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ON USING A MODIFIED NYSTRÖM METHOD
TO SOLVE THE 2-D POTENTIAL PROBLEM

R.S.-C. CHENG

ABSTRACT. In this paper the single-layer potential repre-
sentation is used to solve the 2-D potential problem with ei-
ther Dirichlet, Neumann, or Robin boundary conditions. We
show that the discrete delta-trigonometric method introduced
by Cheng and Arnold [14] and the discrete Galerkin method
introduced by Atkinson [9] obtain the same discrete density.
Then we introduce another equivalent method called the mod-
ified Nyström method, and show that this method requires
only O(n2) simple operations (instead of O(n2 log n)) to form
the matrices. We also discuss previous convergence results for
this method and extend the exponential convergence results
to the Robin problem. Finally, we present numerical experi-
ments in order to confirm our theory.

1. Introduction. The two-dimensional potential problem is

(1.1) ΔU = 0 on R2\Γ, aU + b
dU

dν
= G on Γ,

where a and b are constants, U is bounded at infinity, ν is the outward
normal, G is analytic and Γ is a simple closed analytic curve. For any
harmonic U , there exists a unique Φ satisfying the single-layer potential
representation,

(1.2) U(z) =
∫

Γ

Φ(y) log |z − y| dΓy for z ∈ R2,

if the conformal radius of Γ does not equal 1, e.g., [9, 13, 14, 49, 50].

Remark. There are two ways to handle the uniqueness problem when
the conformal radius equals 1 as in [15]. One approach is to add an
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unknown constant to the right side of equation (1.2) and specify∫
Γ

Φ(y) dΓy = 0

as in [3, 31]. The other approach is to scale the domain so that the
conformal radius does not equal 1 as in [9, 13, 14, 50]. For simplicity,
we assume that the conformal radius of Γ does not equal 1.

The density Φ solves the boundary integral equation,

(1.3) a

∫
Γ

Φ(y) log |z − y| dΓy ± πbΦ(z)

+ b

∫
Γ

Φ(y)
d

dνz
log |z − y| dΓy = G(z) ∀ z ∈ Γ,

where the plus and minus signs refer to the exterior and interior
boundary value problems, respectively. For the interior Dirichlet and
the exterior Neumann problems, equation (1.3) has a unique solution,
e.g., [1, 13, 17, 27, 49]. For the Robin problem, we would physically
expect a and b to be of the same sign for the interior problem, and
of opposite signs for the exterior problem. For these physical cases,
equation (1.3) has a unique solution, e.g., [17, 20, 27]. In cases such
as the interior Neumann problem, where equation (1.3) fails to give a
unique solution, there are techniques for modifying the kernel so that
the modified integral equation has a unique solution, e.g., [6]. For
simplicity, we only consider problems in which equation (1.3) has a
unique solution.

In this paper we seek a numerical method to approximate the density
in equation (1.3) such that the potential in equation (1.2) is approxi-
mated with exponential convergence based on the mesh discretization.
Such a method obtains a very accurate approximate solution using a
smaller matrix system, thus reducing the need for tedious matrix op-
erations.

For the Dirichlet problem, equation (1.3) becomes an integral equa-
tion of the first kind. Various methods have been analyzed such as the
spline-collocation, the spline Galerkin, and the delta-spline methods,
i.e., [5, 19, 24 26, 30, 39, 41 45, 48, 50]. These methods obtain
the potential with an optimal asymptotic convergence rate. Also, it-
erative methods have been analyzed, e.g., [1, 2, 19, 21, 34, 37, 38].
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For a good theoretical understanding of the weakly singular integral
operator, refer to [1, 23, 49].

For the Dirichlet problem, exponential convergence results, based
on the mesh discretization using the single-layer potential represen-
tation, were obtained only recently. Arnold [3] showed that the spline-
trigonometric method obtains the potential on compact sets away from
the boundary with exponential convergence. His method was also ap-
plied for singular integral equations [4]. McLean [31] showed that
the trigonometric-trigonometric method obtained the potential every-
where with exponential convergence. Neither Arnold nor McLean ac-
counted for numerical integration. Cheng [13] and Cheng and Arnold
[14] showed that the discrete delta-trigonometric method obtains the
potential on compact sets away from the boundary with exponential
convergence. At the same time, Atkinson [9] showed that the dis-
crete trigonometric-trigonometric method obtains very rapid conver-
gence for the approximate density function when the boundary and
boundary data are smooth. Near the boundary, the potential was im-
proved by using a higher trapezoidal rule after the density is found.
McLean, Prossdorf, and Wendland [32] investigated this method for
singular integral equations. This method is equivalent to a discrete
collocation procedure with trigonometric polynomial approximants. In
this paper we will refer to the discrete Galerkin method as the dis-
crete trigonometric-delta method because we would like to think of
this method as the dual method to the discrete delta-trigonometric
method. These two methods require O(n2 log n) operations using FFT
to form the matrices.

