorem 3.2] and [7,
Theorem 3.1] (see also [6, Theorem 3.4]):
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Theorem C. There exists a mesh width h0 > 0 such that, for
0 < h ≤ h0, the Galerkin equations (10) and (11) are uniquely solvable
in Zh(Γ) and Yh(Γ), respectively. Moreover, there hold

‖ψh − ψ‖H̃−1/2(Γ) ≤ c inf{‖ϕ− ψ‖H̃−1/2(Γ) : ϕ ∈ Zh(Γ)},
‖ξh − ξ‖H̃1/2(Γ) ≤ c inf{‖φ− ξ‖H̃1/2(Γ) : φ ∈ Yh(Γ)}.

Furthermore, for sufficiently smooth g and f , there hold, with ε > 0,

‖ψh − ψ‖H̃t(Γ) ≤ ch1−t−ε‖ψ‖Z1−ε(Γ) for − 2 + ε ≤ t ≤ 1 − ε,

‖ξh − ξ‖H̃s(Γ) ≤ ch2−s−ε‖ξ‖Y 2−ε(Γ) for − 1 + ε ≤ s ≤ 2 − ε.

3. Local error estimates. In the analysis of local error estimates,
we shall use the following nested sub-pieces of the surface Γ

(12) Γ0 ⊂⊂ Γ1 ⊂⊂ · · · ⊂⊂ ΓJ ⊂⊂ Γ∗ ⊂⊂ Γ∗ ⊂ Γ,

and the following cut-off functions:

(13) ωj ∈ C∞
0 (Γj+1) and ωj ≡ 1 on Γj for j = 0, . . . , J − 1.

Here X ⊂⊂ Y means that the closure of X is contained in the interior
of Y .

We will frequently use the following properties of the splines, the
proofs of which can be found in, e.g., [1, 6, 13, 14, 21].

Lemma 3.1 (Approximation property). Let t ≤ s ≤ r, t ≤ k and
j = 0, . . . , J−2. There exists a constant c such that, for any v ∈ H̃s(Γ),
there exists ζ ∈ Sr,k

h (Γ) such that supp ζ ⊂ Γj+2 and

‖ωjv − ζ‖H̃t(Γ) ≤ chs−t‖v‖Hs(Γj+1).

Lemma 3.2 (Inverse property). Let t ≤ s ≤ k and j = 0, . . . , J − 2.
There exists a constant c such that, for any φ ∈ Sr,k

h (Γ),

‖ωjφ‖H̃s(Γ) ≤ cht−s‖φ‖Ht(Γj+1).
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Lemma 3.3 (Super-approximation property). Let t ≤ s ≤ k, and
let j = 0, . . . , J − 2. There exists a constant c such that, for any
φ ∈ Sr,k

h (Γ), there exists ζ ∈ Sr,k
h (Γ) such that supp ζ ⊂ Γj+2 and

‖ωjφ− ζ‖H̃t(Γ) ≤ chs−t+1‖φ‖Hs(Γj+1).

In order that the singular terms in the definitions (7) and (8) do not
affect our local analysis, we shall assume in the sequel that the cut-
off function χ defined in (7) vanishes on Γ∗. The main results in this
section concerning equation (1) are given in the following theorems:

Theorem 3.4. Assume that the solution of equation (1) satisfies
ψ ∈ Hs(Γ∗) ∩ H̃−1/2(Γ) for some s ∈ (−1/2, 1]. For any t ∈ R, let

σ = σ(t) =
{

0 if t ≤ −1/2,
−t− 1/2 if t > −1/2.

Let ε > 0 be given, sufficiently small.

(i) If ψh ∈ S1,0
h (Γ) is the solution of (3), then for any t with

−1 < t ≤ min(s, 0)

‖ψh − ψ‖Ht(Γ0) ≤ c{hs−t‖ψ‖Hs(Γ∗) + hσ‖ψh − ψ‖H̃−1+ε(Γ)}.

(ii) If ψh ∈ H0,�
h is the solution of (5), then for any t with

−2 < t ≤ min(s, 0),

‖ψh − ψ‖Ht(Γ0) ≤ c{hs−t‖ψ‖Hs(Γ∗) + hσ‖ψh − ψ‖H̃−2+ε(Γ)}.