For the Neumann problem, equation (1.3) becomes an integral equa-
tion of the second kind. Various methods have been analyzed including
the collocation, the Galerkin, and the Nyström methods, e.g., [7, 8,
10, 12, 18]. For analytic data and boundary, exponential convergence
was obtained long ago. In addition, iterative methods have been widely
investigated, e.g., [2, 7, 28, 35, 36].

For the mixed problem, the Galerkin method has been investigated
the most, e.g., [29, 33, 46, 47]. We also note that some work has been
done for the case of a nonlinear boundary condition, e.g., [11, 16, 40].

In this paper, we show that the discrete trigonometric-delta and the
discrete delta-trigonometric methods obtain the same discrete density
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function. Then we introduce a modified Nyström method, which is also
equivalent to the discrete trigonometric-delta and the discrete delta-
trigonometric methods, and show that the matrix formation requires
only O(n2) simple arithmetic operations. The density is first found
as a summation of delta functions. Then it can be transformed to a
summation of trigonometric functions so that a higher trapezoidal rule
can be used to find the potential. This transformation is especially
useful for computing the near-field potential.

For the Dirichlet problem, we note that the Nyström method could be
used on the boundary integral equation formulated using the double-
layer potential representation. For this classical approach, the potential
is obtained with exponential convergence, but the matrix system is
nonsymmetric. For our approach, the modified Nyström method is used
on the boundary integral equation formulated using the single-layer
potential representation. For this new approach, the matrix system is
symmetric.

For the Dirichlet and Neumann problems, we summarize previous
exponential convergence results for the potential on compact set away
from the boundary, and rapid convergence results for the density. Then,
we extend the exponential convergence results to the Robin problem.
Finally, we present numerical results to confirm our theory.

We first review some standard notation and reformulate the boundary
integral equation in Section 2. Then we define the discrete delta-
trigonometric and the discrete trigonometric-delta methods in Sections
3 and 4, respectively. In Section 5 we show that the two methods
compute the same discrete density and then introduce the modified
Nyström method. In Section 6 we extend the exponential convergence
results to the Robin problem. In Section 7 we present numerical
examples for the 2-D potential problem with Dirichlet, Neumann, and
Robin boundary conditions.

2. Preliminaries. Define the space of trigonometric polynomials
with complex coefficients as

T := span {exp(2πikt) | k ∈ Z}.
Any function f in this space can be represented as

f(t) =
∑
k∈Z

f̂(k) exp(2πikt)
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where

f̂(k) :=
∫ 1

0

f(t) exp(−2πikt) dt

are Fourier coefficients in which all, but finitely many, are zeros. For
f ∈ T , s ∈ R, and ε > 0, we define the Fourier norm as

||f ||s,ε :=
√∑

k∈Z

|f̂(k)|2ε2|k|k2s

where

k =
{

1, if k = 0,
2π|k|, if k �= 0.

We denote by Xs,ε the completion of T with respect to this norm. As
in [14], the L2 inner product extends to a bounded bilinear form on
Xs,ε ×X−s,ε−1 for all s ∈ R, ε > 0 in which X−s,ε−1 is the dual space
of Xs,ε. For ε = 1, Xs,ε is the usual periodic Sobolev space of order s,
H2, with norm || · ||s. See [3] for a more complete discussion of these
spaces.

We denote the standard Euclidean vector and matrix norms by || · ||.
The constants C and ε are generic and are not necessarily the same in
each occurrence.

Let x : R → Γ be a 1-periodic analytic function which parametrizes
Γ and has nonvanishing derivatives, and define

φ(t) := Φ(x(t))|x′(t)|, g(t) := G(x(t)).

For the single layer potential, define two operators as

Aφ(s) : =
∫ 1

0

φ(t)K(s, t) dt,

V φ(s) : =
∫ 1

0

φ(t) log |2r sin(π(s− t))| dt,

where r �= 0 and K : R2 → R is a smooth symmetric kernel defined by

K(s, t) :=

{
log | x(s)−x(t)

2r sin(π(s−t)) |, if s �= t,

log |x′(s)
2πr |, if s = t.
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Typically, r = 1 or exp(−1/2). For the double layer potential compo-
nent, define two operators as

Bφ(s) :=
∫ 1

0

φ(t)L(s, t) dt, Wφ(s) := ±π φ(s)
|x′(s)| ,

where L : R2 → R is a smooth nonsymmetric kernel defined by

L(s, t) :=

⎧⎨⎩
[x(s)−x(t)]·ν(s)

[x(s)−x(t)]2 , if s �= t,
−x′′(s)·ν(s)

2|x′(s)|2 , if s = t,

and ν : R → Γ is the 1-periodic normal pointing into the exterior
region. Again, the plus and minus signs refer to the exterior and interior
problems, respectively. The single-layer potential representation (1.2)
becomes

U(z) =
∫ 1

0

φ(t) log |z − x(t)| dt for z ∈ R2\Γ,

and the boundary integral equation (1.3) becomes

(2.1) a(A+ V )φ(s) + b(B +W )φ(s) = g(s) for s ∈ [0, 1].

We now proceed to define the spaces for approximating the density.
Restrict n to be a positive odd number and define the space of delta
functions to be

Sn := span {δ(t− j/n) | j = 0, . . . , n− 1},

where δ(t − j/n) is the 1-periodic extension of the Dirac mass at j/n
for j = 0, . . . , n−1. Also define the space of trigonometric polynomials
with degree ≤ n to be

Tn := span {ξk(t) | k = 1, . . . , n},

where

ξk(t) :=

⎧⎨⎩
1, if k = 1,√

2 sin(kπt), if k = 2, 4, . . . , n− 1,√
2 cos((k − 1)πt), if k = 3, 5, . . . , n,
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are orthonormal basis functions of Tn. For theoretical convergence, we
use the complex basis functions, exp(2πikt), and let

Λn := {k ∈ Z | |k| ≤ (n− 1)/2}.

3. The delta-trigonometric method. The semi-discrete delta-
trigonometric method seeks φn ∈ Sn such that

(3.1) a

∫ 1

0

(A+ V )φn(s)ψ(s) ds+ b

∫ 1

0

(B +W )φn(s)ψ(s) ds

=
∫ 1

0

g(s)ψ(s) ds ∀ψ ∈ Tn,

and computes the approximate potential as

(3.2) Un(z) =
∫ 1

0

φn(t) log |z − x(t)| dt for z ∈ R2\Γ.

Here the density is

φn(t) =
n−1∑
j=0

αjδ(t− j/n)

where αj ’s are unknown coefficients, and the test functions are ψk(s) :=
ξk(s) for k = 1, . . . , n. The matrices B,W,A and V, and are

Akj :=
∫ 1

0

K(s, j/n)ξk(s) ds,

Vkj :=
∫ 1

0

log |2r sin(π(s− j/n))|ξk(s) ds,

Bkj :=
∫ 1

0

L(s, j/n)ξk(s) ds,

Wkj := ±π ξk(j/n)
|x′(j/n)| ,

for k = 1, . . . , n and j = 0, . . . , n− 1. The n-vectors α and g are

α := (α0, . . . , αn−1)T , gk :=
∫ 1

0

g(s)ξk(s) ds,
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for k = 1, . . . , n. Then the matrix form of the semi-discrete delta-
trigonometric method (3.1) is

a(A + V)α+ b(B + W)α = g,

and the approximate potential (3.2) is

Un(z) =
n−1∑
j=0

αj log |z − x(j/n)| for z ∈ R2\Γ.

Before we discetize the delta-trigonometric method, we note from [3,
9, 13, 14] that

Vkj :=

⎧⎪⎨⎪⎩
log |r|, if k = 1,
−ξk(j/n)

|k| , if k = 2, 4, . . . , n− 1,
−ξk(j/n)
|k−1| , if k = 3, 5, . . . , n,

for k = 1, . . . , n and j = 0, . . . , n − 1. The fully discrete method is
obtained by using the trapezoidal rule to evaluate A,B and g. Define

Ãkj :=
1
n

n−1∑
l=0

K(l/n, j/n)ξk(l/n), B̃kj :=
1
n

n−1∑
l=0

L(l/n, j/n)ξk(l/n),

g̃k :=
1
n

n−1∑
l=0

g(l/n)ξk(l/n), α̃ := (α̃0, . . . , α̃n−1)T ,

for k = 1, . . . , n and j = 0, . . . , n−1. The discrete delta-trigonometric
method seeks coefficients α̃j ’s such that

a(Ã + V)α̃+ b(B̃ + W)α̃ = g̃,

and computes the approximate potential as

(3.3) Ũn(z) =
n−1∑
j=0

α̃j log |z − x(j/n)| for z ∈ R2\Γ.

We now express the matrix equation in a reduced form. Define the
trigonometric matrix as

Θkj := ξk(j/n)
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for k = 1, . . . , n and j = 0, . . . , n − 1. Here we note that ΘΘT =
ΘT Θ = nI. Also define

Âkj := K(k/n, j/n), B̂kj := L(k/n, j/n),

V̂ll :=

⎧⎪⎨⎪⎩
log |r|, if l = 1,
−1
|l| , if l = 2, 4, . . . , n− 1,
−1

|l−1| , if l = 3, 5, . . . , n,

Ŵkk :=
±π

|x′(k/n)| , ĝk := g(k/n),

for k, j = 0, . . . , n − 1 and l = 1, . . . , n. Note that V̂ and Ŵ are
diagonal matrices, Â is a full symmetric matirx, and B̂ is a full
nonsymmetric matrix. The discrete delta-trigonometric method in
reduced matrix form is

(3.4) a

(
1
n

ΘÂ + V̂Θ
)
α̃+ b

(
1
n

ΘB̂ + ΘŴ
)
α̃ =

1
n

Θĝ.