In particular, for equation (3) with regular mesh, if g, the righthand
side of the equation, is in H3/2(Γ), then ψ ∈ H1/2(Γ∗) ∩ H̃−ε(Γ) for
some ε > 0 (see, e.g., [8, Lemma 4.1, 19, Lemma 4.1]); therefore,
we have, in the H−1/2-norm, convergence of order O(h1−2ε) locally,
compared to order O(h1/2−ε) globally, and in the L2-norm, convergence
of order O(h1/2−ε) locally, whereas the global L2-norm of the error is
undefined. Meanwhile, for equation (5) using graded mesh with � = 3,



466 E.P. STEPHAN AND T. TRAN

if g ∈ H2(Γ), then ψ ∈ H1(Γ∗) ∩ H̃−ε(Γ) (see, e.g., [8, Lemma 4.1,
19, Lemma 4.1]). Hence, there are local convergence in orders O(h3/2)
and O(h) in the H−1/2-norm and L2-norm, respectively. The global
convergence in the H−1/2-norm is of order O(h3/2−ε).

Theorem 3.5. Let ε > 0 be given. Assume that the solution of
equation (1) satisfies ψ ∈ H2(Γ∗) ∩ Z1−ε(Γ). Let ψh ∈ Zh(Γ) be the
solution of (10). If −2 + ε ≤ t ≤ 1, then

‖ψh − ψ‖Ht(Γ0) ≤ c{h2−t‖ψ‖H2(Γ∗) + h3−2ε+σ‖ψ‖Z1−ε(Γ)},
where

σ =
{

0 if −2 + ε ≤ t ≤ −1/2,
−t− 1/2 if −1/2 < t ≤ 1.

In particular, in the H−1/2-norm and L2-norm, we have local conver-
gence of order O(h5/2) and O(h2), respectively, compared to the global
order O(h3/2−ε) and O(h1−ε), respectively. Moreover, we have local
convergence of order O(h) in the H1-norm, which is not achieved in
the global sense.

We follow the same approach as in [14, 19]. The proofs for Theorems
3.4 and 3.5 are similar, with that for Theorem 3.5 slightly more
complicated since for the latter we will use the augmented finite element
space instead of the standard one. We thus prove only Theorem 3.5.

Proof. Introducing the notation ṽ = ω0v for any function v, we
decompose the error ẽ = ψ̃ − ψ̃h as

(14) ẽ = (ψ̃ −Gψ̃) + (Gψ̃ −Gψ̃h) + (Gψ̃h − ψ̃h),

and estimate each of the terms in the parentheses separately. Here,
for any v, Gv is the Galerkin approximation to v, i.e., Gv ∈ S1,0

h (Γ)
satisfies

(15) 〈V (Gv − v), ϕ〉 = 0 for any ϕ ∈ S1,0
h (Γ).

Step 1. Estimate ‖ψ̃ −Gψ̃‖H̃−1/2(Γ). Note that the cutoff function χ
in the expansion (7) is chosen such that it vanishes on Γ∗. Also note
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that ψ̃ ∈ H̃2(Γ). Then, from Theorem C, the fact that
◦
S2,1

h (Γ) ⊂ Zh(Γ)
and Lemma 3.1, we obtain

(16)

‖ψ̃ −Gψ̃‖H̃−1/2(Γ) ≤ c inf{‖ψ̃ − η‖H̃−1/2(Γ) : η ∈ Zh(Γ)}

≤ c inf{‖ψ̃ − η‖H̃−1/2(Γ) : η ∈
◦
S2,1

h (Γ)}
≤ ch5/2‖ψ̃‖H̃2(Γ) ≤ ch5/2‖ψ‖H2(Γ∗).

Step 2. Estimate ‖G(ψ̃− ψ̃h)‖H̃−1/2(Γ). It is known from the stability
condition that

(17) ‖Gẽ‖H̃−1/2(Γ) ≤ c sup
ϕ∈Zh(Γ)

|〈V Gẽ, ϕ〉|
‖ϕ‖H̃−1/2(Γ)

.

From (15), we deduce, for any ϕ ∈ S1,0
h (Γ),

(18) 〈V Gẽ, ϕ〉 = 〈V ẽ, ϕ〉 = 〈V e, ϕ̃〉 + 〈[V, ω0]e, ϕ〉,
where [V, ω0] = V ω0 − ω0V . From the definition (9) we note that for
any ϕ ∈ Zh(Γ), there exists ϕr ∈ S2,1

h (Γ) such that ϕr = ϕ on Γ∗.

Hence ϕ̃ = ϕ̃r. By using Lemma 3.3 for ϕr we can choose ζ ∈
◦
S2,1

h (Γ)
with supp ζ ⊂ Γ2 such that

(19)

‖ϕ̃− ζ‖H̃−1/2(Γ) = ‖ϕ̃r − ζ‖H̃−1/2(Γ)

≤ ch‖ϕr‖H−1/2(Γ1)

= ch‖ϕ‖H−1/2(Γ1)

≤ ch‖ϕ‖H̃−1/2(Γ).