4. The trigonometric-delta method. The semi-discrete trigono-
metric-delta method seeks φn ∈ Tn such that

(4.1) a

∫ 1

0

(A+ V )φn(s)ψ(s) ds+ b

∫ 1

0

(B +W )φn(s)ψ(s) ds

=
∫ 1

0

g(s)ψ(s) ds ∀ψ ∈ Sn,

and computes the approximate potential as

(4.2) Un(z) =
∫ 1

0

φn(t) log |z − x(t)| dt for z ∈ R2\Γ.

For the trigonometric-delta method, the density is

φn(t) =
n∑

j=1

βjξj(t)
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where βj ’s are unknown coefficients, and the test functions are

ψk(t) := δ(t− k/n)

for k = 0, . . . , n− 1. The matrices A,B,V,, and W are

Akj :=
∫ 1

0

K(k/n, t)ξj(t) dt,

Bkj :=
∫ 1

0

L(k/n, t)ξj(t) ds,

Vkj :=
∫ 1

0

log |2r sin(π(k/n− t))|ξj(t) dt,

Wkj := ±π ξj(k/n)
|x′(k/n)| ,

for k = 0, . . . , n− 1 and j = 1, . . . , n. The n-vectors β and g are

β := (β1, . . . , βn)T , gk := g(k/n),

for k = 0, . . . , n − 1. Then the matrix form of the semi-discrete
trigonometric-delta method (4.1) is

a(A + V)β + b(B + W)β = g,

and the approximate potential (4.2) is

Un(z) =
∫ 1

0

n∑
j=1

βjξj(t) log |z − x(t)| dt for z ∈ R2\Γ.

Again, note that

Vkj :=

⎧⎪⎪⎨⎪⎪⎩
log |r|, if j = 1,
−ξj(k/n)

|j| , if j = 2, 4, . . . , n− 1,
−ξj(k/n)

|j−1| , if j = 3, 5, . . . , n,

for k = 0, . . . , n − 1 and j = 1, . . . , n. The fully discrete method is
obtained by using the trapezoidal rule to evaluate Ã, B̃ and g̃. Define

Ãkj :=
1
n

n−1∑
l=0

K(k/n, l/n)ξj(l/n),

B̃kj :=
1
n

n−1∑
l=0

L(k/n, l/n)ξj(l/n),

β̃ := (β̃1, . . . , β̃n)T ,
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for k = 0, . . . , n−1 and j = 1, . . . , n. The discrete trigonometric-delta
method seeks coefficients β̃j ’s such that

a(Ã + V)β̃ + b(B̃ + W)β̃ = g̃,

and computes the approximate potential as

(4.3)
Ũn(z) =

1
n

n−1∑
l=0

n∑
j=1

β̃jξj(l/n) log |z − x(l/n)|

for z ∈ R2\Γ.
In terms of the reduced matrices, the discrete trigonometric-delta
method is

(4.4) a

(
1
n
ÂΘT + ΘT V̂

)
β̃ + b

(
1
n
B̂ΘT + ŴΘT

)
β̃ = ĝ.

5. The modified Nyström method. Multiply the discrete delta-
trigonometric matrix system (3.4) by ΘT to obtain

(5.1) a(Â + ΘT V̂Θ)α̃+ b(B̂ + nŴ)α̃ = ĝ.

Also note that the discrete trigonometric-delta matrix system (4.4) is
equivalent to

a

(
1
n
Â +

1
n

ΘT V̂Θ
)

ΘT β̃ + b

(
1
n
B̂ + Ŵ

)
ΘT β̃ = ĝ.

Therefore,

(5.2) α̃ =
1
n

ΘT β̃ and β̃ = Θα̃.

A simple examination of equations (3.3) and (4.3) shows that

Ũn(z) = Ũn(z) for z ∈ R2\Γ.

This implies that we can use one method and obtain the solution of
the other method by using equation (5.2). For these two methods,
O(n2 log n) operations is required to form the matrices using FFT.
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We now introduce the modified Nyström method as the method using
equation (5.1). In fact, equation (5.1) represents exactly the Nyström
method for the Neumann problem except for a multiple of n in the
density vector (due to using delta functions instead of actual function
values). We proceed to show that matrix formation in equation (5.1)
requires only O(n2) operations.

Define T = ΘT V̂Θ, and note that

T̂kj =
n∑

m=1

V̂mmξm(k/n)ξm(j/n)

= log |r| +
(n−1)/2∑

m=1

−1
2m

[2 cos(2πmk/n) cos(2πmj/n)

+ 2 sin(2πmk/n) sin(2πmj/n)]

= log |r| +
(n−1)/2∑

m=1

−1
m

cos
(

2πm
(k − j)
n

)
for k, j = 0, . . . , n − 1. The matrix T is a circulant Toeplitz matrix,
and, therefore, only the first row needs to be computed, which requires
O(n logn) operations using the FFT. The matrix Ŵ is a diagonal
matrix and requires O(n) operations. The matrices Â and B̂ are simple
kernel matrices and require O(n2) operations. The density is first found
as a summation of delta functions and, then, transformed (in O(n logn)
operations using FFT) to a trigonometric representation using equation
(5.2). Then the potential (especially near-field) is found using a higher
trapezoidal integration. This requires O(mn logn) operations to find
the discrete density where m is the increased multiplication factor
for the higher trapezoidal integration. In our code, we used the
LU decomposition which requires O(n3) operations, but an iterative
method could be used.

Remark. For the Dirichlet problem using the single-layer poten-
tial representation, the matrix system consists of a symmetric cyclic
Toeplitz matrix plus a symmetric matrix. The classical approach is to
use the double-layer potential representation and formulate a matrix
system which consists of an identity matrix plus a nonsymmetric ma-
trix. The advantages of our approach are that the matrix system is
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symmetric and that the single-layer potential may have a better phys-
ical representation.

For the Dirichlet problem, the modified Nyström method is equivalent
to the discrete delta-trigonometric and the discrete trigonometric-delta
methods, and, therefore, the exponential convergence results stated
in [14, Theorems 3.6 and 4.4] apply. Also, for nonanalytic boundary
data, rapid convergence results stated in [9, Theorem 9] apply. For
the Neumann problem, the modified Nyström method is equivalent
to the Nyström method, and, therefore, all classical results for the
Nyström method hold for the modified Nyström method. In the
following section, we derive exponential convergence results for the
Robin problem.

6. Exponential convergence for the Robin problem. In this
section we show that, for the Robin problem, the three equivalent
methods obtain the potential on compact sets away from the boundary
with exponential convergence. Again we assume that a and b are
such that the boundary integral equation (1.3) has a unique solution,
and that the boundary Γ and boundary data g are analytic. We
also assume that b �= 0, otherwise we have the Dirichlet problem
in which convergence results have been discussed at the end of the
previous section. There are three different approaches: 1) use the
delta-trigonometric method, 2) use the trigonometric-delta method,
and 3) use a perturbed boundary integral equation. We show a detailed
proof for the first approach and then discuss how to prove convergence
using the second and third approaches.

For the delta-trigonometric method, we first show the stability of the
integral operator associated with equation (1.3).

Theorem 6.1. Let s ≤ s0 < −1/2, ε ∈ (ε1, 1] (ε1 being determined
by x′, K, and L). Then, for sufficiently large n, there exists a constant
C depending only on s0 and Γ such that

inf
0�=ρ∈Sn

sup
0�=σ∈Tn

((a(V +A) + b(W +B))ρ, σ)
||ρ||s,ε||σ||−s,ε−1

≥ C.

Proof. We first show the inf-sup condition for W . From [13, Theorem
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3.1.1] or [14, Theorem 3.1], there exists a constant C1 depending only
on s0 such that

||ρ||2s,ε ≤ C1

∑
k∈An

|ρ̂(k)|2ε2|k|k2s ∀ ρ ∈ Sn.

Choose σ(t) = χ(t)γ(t) where

χ(t) = ± 1
π
|x′(t)|

and

γ(t) :=
∑

k∈Λn

ρ̂(k)ε2|k|k2s exp(2πikt).

Then χ is analytic and its Fourier coefficients have exponential decay
[22, Section 2.1], i.e., there exist constants C2 and ε2 ∈ (0, 1) such that

|χ̂(k)| ≤ C2ε
|k|
2 .

Also, it is trivial to show that

γ̂(k) :=
{
ρ̂(k)ε2|k|k2s, if k ∈ An,
0, otherwise.