Since
◦
S2,1

h (Γ) ⊂ Zh(Γ) and since ω2 ≡ 1 on supp (ϕ̃− ζ), equation (10)
implies

〈V e, ϕ̃〉 = 〈V e, ϕ̃− ζ〉 = 〈ω2V e, ϕ̃− ζ〉
= 〈ω2V ω3e, ϕ̃− ζ〉 + 〈ω2V (1 − ω3)e, ϕ̃− ζ〉.

Since ω2(1− ω3) ≡ 0, the kernel of ω2V (1− ω3) is a C∞ function, and
hence from the Cauchy-Schwarz inequality and (19), we infer

(20)

|〈V e, ϕ̃〉| ≤ c{‖ω2V ω3e‖H1/2(Γ)

+ ‖ω2V (1 − ω3)e‖H1/2(Γ)}‖ϕ̃− ζ‖H̃−1/2(Γ)

≤ ch{‖e‖H−1/2(Γ∗) + ‖e‖H̃−2+ε(Γ)}‖ϕ‖H̃−1/2(Γ).
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The last term of (18) can be rewritten as

〈[V, ω0]e, ϕ〉 = 〈[V, ω0]ω2e, ϕ〉 + 〈[V, ω0](1 − ω2)e, ϕ〉
= 〈[V, ω0]ω2e, ϕ〉 − 〈ω0V (1 − ω2)e, ϕ〉.

Since [V, ω0] is a pseudo-differential operator of order −2 (see [16]) and
the kernel of ω0V (1 − ω2) is a C∞-function, we obtain, by using the
Cauchy-Schwarz inequality,

(21)

|〈[V, ω0]e, ϕ〉| ≤ {‖[V, ω0]ω2e‖H1/2(Γ)

+ ‖ω0V (1 − ω2)e‖H1/2(Γ)}‖ϕ‖H̃−1/2(Γ)

≤ c{‖e‖H−3/2(Γ∗) + ‖e‖H̃−2+ε(Γ)}‖ϕ‖H̃−1/2(Γ).

Inequalities (17), (18), (20) and (21) now give

(22)
‖G(ψ̃ − ψ̃h)‖H̃−1/2(Γ) ≤ c{h‖e‖H−1/2(Γ∗)

+ ‖e‖H−3/2(Γ∗) + ‖e‖H̃−2+ε(Γ)}.

Step 3. Estimate ‖Gψ̃h − ψ̃h‖H̃−1/2(Γ). From the definition (9), there

exists ψh,r ∈
◦
S2,1

h (Γ) such that ψh,r = ψh on Γ∗. We then deduce from

Theorem C, the fact that
◦
S2,1

h (Γ) ⊂ Zh(Γ), and Lemma 3.3 that

(23)

‖Gψ̃h − ψ̃h‖H̃−1/2(Γ) ≤ c inf{‖ψ̃h − η‖H̃−1/2(Γ) : η ∈ Zh(Γ)}

≤ c inf{‖ψ̃h − η‖H̃−1/2(Γ) : η ∈
◦
S2,1

h (Γ)}

= c inf{‖ψ̃h,r − η‖H̃−1/2(Γ) : η ∈
◦
S2,1

h (Γ)}
≤ ch5/2‖ψh,r‖H1(Γ1) = ch5/2‖ψh‖H1(Γ1).

Note that for any φ ∈ S2,1
h (Γ), we have

‖ψh‖H1(Γ1) ≤ ‖ω1ψh‖H̃1(Γ)

≤ ‖ω1(ψh − φ)‖H̃1(Γ) + ‖ω1φ‖H̃1(Γ)

≤ ‖ω1(ψh − φ)‖H̃1(Γ) + ‖φ‖H̃1(Γ)

≤ ‖ω1(ψh − φ)‖H̃1(Γ) + ‖ω2ψ − φ‖H̃1(Γ) + ‖ω2ψ‖H̃1(Γ).
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We can choose φ ∈ S2,1
h (Γ) such that

(24)
‖ω2ψ − φ‖H̃t(Γ) ≤ chs−t‖ψ‖Hs(Γ3)

for − 1/2 ≤ t ≤ s ≤ 2, t ≤ 1.

Moreover, since ψh = ψh,r on Γ∗, by using the inverse property
(Lemma 3.2) we have

‖ω1(ψh − φ)‖H̃1(Γ) = ‖ω1(ψh,r − φ)‖H̃1(Γ)

≤ ch−3/2‖ψh,r − φ‖H−1/2(Γ2)

= ch−3/2‖ψh − φ‖H−1/2(Γ2).