Note that

σ̂(k) =
∫ 1

0

∑
l∈Z

χ̂(l) exp(2πilt)γ(t) exp(−2πikt) dt

=
∑
l∈Z

χ̂(l)γ̂(k − l)

=
∑
l∈Z

χ̂(k − l)γ̂(l).
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Then

||σ||2−s,ε−1 =
∑
k∈Z

|σ̂(k)|2ε−2|k|k−2s

=
∑
k∈Z

∣∣∣∣ ∑
l∈Z

χ̂(k − l)γ̂(l)
∣∣∣∣2ε−2|k|k−2s

=
∑
k∈Z

∣∣∣∣ ∑
l∈Z

χ̂(k − l)ε|l|lsγ̂(l)ε−|l|l−s

∣∣∣∣2ε−2|k|k−2s

≤
∑
k∈Z

∑
l∈Z

|χ̂(k−l)|2ε2|l|l2s
∑
m∈Z

|γ̂(m)|2ε−2|m|m−2sε−2|k|k−2s

≤
∑
k∈Z

∑
l∈Z

C2
2ε

2|k−l|
2 ε2|l|l2sε−2|k|k−2s

∑
m∈Λn

|ρ̂(m)|2ε2|m|m2s

= C3

∑
m∈Λn

|ρ̂(m)|2ε2|m|m2s

for ε ∈ (ε2, 1] where the Schwarz inequality is used for the inner
summation. Therefore,

(W,ρ, σ) =
1
2

∑
k∈Λn

ρ̂(k)ε2|k|k2s

∫ 1

0

ρ(t) exp(−2πikt) dt

=
1
2

∑
k∈Λn

|ρ̂(k)|2ε2|k|k2s

≥ C4||ρ||s,ε||σ||−s,ε−1

for ε ∈ (ε2, 1]. From [13, 14], we know that there is an ε3 ∈ (0, 1)
depending on the kernelK such that V +A is an isomorphism fromXs,ε

to Xs+1,ε for ε ∈ (ε3, 1]. But Xs+1,ε is compactly contained in Xs,ε [3],
and, therefore, V +A is a compact operator onXs,ε for ε ∈ (ε3, 1]. Also,
by using similar arguments as in [3], there is an ε4 ∈ (0, 1) depending on
the kernel L such that B is a compact operator on Xs,ε for ε ∈ (ε4, 1].
By setting ε1 := max(ε2, ε3, ε4) and using a compactness argument
similar to [3, 13, 14], we conclude the theorem.

The next theorem gives the existence and quasioptimality of the
approximate density. Its proof is omitted and can be invoked from
the standard theory of Galerkin methods.
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Theorem 6.2. There exists a constant N , depending only on Γ,
such that for all n ≥ N and g in ∪{Xs,ε | s ∈ R, ε > 0}, the
delta-trigonometric method (3.1) obtains unique solutions, φn ∈ Sn.
Moreover, if s < −1/2, ε ∈ (ε1, 1] (ε1 being determined in Theorem
6.1), g ∈ Xs,ε, and n ≥ N , then there exists a constant, C, depending
only on ε, s, and Γ such that

||φ− φn||s,ε ≤ C inf
ρ∈Sn

||φ− ρ||s,ε.

The next theorem states the convergence of the approximate density
and has been proven in [3, 13, 14] by using a projection operator and
Theorem 6.2. Its proof is omitted.

Theorem 6.3. Let s < −1/2, t ∈ [s, 0], n ≥ N , and φ ∈ Ht. Then
for ε ∈ (ε1, 1] (ε1 being determined in Theorem 6.1), there exists a
constant C depending only on ε, s, and Γ, such that

||φ− φn||s,ε ≤ Cεn/2(πn)s−t||φ||t.

Since the single-layer potential was used in the Dirichlet case, the
next theorem is similar to [13, Theorem 3.1.7] and [14, Theorem 3.6],
and will not be proved.

Theorem 6.4. Let n ≥ N , φ ∈ Ht, t ≤ 0, and ΩK be any compact
set away from the boundary. Then, for sufficiently large N and for any
multi-index β, there exist constants C and ε ∈ (0, 1) depending only on
t,N,ΩK , and Γ, such that

||∂β(U − Un)||L∞(ΩK) ≤ Cεn||φ||t

where U and Un are defined in (1.2) and (3.2), respectively.

The above theorem shows that the semi-discrete delta-trigonometric
method obtains exponential convergence for the potential on compact
sets away from the boundary. For the discrete delta-trigonometric
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method, we first review a numerical integration result where the trape-
zoidal rule is used and the integrand is an analytic function times a
trigonometric polynomial.

Theorem 6.5. Let f be an analytic 1-periodic function and define

fk :=
∫ 1

0

f(s) exp(2πiks) ds

and

f̃k :=
1
n

n−1∑
l=0

f(l/n) exp(2πikl/n).

Then there exist constants C and ε ∈ (0, 1), depending only on f , such
that

|fk − f̃k| ≤ Cεn

for all k ∈ Λn.

Proof. See [13, Theorem 3.3.2] and [14, Theorem 4.2].