Hence,

(25)

‖ψh‖H1(Γ1) ≤ c{h−3/2‖ψh − φ‖H−1/2(Γ2) + ‖ψ‖H1(Γ3)}
≤ c{h−3/2‖e‖H−1/2(Γ2) + h−3/2‖ψ − φ‖H−1/2(Γ2)

+ ‖ψ‖H1(Γ3)}
≤ c{h−3/2‖e‖H−1/2(Γ2) + h−3/2‖ω2ψ − φ‖H̃−1/2(Γ)

+ ‖ψ‖H1(Γ3)}
≤ c{h−3/2‖e‖H−1/2(Γ2) + ‖ψ‖H1(Γ3)}.

Inequalities (23) and (25) give

(26) ‖Gψ̃h − ψ̃h‖H̃−1/2(Γ) ≤ c{h5/2‖ψ‖H1(Γ∗) + h‖e‖H−1/2(Γ∗)}.

Combining inequalities (16), (22) and (26) given in Steps 1, 2 and 3,
we obtain

(27)
‖e‖H−1/2(Γ0) ≤ c{h5/2‖ψ‖H2(Γ∗) + h‖e‖H−1/2(Γ∗)

+ ‖e‖H−3/2(Γ∗) + ‖e‖H̃−2+ε(Γ)}.

Step 4. Estimate ‖e‖Ht(Γ0) for −2 + ε ≤ t ≤ −1/2. We have by the
definition of the Sobolev norms

(28) ‖ẽ‖H̃t(Γ) = sup
w∈H−t(Γ)

|〈ẽ, w〉|
‖w‖H−t(Γ)

.
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For any w ∈ H−t(Γ), 1/2 ≤ −t ≤ 2− ε, there exists y ∈ Z−t−1(Γ) such
that V y = w and that

‖y‖Z−t−1(Γ) ≤ c‖w‖H−t(Γ),

(see [15]). Moreover, since V is symmetric we can write

(29) 〈ẽ, w〉 = 〈ẽ, V y〉 = 〈V ẽ, y〉 = 〈V e, ỹ〉 + 〈[V, ω0]e, y〉.

Since ỹ ∈ H̃−t−1(Γ), see definition (7), there exists ζ ∈
◦
S2,1

h (Γ) with
supp ζ ⊂ Γ2 such that

(30)

‖ỹ − ζ‖H̃−1/2(Γ) ≤ ch−t−1/2‖ỹ‖H̃−t−1(Γ)

≤ ch−t−1/2‖ỹr‖H̃−t−1(Γ)

≤ ch−t−1/2‖y‖Z−t−1(Γ),

where the last two inequalities are obtained from the definition (7)
(when −t − 1 < 0 we will take yr = y on Γ). Hence, the first term on
the righthand side of (29) can be estimated as

(31)

|〈V e, ỹ〉| = |〈V e, ỹ − ζ〉| = |〈ω2V e, ỹ − ζ〉|
≤ |〈ω2V ω3e, ỹ − ζ〉| + 〈ω2V (1 − ω3)e, ỹ − ζ〉|
≤ (‖ω2V ω3e‖H1/2(Γ)

+ ‖ω2V (1 − ω3)e‖H1/2(Γ))‖ỹ − ζ‖H̃−1/2(Γ)

≤ ch−t−1/2(‖e‖H−1/2(Γ∗) + ‖e‖H̃−2+ε(Γ))‖y‖Z−t−1(Γ)

≤ ch−t−1/2(‖e‖H−1/2(Γ∗) + ‖e‖H̃−2+ε(Γ))‖w‖H−t(Γ).

The last term of (29) can be estimated as:

|〈[V, ω0]e, y〉| = |〈[V, ω0]ω2e, y〈+〈[V, ω0](1 − ω2)e, y〉|
= 〈[V, ω0]ω2e, y〈−〈ω0V (1 − ω2)e, y〉|
≤ (‖[V, ω0]ω2e‖Hs(Γ) + ‖ω0V (1 − ω2)e‖H2(Γ))‖y‖H̃−s(Γ)

≤ c(‖e‖Hs−2(Γ∗) + ‖e‖H̃−2+ε(Γ))‖w‖H−s+1(Γ)(32)

≤ c(‖e‖Hs−2(Γ∗) + ‖e‖H̃−2+ε(Γ))‖w‖H−t(Γ),
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where s = max(t + 1, ε) and therefore −1/2 ≤ −s ≤ −ε. Inequalities
(28), (29), (31) and (32) now give

(33) ‖e‖Ht(Γ0) ≤ c{h−t−1/2‖e‖H−1/2(Γ∗) + ‖e‖Hτ (Γ∗) + ‖e‖H̃−2+ε(Γ)},

where τ = max(t− 1,−2 + ε).

Step 5. An explicit estimate in the H−1/2 norm. From (27), we have

‖e‖H−1/2(Γ0) ≤ c{h5/2‖ψ‖H2(Γ∗) + h‖e‖H−1/2(Γ1)

+ ‖e‖H−3/2(Γ1) + ‖e‖H̃−2+ε(Γ)}.

Using (33) with t = −3/2, we then deduce

‖e‖H−3/2(Γ1) ≤ c{h‖e‖H−1/2(Γ2) + ‖e‖H̃−2+ε(Γ)}.

Hence,

(34) ‖e‖H−1/2(Γ0) ≤ c{h5/2‖ψ‖H2(Γ∗) +h‖e‖H−1/2(Γ1) + ‖e‖H̃−2+ε(Γ)}.

Repeated use of (34) for ‖e‖H−1/2(Γ1) then gives

‖e‖H−1/2(Γ0) ≤ c{h5/2‖ψ‖H2(Γ∗) + hJ‖e‖H−1/2(ΓJ ) + ‖e‖H̃−2+ε(Γ)}.

With J chosen sufficiently large so that

(35) hJ‖e‖H−1/2(ΓJ ) ≤ c{h5/2‖ψ‖H2(Γ∗) + ‖e‖H̃−2+ε(Γ)},

we will have

(36) ‖e‖H−1/2(Γ0) ≤ c{h5/2‖ψ‖H2(Γ∗) + ‖e‖H̃−2+ε(Γ)}.

This can be done by using Lemma 3.2:

hJ‖e‖H−1/2(ΓJ ) ≤ hJ{‖ψ‖H−1/2(ΓJ ) + ‖ψh‖H−1/2(ΓJ )}
≤ hJ{‖ψ‖H2(Γ∗) + ‖ωJψh‖H̃−1/2(Γ)}
≤ hJ{‖ψ‖H2(Γ∗) + h−3/2+ε‖ψh‖H−2+ε(ΓJ+1)}
≤ hJ−3/2+ε{‖ψ‖H2(Γ∗) + ‖e‖H̃−2+ε(Γ)}.
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By choosing J so that J−3/2+ε ≥ 5/2, we obtain the required estimate
(35) and hence (36).

Step 6. Estimates in other norms. First, consider the case −2 + ε ≤
t ≤ −1/2. Inequalities (33) and (36) give

‖e‖Ht(Γ0) ≤ c{h2−t‖ψ‖H2(Γ∗) + ‖e‖Hτ (Γ1) + ‖e‖H̃−2+ε(Γ)},

where τ = max(t − 1,−2 + ε). Repeating the same argument for the
middle term on the righthand side, we can eliminate that term and
then use Theorem C to obtain

‖e‖Ht(Γ0) ≤ c{h2−t‖ψ‖H2(Γ∗) + h3−2ε‖ψ‖Z1−ε(Γ)}.

Finally, consider the case −1/2 < t ≤ 1. Let φ ∈ S2,1
h (Γ) be defined as

in (24). By using Lemma 3.2, noting that ωi ≡ 1 on Γi, we obtain

(37)

‖e‖Ht(Γ0) ≤ ‖ω2ψ − φ‖Ht(Γ0) + ‖ψh − φ‖Ht(Γ0)

≤ ‖ω2ψ − φ‖H̃t(Γ) + ‖ω0(ψh − φ)‖H̃t(Γ)

≤ c{h2−t‖ψ‖H2(Γ∗) + h−t−1/2‖ψh − φ‖H−1/2(Γ1)}
≤ c{h2−t‖ψ‖H2(Γ∗) + h−t−1/2(‖ψ − φ‖H−1/2(Γ1)

+ ‖e‖H−1/2(Γ1))}
≤ c{h2−t‖ψ‖H2(Γ∗) + h−t−1/2(‖ω2ψ − φ‖H̃−1/2(Γ)

+ ‖e‖H−1/2(Γ1))}
≤ c{h2−t‖ψ‖H2(Γ∗) + h−t−1/2‖e‖H−1/2(Γ1)}.

Using (36) and Theorem C for the last term of (37), we achieve

‖e‖Ht(Γ0) ≤ c{h2−t‖ψ‖H2(Γ∗) + h−t−1/2‖e‖H̃−2+ε(Γ)}
≤ c{h2−t‖ψ‖H2(Γ∗) + h3−2ε−t−1/2‖ψ‖Z1−ε(Γ)}.

The theorem is proved.

The following local estimates for the Galerkin schemes to approximate
the solution of (2) can be proved in the same manner if we note that
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D and [D,ω0] = Dω0 −ω0D are pseudo-differential operators of orders
1 and 0, respectively.

Theorem 3.6. Assume that the solution of (2) satisfies ξ ∈ Hs(Γ∗)∩
H̃1/2(Γ) for some s ∈ (1/2, 2]. For any t ∈ R, let

σ = σ(t) =
{

0 if t ≤ 1/2,
−t+ 1/2 if t > 1/2.