Theorem 6.6. Let n ≥ N , φ ∈ Ht, t ≤ 0, and ΩK be any compact
set away from the boundary. Then, for sufficiently large N and for any
multi-index β, there exist constants C and ε ∈ (0, 1) depending only on
t,N,ΩK , g, and Γ, such that

||∂β(U − Ũn)||L∞(ΩK) ≤ Cεn||φ||t

where U and Ũn are defined in (1.2) and (3.3), respectively.

Proof. By Theorem 6.4, it suffices to show that

||∂β(Un − Ũn)||L∞(ΩK) ≤ Cεn||φ||t
where Un is defined in (3.2). Using the same argument as in [13,
Theorem 3.3.3] and [14, Theorem 4.3], there exist constants C and
ε ∈ (0, 1), depending only on g and Γ, such that

||g − g̃|| < Cεn, ||A − Ã|| < Cεn, ||B − B̃|| < Cεn.
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Define
S := a(A + V) + b(B + W),

S̃ := a(Ã + V) + b(B̃ + W).

Using a similar argument as in [13, Theorem 3.2.2] and b �= 0, we note
that ||S−1|| ≤ C. Also, note that

α − α̃ = S−1[g − g̃ − (S − S̃)α̃]

= S−1[g − g̃ − (A − Ã + B − B̃)α̃]

so that ||α − α̃|| ≤ Cεn where C > 0 and ε ∈ (0, 1) depend only on
g and Γ. Using the same argument as in [13, Theorem 3.3.4] and [14,
Theorem 4.4], we conclude the theorem.

The above theorem implies that, for the Robin problem, the discrete
delta-trigonometric method obtains exponential convergence for the
potential on compact sets away from the boundary. Therefore, the
modified Nyström and discrete trigonometric-delta methods also obtain
exponential convergence for the potential on compact sets away from
the boundary for the Robin problem.

The second approach is to extend the exponential convergence results
for the trigonometric-trigonometric method in [31] to the Robin prob-
lem. Then a similar technique as for the delta-trigonometric method
can be used to show that the effect of numerical integration is expo-
nential. Also, a similar technique as in [9] can be used to show rapid
convergence for the density. Although no proof is presented for this
approach, we conjecture that the proofs can be derived without much
difficulty.

The third approach is to consider a perturbation of the original
integral equation (1.3). No proof is presented for this approach, but a
brief explanation is provided. Define Vn such that

Vnφ(s) =
n∑

k=1

V̂φ(k)ξk(s) =
n∑

k=1

V̂kkφ̂(k)ξk(s).

The perturbed integral equation is

a(A + Vn)γn(s) + b(B + W)γn(s) = g(s) for s ∈ [0, 1].



THE 2-D POTENTIAL PROBLEM 185

For sufficiently large n, equation (6.1) has a unique solution, and the
error of γn is exponential in the Fourier norm. Here, the definition
of the Fourier norm is used to bound ||(V − Vn)φ||s,ε, and then the
perturbation theorem [7, p. 94] is used to bound ||φ − γn||s,ε. As in
the previous approaches, Theorem 6.6 is derived by showing that the
effect of numerical integration is exponentially small.

7. Numerical results. We present two examples using the
modified Nyström, the discrete delta-trigonometric, and the discrete
trigonometric-delta methods. All three methods obtain the same
solution except for machine errors; however, they require different
computational time.

Example 7.1. Dirichlet data. This example is the same ellipse
example as in [13, 14]. Here we compare the CPU times for all three
equivalent methods.

Boundary: x2
1/4 + x2

2 = 1/25

Data: g = 5x1/2

Exact solution:

u :=

⎧⎨⎩
5x1/2, if (x1, x2) ∈ Ω,
5x1 − w, if (x1, x2) ∈ Ωc and x1 ≥ 0,
5x1 + w, if (x1, x2) ∈ Ωc and x1 ≤ 0,

where

w =

√
25(x2

1 + x2
2) − 3 +

√
(25(x2

1 + x2
2) − 3)2 + 2500x2

1x
2
2

2
.

Figure 1A shows the logarithmic error of the approximate potential
for the modified Nyström method on the line x1 = 2x2. Here the line
crosses the boundary at x1 = 0.2

√
2. Note that the convergence is only

linear across the boundary. Although not shown, we noted that the
delta-trigonometric and trigonometric-delta methods obtain the same
approximate potential except when the errors are near machine errors.
In Figure 1B, we transform the density from a delta representation
to a trigonometric representation using equation (5.2), and then eval-
uate approximate potential using a (8X) higher trapezoidal rule, i.e.,
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FIGURE 1A. Log(error) versus x1 on the line x1 = 2x2 for Example 7.1. No
higher trapezoidal integration is used.

trapezoidal rule with 8 times more integration points. We note that
the approximate potential at the boundary converges only slightly bet-
ter than linear, but the approximate near-field potential has improved
considerably.