Let ε > 0 be given, sufficiently small.

(i) If ξh is the solution of (4), then for any t with 0 < t ≤ min(s, 1),

‖ξh − ξ‖Ht(Γ0) ≤ c{hs−t‖ξ‖Hs(Γ∗) + hσ‖ξh − ξ‖H̃ε(Γ)}.

(ii) If ξh is the solution of (6), then for any t with −1 < t ≤
min(s, 1),

‖ξh − ξ‖Ht(Γ0) ≤ c{hs−t‖ξ‖Hs(Γ∗) + hσ‖ξh − ξ‖H̃−2+ε(Γ)}.

Theorem 3.7. Let ε > 0 be given. Assume that the solution of
equation (2) satisfies ξ ∈ H3(Γ∗) ∩ Y 2−ε(Γ). Let ξh ∈ Yh(Γ) be the
solution of (11). If −1 + ε ≤ t ≤ 2, then

‖ξh − ξ‖Ht(Γ0) ≤ c{h3−t‖ξ‖H3(Γ∗) + h3−2ε+σ‖ξ‖Y 2−ε(Γ)},

where

σ =
{

0 if −1 + ε ≤ t ≤ 1/2,
−t+ 1/2 if 1/2 < t ≤ 2.

4. A post-processing method. In the above section we see that
in the case of quasi-uniform meshes the highest order of convergence
(O(h1−2ε)) achieved for the approximation of equation (1) is in a
negative norm (H−1+ε norm), which is not easily observed. In this
section we shall use the K-operator (see [2, 4, 17, 18, 20, 21]) as a
post-processing for the Galerkin solution ψh of (1) so as to achieve that
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order locally in the L2-norm. For simplicity, we only consider the case
where Γ is a domain in R2.

As in [2, 4], we define the spline Kh = K2q
h,l with integers l, q as

(38) Kh(x) =
2∏

i=1

q−1∑
j=−(q−1)

h−1kjψ
(l)(xi/h− j), x = (x1, x2),

where ψ(l) is a B-spline of order l defined by

ψ(l) = χ ∗ χ ∗ · · · ∗ χ, convolution l − 1 times,

with
χ(t) =

{
1 for |t| ≤ 1/2,
0 for |t| > 1/2,

for any real value of t. The coefficients kj , j = −(q − 1), . . . , q − 1 are
chosen such that, for any v,

(39)
‖v −Kh ∗ v‖L2(Γi) ≤ chs‖v‖Hs(Γi+1),

0 ≤ s ≤ 2q, i = 0, . . . , J − 1.

The existence and uniqueness of kj , j = −(q − 1), . . . , q − 1 is proved
in [3].

Now for any v defined on Γ, we extend v by 0 onto R2\Γ, denote the
extension by ṽ, and then define K-operator as

(40)

[Kh(v)](x) := (Kh ∗ ṽ)(x)

= h−2

∫
R2

{ 2∏
i=1

q−1∑
j=−(q−1)

kjψ
(l)

(
xi − yi

h
− j

)}
ṽ(y) dy.

We have the following theorem:

Theorem 4.1. (i) Assume that the mesh is uniform on Γ∗ and quasi-
uniform on Γ\Γ∗. Let ψ ∈ H̃−ε(Γ) ∩H1−ε(Γ∗), ψh be the solution of
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(3), and Kh be defined by (38) with l = q = 1. Then there exists an
h0 > 0 such that, for 0 < h ≤ h0,

(41) ‖Kh(ψh) − ψ‖L2(Γ0) ≤ ch1−2ε{‖ψ‖H1−ε(Γ∗) + ‖ψ‖H̃−ε(Γ)}.

(ii) Assume that the mesh is uniform on Γ∗ and graded on Γ\Γ∗ with
� ≥ 3. Let ψ ∈ H̃−ε(Γ) ∩H3−ε(Γ∗), ψh be the solution of (5), and Kh

be defined by (38) with l = q = 2. Then there exists an h0 > 0 such
that, for 0 < h ≤ h0,

(42) ‖Kh(ψh) − ψ‖L2(Γ0) ≤ ch3−ε.

Proof. (i) Let ω∗ be a cut-off function satisfying

ω∗ ≡ 1 on Γ∗ and ω∗ ∈ C∞
0 (Γ∗).

Let ψ∗ = ω∗ψ̃. Then

‖Kh(ψh) − ψ‖L2(Γ0) = ‖Kh ∗ ψ̃h − ψ∗‖L2(Γ0)

≤ ‖Kh ∗ (ψ̃h − ψ∗)‖L2(Γ0)

+ ‖Kh ∗ ψ∗ − ψ∗‖L2(Γ0) = I + II.

That II is bounded by the righthand side of (41) is from (39) and the
local regularity of ψ. For the term I, we note that from [4, Lemmas 2.2
and 5.3] we have

‖Kh ∗ (ψ̃h −ψ∗)‖L2(Γ0) ≤ c{‖ψ̃h−ψ∗‖H−1(Γ1) +‖∂h(ψ̃h−ψ∗)‖H−1(Γ1)},

where ∂h is the forward difference operator defined by ∂h = (Th − I)/h
with Thv(x) = v(x + h) and Iv(x) = v(x). Note that ψ̃h = ψh and
ψ∗ = ψ̃ = ψ on Γ∗. Moreover, since the mesh is uniform on Γ∗ ⊃ Γ1,
there exists an h0 > 0 such that ∂hψ∗ = ∂hψ̃ on Γ1 for 0 < h ≤ h0.
Hence, using Theorem A we infer

(43) ‖Kh∗(ψ̃h−ψ∗)‖L2(Γ0) ≤ c{h1−2ε‖ψ‖H̃−ε(Γ)+‖∂h(ψ̃h−ψ̃)‖H−1(Γ1)}.
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We now estimate the last term on the righthand side of (43). Let Γ′

be a plane domain containing Γ, and let δ = dist (Γ′,Γ). Let VΓ′ be
defined as V in (1) with Γ replaced by Γ′. Then for 0 < h < δ and

φ ∈
◦
S1,0

h (Γ) with support in Γ1, we have

〈VΓ′∂h(ψ̃h − ψ̃), φ〉L2(Γ′)

=
1
h
〈VΓ′Th(ψ̃h − ψ̃), φ〉L2(Γ′)

= − 1
4πh

∫
Γ′

∫
Γ′

1
|x− y| (ψ̃h − ψ̃)(y + h)φ(x) dy dx

= − 1
4πh

∫
Γ′+h

∫
Γ′+h

1
|x− y| (ψ̃h − ψ̃)(y)φ(x− h) dy dx,

where Γ′ + h = {x+ h : x ∈ Γ′}. Since 0 < h < δ, and since ψ̃h, ψ̃ and
φ vanish outside Γ, we deduce

〈VΓ′∂h(ψ̃h − ψ̃), φ〉L2(Γ′)

= − 1
4πh

∫
Γ

∫
Γ

1
|x− y| (ψ̃h − ψ̃)(y)φ(x− h) dy dx

= 〈V (ψh − ψ), φ(· − h)〉.
Moreover, since the mesh is uniform on Γ∗, we can choose h0 < δ such

that if φ ∈
◦
S1,0

h (Γ) with support in Γ1, then φ(· − h) ∈
◦
S1,0

h (Γ) with
support in Γ2. Hence, by (3),

(44) 〈VΓ′∂h(ψ̃h − ψ̃), φ〉L2(Γ′) = 0.

From (44) we conclude that ∂hψ̃h is the interior Galerkin approxima-
tion to ∂hψ̃ in the sense that:

1. ∂hψ̃h is a spline only on Γ∗ (since the mesh is only uniform on
Γ∗);

2. Equation (44) is satisfied only with φ ∈
◦
S1,0

h (Γ), suppφ ⊂ Γ1.

However, as in the 1-dimensional case (see [19]), we can slightly modify
the proof of Theorem 3.1 to obtain the estimate:
(45)

‖∂hψ̃h − ∂hψ̃‖H−1(Γ1) ≤ c{h1−2ε‖∂hψ̃‖H−ε(Γ∗) + ‖∂hψ̃h − ∂hψ̃‖H̃β(Γ′)}
≤ c{h1−2ε‖ψ̃‖H1−ε(Γ∗) + ‖∂hψ̃h − ∂hψ̃‖H̃β(Γ′)}
= c{h1−2ε‖ψ‖H1−ε(Γ∗) + ‖∂hψ̃h − ∂hψ̃‖H̃β(Γ′)},



THREE-DIMENSIONAL SCREEN PROBLEMS 477

where β ≤ −1/2 is arbitrary but fixed. Note that we do not have a
direct estimate for ‖∂hψ̃h − ∂hψ̃‖H̃β(Γ′). However,

‖∂hψ̃h − ∂hψ̃‖H̃β(Γ′) ≤ ‖ψ̃h − ψ̃‖H̃β+1(Γ′) ≤ ‖ψh − ψ‖H̃β+1(Γ).

Choosing β = −2 and using Theorem A, we obtain

(46) ‖∂hψ̃h − ∂hψ̃‖H̃β(Γ′) ≤ ch1−2ε‖ψ‖H̃−ε(Γ).