In Table 1A, a comparison in CPU times (APOLLO DN 3000) is
shown for n = 243 using the three equivalent methods. Here we noted
a significant CPU saving, especially in creating the matrices. The LU
decomposition was used to solve for the density and requires similar
CPU for all three methods. However, further computational saving
can be achieved using an iteration method. No higher trapezoidal
integration was used for these runs.
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TABLE 1A. CPU times for n = 243 in Example 7.1.

modified delta- trig-
Nyström trig delta

preliminary 1.0187 1.0280 1.0204
g 0.0109 0.7790 0.0109
V 3.0475 7.0117 6.8817
A 14.6405 200.3261 198.5745
W 0.0004 0.0025 0.0037
B 0.0010 0.0046 0.0011
a(A + V) + b(B + W) 2.2929 2.7085 2.6887
α̃ or β̃ 126.2318 127.3710 132.7381
Ũn 3.6433 3.6411 3.7771
|Ũn − U | 0.8273 0.7901 0.7981
total 151.7141 343.6626 346.4942

Example 2. Robin data. In this example we consider the 2-
D potential problem with Robin boundary condition in the interior
region. As in Example 1, we compare the computational time between
the three analogous methods and show that the numerical solution can
be improved by transforming the density from a delta representation
to a trigonometric representation and, then, using a higher trapezoidal
integration.

Boundary: x2
1/a

2 + x2
2/b

2 = 1

Data:

g(t) = log |x(t) − (c, d)| + ((x(t) − (c, d)) · ν(t))/|x(t) − (c, d)|2.

Exact interior solution: u(z) := log |z − (c, d)|
For this example we used a = 2, b = 1, c = 4, and d = 3. As

in the previous example, Figure 2A shows the logarithmic error of the
approximate potential on the line x1 = 2x2 without a higher trapezoidal
rule, and Figure 2B is the same with an (8X) higher trapezoidal rule.
Here the line meets the boundary at x1 = 0.1

√
2. Again, note that the
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FIGURE 1B. Log(error) versus x1 on the line x1 = 2x2 for Example 7.1.
8X-higher trapezoidal integration is used.

approximate near-field potential improved, but the convergence rate is
only slightly better than linear on the boundary. As in Example 1,
Table 2 shows the CPU time for the three analogous methods. Again,
the modified Nyström method uses significantly less time to create the
matrices.

8. Summary. In this paper we showed that the discrete delta-
trigonometric and the discrete trigonometric-delta methods obtain the
same discrete density. Moreover, we can interchanged between the
delta and trigonometric representations of the density. The trigono-
metric representation of the density is more desirable so that a higher
trapezoidal integration can be used to obtain better near-field results.
Then we introduced another equivalent method called the modified
Nyström method which is computationally quicker and requires a sim-
ple O(n2) operation to form the matrices. Thus, our technique is to
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FIGURE 2A. Log(error) versus x1 on the line x1 = 2x2 for Example 6.2. No
higher trapezoidal integration is used.

find the delta representation of the density using the modified Nyström
method, convert to the trigonometric representation of the density, and
use a higher trapezoidal integration to find the approximate potential.

Second, for the Dirichlet problem, we noted that using the single-
layer potential representation instead of the double-layer potential
representation to formulate the boundary integral equation is more
feasible because the matrix system is symmetric.

Third, we proved that the three equivalent methods obtain the
potential on compact sets away from the boundary with exponential
convergence for the Robin problem.

Fourth, we noted that the perturbed integral equation (6.1) is more
suitable than the original equation since the logarithmic singularity
problem is removed. The usage of this equation should be examined
further in the future.
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FIGURE 2B. Log(error) versus x1 on the line x1 = 2x2 for Example 6.2.
8X-higher trapezoidal integration is used.

TABLE 2. CPU times for n = 243 in Example 7.1.

modified delta- trig-
Nyström trig delta

preliminary 0.7120 0.6997 0.7028
g 0.0487 0.8114 0.0488
V 3.0675 6.5015 6.1772
A 14.5537 199.1406 198.0494
W 1.5918 6.9492 7.1744
B 8.8122 193.0474 194.2434
a(A + V) + b(B + W) 4.3190 5.3929 5.1352
α̃ or β̃ 126.8790 129.6312 132.0138
Ũn 2.1204 2.1836 2.1324
|Ũn − U | 0.5252 0.5099 0.5300
total 162.6295 544.8674 546.2072
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Finally, we note that n, the number of mesh, and m, the increased
multiplication factor of the higher trapezoidal integration, can be
chosen to optimize the numerical results. If we are interested in the
potential at near-field with a specified error criterion, then we would
choose n such that the far-field results satisfy a little better than the
error criterion, and then increase m until the near-field results satisfy
the error criterion.

9. Acknowledgment. The author wishes to thank Professor
Kendall Atkinson and the referee for their helpful discussions.
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