From (43), (45) and (46) we see that I is bounded by the righthand
side of (41) and thus complete the proof of (i). The proof of (ii) can
proceed similarly by making use of Theorem B instead of Theorem A.
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FIGURE 1. Tested domain for the L2-errors.
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TABLE 1. Empirical orders of convergence for the Galerkin solution.

a = 0.10 a = 0.10 a = 0.20 a = 0.20

b = 0.10 b = 0.20 b = 0.20 b = 0.40

N ′ =20 N ′ =25 N ′ =20 N ′ =25 N ′ =20 N ′ =25 N ′ =20 N ′ =25

N αN αN αN αN αN αN αN αN

45 0.73 0.62 0.69 0.58 0.48 0.67 0.48 0.65

55 0.62 0.50 0.58 0.47 0.49 0.63 0.49 0.62

60 0.75 0.68 0.71 0.65 0.54 0.67 0.54 0.66

65 0.73 0.66 0.68 0.62 0.51 0.63 0.49 0.59

5. Numerical results. We carried out the numerical experiment
for the weakly singular integral equation (1) for the Dirichlet screen
problem with Γ = [−1, 1]2 and g ≡ 1. The discrete problem (3)
is obtained by using piecewise-constant test and trial functions with
respect to a uniform mesh of square elements with side length h. The
approximate solution ψh can be expressed as

(47) ψh(x) =
N∑

i,j=1

ci,jψ
(1)

(
x1 + 1
h

− i+1/2
)
ψ(1)

(
x2 + 1
h

− j+1/2
)
,

where x = (x1, x2), h = 2/N and where ψ(l) are B-splines defined in
Section 4.

To test the results on interior estimates, we observed the errors on
Γ0 where Γ0 is the shaded domain given in Figure 1. Since the exact
solution of the equation (1) is not known for the given data g ≡ 1,
we compare ψh with the Galerkin solution ψh0 , where h0 = 2/N with
N = 240, assuming that

‖ψh − ψh0‖L2(Γ0) ∼ ‖ψh − ψ‖L2(Γ0).

This can be done since the convergence ψh → ψ is guaranteed by
Theorem A. In Table 1, we list the experimental convergence rate αN

computed as

αN =
log(eN ′/eN )
log(N/N ′)

,

whereN ′ is a fixed integer and eN = ‖ψh−ψh0‖L2(Γ0) for any integerN .
It can be seen from this table that local convergence of order O(h1/2)
in the L2-norm is achieved as we predicted from our analysis.
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To test the effectiveness of the K-operator, we observed the error
‖Kh ∗ ψ̃h − ψ‖L2(Γd) where Γd = [−1 + d, 1 − d]2 for 0 < d < 1 and
where Kh = K2

h,1 = (1/h)ψ(1)(x/h). Recall that ψ̃h is the extension of
ψh by 0 outside Γ. Since Kh and ψ̃h (which is also expressible by (47))
are piecewise-constant functions, the convolution Kh ∗ ψ̃h is piecewise
bilinear and can be computed as

Kh ∗ ψ̃h(x) =
N∑

i,j=1

ci,jψ
(2)

(
x1 + 1
h

− i+ 1/2
)
ψ(2)

(x2 + 1
h

− j + 1/2
)
,

where again x = (x1, x2) and h = 2/N . We assume here again that

e∗Ni
:= ‖Khi

∗ ψ̃hi
− ψh0‖L2(Γd) ∼ ‖Khi

∗ ψ̃hi
− ψ‖L2(Γd),

where h0 = 2/N with N = 240 and hi = 2/Ni, i = 1, 2, . . . . The
empirical order of convergence is now given by

α∗
Ni

=
log(eNi

/eNi−1)
log(Ni−1/Ni)

, i = 2, 3, . . . .

The results given in Table 2 show us that the post-processing Galerkin
solution gives local convergence of order almost O(h) in the L2-norm,
which matches our analysis.

TABLE 2. Errors and empirical orders of convergence for the

post-processing Galerkin solution.

d = 0.05 d = 0.10 d = 0.20 d = 0.40 d = 0.70

N e∗N α∗
N e∗N α∗

N e∗N α∗
N e∗N α∗

N e∗N α∗
N

20 4.21 1.68 2.65e-1 7.13e-2 2.81e-2

30 3.25 0.64 5.61e-1 2.70 1.21e-1 1.93 4.99e-2 0.88 1.87e-2 1.00

40 1.79 2.08 2.90e-1 2.29 8.04e-2 1.42 3.74e-2 1.00 1.37e-2 1.08

50 8.36e-1 3.41 1.74e-1 2.29 6.76e-2 0.78 2.96e-2 1.05 1.06e-2 1.15

60 6.21e-1 1.63 1.39e-1 1.25 5.57e-2 0.85 2.44e-2 1.04 8.53e-3 1.20
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